Jeoloji Münendisliği Dergisi
Jeoloji Mühendisliği Dergisi

Jeoloji Mühendisliği Dergisi

2012 HAZİRAN Cilt 36 Sayı 1
COVER
View as PDF
COPYRİHT PAGE
View as PDF
CONTENTS
View as PDF
Application of the Methods Commonly Used for Bearing Capacity and Amount of Settlement on the Mersin City Sewerage Project Example
Ali Kayabaşi Candan Gökçeoğlu
View as PDF

ABSTRACT: In this study, bearing capacity and settlement properties of the clay unit outcropping at foundation ofMersin City Sewerage Project site are calculated and the commonly used methods for the determinationof bearing capacity and the settlement properties were correlated. The information was used from 20boreholes opened in this context. Standart Penetration Tests (SPT) and Pressuremeter Tests (MPT) wereaccomplished in boreholes and a series of laboratory tests were carried out on disturbed and undisturbedsamples. The bearing capacity of the foundation was determined with pressuremeter, Terzaghi, Hansen,Meyerof, and Skempton methods. Initial and consolidation settlements were calculated in addition topressuremeter settlement calculations. Later, calculated bearing capacity and settlement values of clayunits from different methods were correlated. The results of the bearing capacity calculations of foundationclays give closer results with Terzaghi, Hansen, Meyerof and Pressuremeter methods but Skempton methodgives relatively low values due to the calculation with only cohesion parameters. Pressuremeter settlementvalues were the lowest results where initial and the consolidation settlement values were calculatedrelatively higher. Odeometer test is recommended for the litologic units which have long consolidationperiod. Care should be given for settlement calculations with the pressuremeter method.

  • Settlement

  • Pressuremeter

  • Bearing capacity

  • Foundation

  • Mersin

  • APAGEO., 2006. Menard Pressuremeter (G Type) operating instructions, 2006 edition.

  • ASTM (American society for testing and materials)., 1994. Annual book of ASTM Standarts-Section 4, Construction, V. 0408 Soil and Rock; Building Stones. ASTM Publication, 978 p.

  • Baquelin, F., Jezequel, J.F., Shields, DH., 1978. The Pressuremeter and Foundation Engineering. Trans Tech Publications, Clausthal-Zellerfeld, Germany, 617 p.

  • Clarke, B.G., 1995. Pressuremeters in Geotechnical Design (1. Edition). Chapman&Hall, 2-6 Boundary Row, London SE1 8HN. UK, 364 p.

  • Craig, R.F., 1974. Soil Mechanics. Longman, England, 410 p.

  • Genç, D., 2008. Zemin Mekaniği ve Temeller (1. Baskı). Jeoloji Mühendisleri Odası Yayını, yayın no:100, Ankara, 848 s.

  • Gürsoy, N., Kayabaşı, A., 1995. Mersin Belediyesi Kanalizasyon Projesi Arıtma Tesisleri Zemin Araştırma Sonuçları. EİEİ, yayın no:95-4. Ankara, 285 s.

  • Hansen, J.B., 1961. The Bearing Capacity of Sand Tested by Loading Circular Plates. 5 th International Conference on Soil Mechanic Foundation. England:Vol.1, Paris.

  • Harr, M.E., 1966. Fundamentals of Theoretical Soil Mechanics. McGraw-Hill, New York.

  • Kumbasar, V., Kip, F., 1992. Zemin Mekaniği Problemleri (5. Baskı). Çağlayan Basımevi, İstanbul, 614 s.

  • Leonards, G.A., 1962. Foundation Engineering. McGraw Hill, Tokyo, 113 p.

  • Means, R.E., Parcher, J.W., 1963. Physical Properties of Soils. Charls E. Merril Publicatipn Company., Columbia, Ohio, 467 p.

  • Menard, L., Rouseau, J., 1962. L’evaluation des tassements-Tendances nouvelles-Sols-Soils. Vol. I, No. 1 Juin, 13-29.

  • Meyerof, G.G., 1963. Some recent research on the bearing capacity of foundations. Canadian Geotechnical Journal, Vol.1, No.1, 16-26.

  • Seed, H., Woodword, R.J. and Lundgren, R., 1962. Prediction of swelling potential of compacted clay. Journal of Soil Mechanic and Foundation Division, A.S.C.E, 88 (3), 53-87.

  • Seed, H.B., Woodward, R.J. and Lundgren, R., 1964. Fundamental aspects of the Atterberg Limits. Journal of Soil Mechanics and Foundations Division, A.S.C.E, Cilt.90, No. SM6, 75-105.

  • Sridharan, A., Gurdug, Y., 2004. Swelling behavior of compacted fine-grained soils. Engineering Geology, 72 (1-2), 9-18.

  • Skempton, A.W., 1951. The bearing capacity of clays. Proceedings, Building Research Congress, London.

  • SPSS., 2002. Statistical Package for the Social Sciences (v.11.5). SPSS Inc., Chicago, IL.

  • Terzaghi, K., 1943. Theoretical Soil Mechanics. John Wiley&Sons, New York.

  • Terzaghi, K., Peck, R.B., 1968. Foundation Design and Construction. Pitman, London.

  • Türk Standartları Enstitüsü (TSE)., 1988. İnşaat mühendisliğinde temel zemini özelliklerinin yerinde ölçümü. TS 5744, 35 s.

  • Türk Standartları Enstitüsü (TSE)., 1997. Jeoteknik Tasarım Bölüm 3, Arazi Deneyleri Yardımıyla Tasarım (TS ENV 1997-3, Eurocode 7), (in Turkish).

  • USBR (United States Dep. Int. Bur. Reclamation)., 1974. Earth Manual. A water Reseources Technical Publication. Denver, Colo., 810 p.



  • Kayabaşı, A , Gökçeoğlu, C . (2012). Taşıma Kapasitesi ve Oturma Miktarının Hesaplanmasında Yaygın Kullanılan Yöntemlerin Mersin Arıtma Tesisi Temeli Örneğinde Uygulanması . Jeoloji Mühendisliği Dergisi , 36 (1) , 1-22 . Retrieved from https://dergip

  • Kayabaşı, A , Gökçeoğlu, C . Taşıma Kapasitesi ve Oturma Miktarının Hesaplanmasında Yaygın Kullanılan Yöntemlerin Mersin Arıtma Tesisi Temeli Örneğinde Uygulanması. Jeoloji Mühendisliği Dergisi 36 (2012 ): 1-22

  • Investigation of the Relationships Between Abrasiveness and Strength Properties of Weak Limestones Along a Tunnel Route
    Nihat Dipova
    View as PDF

    ABSTRACT: CERCHAR Abrasiveness Index (CAI) plays an important role in determination of rock abrasivity. Themain factors affecting the abrasiveness of rocks are amount of hard minerals such as quartz, rock density, degree of cementation and strength characteristics. In this study, rock samples of Austin (Texas - USA) weretested, weak limestone samples were tested according to CERCHAR method and relationships betweenabrasiveness and the strength properties of the soft rocks were investigated. Considering abrasion of therock and steel together, wear on the steel and indentation on the rock that occur at the same time weremeasured and tried to be correlated. Potential usage of CERCHAR method, which is currently used forestimation of life of excavation tools, was investigated for prediction of strength properties of weak rocks.As a result of the study, CAI values of the limestone samples were found less than 1.72, while the majorityof the results was found in the range of 0.2 to 1. In this study a good relationship has been found amongCAI and UCS and TS values, by the statistical analysis of the test results. Another good relationship wasobserved between CAI and indentation depth (ID). Similarly, ID has good correlation with the UCS andTS. . CAI parameter used in the determination of rock abrasivity and CERCHAR method used to obtainit have been suggested be improved for the soft rocks. It is concluded that, in addition to CAI values, bymeans of indentation depth measurements in CERCHAR tests, prediction of other rock properties will bepossible. 

  • Abrasiveness

  • Wear

  • CERCHAR

  • Strength

  • Weak limestone

  • Al-Ameen, S.L., Waller, M.D.,1994. The influence of rock strength and abrasive mineral content on the CERCHAR abrasive index. Engineering Geology, 36, 293-301.

  • Altındağ, R., Şengün, N., Saraç, S., Mutlutürk, M., Güney, A., 2009. Evaluating the relations between brittleness and cerchar abrasion index of rocks. Eurock 2009, ISRM Regional Symposium, Crotia, 195-200.

  • ASTM D 2938, Standard Test Method for Unconfined Compressive Strength of Intact Rock Core Specimens. ASTM International, West Conshohocken, PA.

  • ASTM D 3967, Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens. ASTM International, West Conshohocken, PA.

  • ASTM D 5731, Standard Test Method for Determination of the Point Load Strength Index of Rock. ASTM International, West Conshohocken, PA.

  • ASTM D7625, Standard Test Method for Laboratory Determination of Abrasiveness of Rock Using the CERCHAR Method. ASTM International, West Conshohocken, PA.

  • Atkinson, R.H., 1993. Hardness Tests for Rock Characterization. In: Hudson, J. (ed) Comprehensive rock engineering. Principles, practice and projects, vol 3. Pergamon- Oxford Press, 105–117.

  • Atkinson, T., Cassapi, V.B., Singh, R.N., 1986. Assessment of abrasive wear resistance potential in rock excavation machinery. International Journal of Mining and Geological Engineering, 3, 151-163.

  • Bilgin, N., 1989. İnşaat ve Maden Mühendisleri için Uygulamalı Kazı Mekaniği. Birsen Yayınevi, İstanbul, 192 s..

  • CERCHAR, 1986. The CERCHAR abrasiveness index. Centre d´Études et des Recherches des Charbonages de France. Verneuil.

  • DataFitX v.2 Curve Fitting (nonlinear regression) and Data Plotting Software, Oakdale, PA-USA (http://www.oakdaleengr.com/)

  • Fowell, R.J., Abu Bakar, M.Z., 2007. A review of the Cerchar and LCPC rock abrasivity measurement methods. 11th Congress of the International Society for Rock Mechanics, Second half century for rock mechanics, Vol. 1, 155-160.

  • Hixon, S.B., 1959. Facies and petrography of the cretaceous Buda limestone of Texas and Northern Mexico. University of Texas, USA, MA Thesis, 152 p, (yayımlanmamış).

  • Iconico Screen Calipers, Iconico Inc., New York, NYUSA (http://www.iconico.com/caliper/).

  • Johnson, S.T., Fowell, R.J., 1986. Compressive strength is not enough (Assessing Pick Wear for Drag Tool-Equipped Machines). In: Proceedings of the 27th US Symp Rock Mechanics, Tuscaloosa, Alabama, USA, 840–845.

  • Michalakopoulos, T.N., Anagnostou, V.G., Bassanou, M.E., Panagiotou, G.N., 2005. The influence of steel styli hardness on the Cerchar abrasiveness index value. International Journal of Rock Mechanics Mining Sciences and Geomechanical Abstracts, 43, 3

  • Plinninger, R., Kasling, H., Thuro, K., Spaun, G., 2003. Technical note – Testing conditions and geomechanical properties influencing the CERCHAR abrasiveness index (CAI) value. International Journal of Rock Mechanics & Mining Sciences, 40 (2), 259-2

  • Schimazek, J., Knatz, H., 1976. Die beurteilung der bearbeitbarkeit von gesteinen durch schneid - und rollenbohrwerkzeuge. Erzmetall, 29 (3), 113-119.

  • Suana, M., Peters, T., 1982. The CERCHAR abrasivity index and its relation to rock mineralogy and petrography. Rock Mechanics and Rock Engineering, 15, 1–7.

  • Valantin, A., 1973. Test CERCHAR pour la mesure de la dureté et de l’abrasivité des roches. Annexe de l’exposée présenté aux Journées d’ Information « Techniques de creusement » Novembre 1973, Luxembourg.

  • West, G., 1986. Relation between abrasiveness and quartz content for some coal measures sediments. International Journal of Mining and Geological Engineering, 4, 73-78.

  • West, G., 1989. Technical Note – rock brasiveness testing for tunnelling, in International Journal of Rock Mechanics, Mining Sciences and Geomechanics Abstracts, 26 (2), 151-160.

  • Yaralı, O., Yaşar, E., Bacak, G., Ranjith, P.G., 2008. A study of rock abrasivity and tool wear in coal measures Rocks. International Journal of Coal Geology, 74, 53–66.



  • Dipova, N . (2012). Bir Tünel Güzergâhındaki Zayıf Kireçtaşlarının Aşınma ve Dayanım Özellikleri Arasındaki İlişkilerin Araştırılması . Jeoloji Mühendisliği Dergisi , 36 (1) , 23-34 . Retrieved from https://dergipark.org.tr/tr/pub/jmd/issue/28180/295

  • Dipova, N . Bir Tünel Güzergâhındaki Zayıf Kireçtaşlarının Aşınma ve Dayanım Özellikleri Arasındaki İlişkilerin Araştırılması. Jeoloji Mühendisliği Dergisi 36 (2012 ): 23-34

  • An Example for Preparation of GIS-Based Landslide Susceptibility Maps: Çayeli (Rize, NE Türkiye)
    Serhat Dağ Fikri Bulut
    View as PDF

    ABSTRACT: Landslides are leading natural disasters occurring in the Black Sea Region, which is one of the regions receiving a great deal of rain and which is the roughest one in our country, particularly the Eastern Black Sea. In the region, the damage caused by landslides is greater than that caused by earthquakes in the long term. In this study, the landslides that occurred in Çayeli in July 2002 as a result of heavy rain were investigated and the landslide susceptibility map was prepared for the study area. Initially, a landslide inventory map was created and 149 landslides in total were mapped. Based on field investigations, the factors of lithology-weathering, slope angle, slope aspect, landcover, elevation and proximity to river were evaluated as the parameters causing the landslides. Using topographical and thematic maps, the parameter maps were created in Geographical Information Systems (GIS) environment,. Associating the maps with the current landslides, their frequency ratio values were determined. In the light of these evaluations, it is thought that completely weathered dacite and pyroclastics, and completely weathered andesite-basalt and pyroclastics are effective in the landslide occurrence. The slope classes between 0º and 20º, northward-northeastward slopes and the elevation classes between 0 and 200 m were regarded as significant according to the obtained values. Similarly, landcover classes from agricultural and settlement area, and proximity to river classes between 0 - 100 m are parameter classes considered significant in paired comparisons. Then, weighted values were calculated and by taking these values in to account, a landslide susceptibility map was created. Finally, to analyse the performance of the map, the current landslides and the susceptibility map were compared and 81% of current landslides were determined to be situated in susceptible, highly susceptible and very highly susceptible areas.

  • GIS

  • Çayeli

  • Susceptibilty Map

  • Frequency ratio

  • Landslide

  • Akgün, A., Bulut, F., 2007. GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environmental Geology, 51, 1377-1387.

  • Akgün, A., Dağ, S., Bulut, F., 2008. Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihoodfrequency ratio and weighted linear combination models. Environmental Geology, 54, 1127-1143.

  • Akgün, A., Türk, N., 2010a. Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis. Environmental Earth Science, 61, 595–611.

  • Akgün, A., Türk, N., 2010b. İki ve çok değişkenli istatistik ve sezgisel tabanlı heyelan duyarlılık modellerinin karşılaştırılması: Ayvalık (Balıkesir, Kuzeybatı Türkiye) örneği. Jeoloji Mühendisliği Dergisi, 34 (2), 85-112.

  • Ayalew, L., Yamagishi, H., Ugawa, N., 2004. Landslide susceptibility mapping using gısbased weighted linear combination, The case in Tsugawa area of Agano River, Niigate prefecture, Japan. Landslides, 1, 73-81.

  • Ayalew, L., Yamagishi, H., 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko mountains, Central Japan. Geomorphology, 65 (1-2), 15-31.

  • Baeza, C., Corominas, J., 2001. Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surface Processes and Landforms, 26, 1251-1263.

  • Barnard, P.L., Owen, L.A., Sharma, M.C., Finkel, R.C., 2001. Natural and humaninduced landsliding in the Garhwal Himalaya of Northern India. Geomorphology, 40, 21-35.

  • Choubey, V.D., Chaudhari, S., Litoria, P.K., 1992. Landslide hazard zonation in Uttarkashi and Tehri Districts P. Himalaya, India. Proceeding 6th International Symposium on Landslides, Christchurch, 911-917.

  • Çan, T., Nefeslioğlu, H.A., Gökçeoğlu, C., Sönmez, H., Duman, T.Y., 2005. Susceptibility assessments of shallow earthflows triggered by heavy rainfall at three catchments by logistic regression analyses. Geomorphology, 72, 250-271.

  • Çevik, E., Topal, T., 2003. GIS-Based Landslide Susceptibility Mapping for a Problematic Segment of the Natural Gas Pipeline, Hendek (Turkey). Environmental Geology, 44, 949-962.

  • Dağ, S., Bulut, F., Akgün, A., 2006. İki değişkenli istatistiksel analiz yöntemi ile Çayeli (Rize) ve çevresindeki heyelanların değerlendirilmesi. 1. Heyelan Sempozyumu, Trabzon, Bildiriler Kitabı, 84.

  • Dağ, S., 2007. Çayeli (Rize) ve çevresinin istatistiksel yöntemlerle heyelan duyarlılık analizi. Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon, Doktora Tezi, 241 s (yayımlanmamış).

  • Dai, F.C., Lee, C.F., Xu, Z.W., 2001. Assessment of Landslide Susceptibility on the Natural Terrain of Lantau Island, Hong Kong. Environmental Geology, 40 (3), 381-391.

  • Dai, F.C., Lee, C.F., 2001. Terrain-based mapping of landslide susceptibility using a geographical ınformation system: A case study. Canadian Geotechnical Journal, 38, 911-923.

  • Donati, L., Turrini, M.C., 2002. An objective method to rank the importance of the factors predisposing to landslides with the GIS methodology: Application to an area of the Apennines (Valnerina; Perugia, Italy). Engineering Geology, 63, 277-289.

  • Ercanoğlu, M., Gökçeoğlu, C., 2002. Assessment of Landslide Susceptibility for a Landslide-Prone Area (North of Yenice, NW Turkey) by Fuzzy Approach. Environmental Geology, 41, 720-730.

  • Ercanoğlu, M., 2003. Bulanık Mantık ve İstatistiksel Yöntemlerle Heyelan Duyarlılık Haritalarının Üretilmesi: Batı Karadeniz Bölgesi (Kumluca Güneyi - Yenice Kuzeyi)” Doktora Tezi, Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, 203 s. (yayınlanmamı

  • Environmental Systems Research Institute, 1996, Using ArcView GIS, United States of America.

  • Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., Savage, W.Z., 2008. Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Engineering Geology, 102, 85-98.

  • Fernandez, C.I., Del Castillo, T.F., El Hamdouni, R., Montero, J.C., 1999. Verification of landslide susceptibility mapping: A case study. Earth Surface Process and Landforms, 24, 537-544.

  • Guillande, R., Gelugne, P., Bardintzeff, J.M., Brousse, R., Chorowich, J., Deffontaines, B., Parrot, J.F., 1993. Cartographie automatique de zones a aleas de mouvement de terrain sur ı’ile de Tahiti a partir de donnees digitales. Bulletin de la Socie

  • Gökçeoğlu, C., Aksoy, H., 1996. Landslide susceptibility mapping of the slopes in the residual soils of the Mengen Region (Turkey) by deterministic stability analyses and image processing techniques. Engineering Geology, 44, 147-161.

  • ISRM (International Society for Rock Mechanics), 1981. ISRM Suggested Methods; Rock Characterization, Testing and Monitoring. Pergamon Press, London, 211 p.

  • Korkmaz, S., Gedik, A., 1988. Rize-FındıklıÇamlıhemşin arasında kalan bölgenin jeolojisi ve petrol oluşumları. Jeoloji Mühendisleri Odası Yayını, 32-33, 5-15.

  • Lee, C.F., Ye, H., Yeung, M.R., Shan, X., Chen, G., 2001. A GIS-Based Methodology for Natural Terrain Landslide Susceptibility Mapping in Hong Kong. Episodes, 24 (3),150-159.

  • Lee, S., Chwae, U., Min, K., 2003. Landslide susceptibility mapping by correlation between topography and geological structure: The Janghung Area, Korea. Geomorphology, 46, 9-162.

  • Lee, S., 2005. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. International Journal of Remote Sensing, 26 (7), 1477-1491.

  • Luzi, L., Pergalani, F., 1999. Slope instability in static and dynamic conditions for urban planning: The “Oltre Po Pavese” case history (Region Lombardia-Italy). Natural Hazards., 20, 57-82.

  • Mejia-Navarro, M., Wohl, E.E., 1994. Geological hazard and risk evaluation using GIS: Methodology and model applied to modellin, Colombia. Bulletin of the International Association of Engineering Geology, 31 (4), 459-481.

  • MİGM (Meteoroloji İşleri Genel Müdürlüğü), 2007, Ankara, 4s.

  • Nagarajan, R., Roy, A., Vinod Kumar, R., Mukherjee, A., Khire, M.V., 2000. Landslide hazard susceptibility mapping based on terrain and climatic factors for tropical monsoon regions. Bulletin of Engineering Geology and the Environment, 58, 275-287.

  • Nefeslioğlu, H.A., Gökçeoğlu C., Sönmez H., 2008. An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Engineering Geology, 97, 171-191

  • Ohlmacher, G.C., Davis, J.C., 2003. Using multiple logistic regression and GIS technology to predict landslide hazard in Northeast Kansas, USA. Engineering Geology, 69, 331-343.

  • Pachauri, A.K., Pant, M., 1992. Landslide Hazard Mapping Based on Geological Attributes. Engineering Geology, 32, 81-100.

  • Peloquin, S., Gwyn, Q.H.J., 2000. Using remote sensing, GIS and artificial ıntelligence to evaluate landslide susceptibility levels: Application in the Bolivian Andes. 4th International Conferance On Inteqrated GIS Environment Modules, Canada, 26-37.

  • Pradhan, S., Lee, B., 2010. Regional landslide susceptibility analysis using back-propagation neural network model at Cameron Highland, Malaysia. Landslides, 7, 13-30.

  • Rautella, P., Lakhera, R.C., 2000. Landslide risk analysis between giri and ton rivers in Himachal Himalaya (India). International Journal of Applied Earth Observation and Geoinformation, 2 (3-4), 153-160.

  • Santacana, N., Baeza, B., Corominas, J., Paz, A.D., Marturia, J., 2003. A GIS-based multivariate statistical analysis for shallow landslide susceptibility maping in La Pobla de Lillet area (Eastern Pyrenees, Spain). Natural Hazards, 30, 281-295.

  • Süzen, M.L., 2002. Data Driven Landslide Hazard Assessment Using Geographical Information System and Remote Sensing. Middle East Technical University Graduate School of Natural and Applied Sciences Geological Engineering Department, PhD. Thesis, Anka

  • Soeters, R.S., Van Westen, C.J., 1996. Slope Instability Recognition, Analysis and Zonation. In Landslides: Investigation and Mitigation A.K. Turner and R.L. Schuster (eds.). Transportation Research Board, National Research Council, Special Report-24

  • Temesgen, B., Mohammed, M.U., Korme, T., 2001. Natural hazard assessment using gis and remote sensing methods, with particular reference to the landslides in the Wondogenet Area, Ethiophia. Physics and Chemistry of the Earth, 26 (9), 665- 675.

  • Van Westen, C.J., 1993. Remote Sensing and Geographic Information Systems for Geological Hazard Mitigation. The Faculty of Geo- Information Science and Earth Observation Journal, 4, 393-399.

  • Wilson, J.P., Gallant, J.C., 2000. Terrain Analysis Principles and Application, John Wiley & Sons, Canada, 479 p.

  • Yalçın, A., Bulut, F., 2007. Landslide susceptibility mapping using GIS and digital photogrametric techniques; a case study from Ardeşen (NETurkey). Natural Hazard, 41, 201-226.

  • Yalçın, A., 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena, 72, 1-12.

  • Yeşilnacar, E., Topal, T., 2005. Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek Region (Turkey). Engineering Geology, 79, 251-266.

  • Yılmaz, I., 2009. A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by Artificial Neural Networks. Bulletin of Engineering Geology and the Environment, 68 (3), 297-306.



  • Dağ, S , Bulut, F . (2012). Coğrafi Bilgi Sistemleri Tabanlı Heyelan Duyarlılık Haritalarının Hazırlanmasına Bir Örnek: Çayeli (Rize, KD Türkiye) . Jeoloji Mühendisliği Dergisi , 36 (1) , 35-62 . Retrieved from https://dergipark.org.tr/tr/pub/jmd/iss

  • Dağ, S , Bulut, F . Coğrafi Bilgi Sistemleri Tabanlı Heyelan Duyarlılık Haritalarının Hazırlanmasına Bir Örnek: Çayeli (Rize, KD Türkiye). Jeoloji Mühendisliği Dergisi 36 (2012 ): 35-62

  • Determination of Physical, Mechanical and Elastic Properties of the Rocks with Ultrasonic Velocity Technique and Time-Frequency Analysis: A Case Study on the Beige Limestones (NE Turkey)
    Ali Erden Babacan Hakan Ersoy Kenan Gelişli
    View as PDF

    ABSTRACT: In the most of engineering geological and rock engineering applications, uniaxial compressivestrength (UCS) and elasticity modulus (E) of the intact rocks are the most widely used parameters. However, in some cases it can be quite difficult, time consuming and expensive to prepare specimens and toconduct this test. As an alternative, the empirical or analytical relationships between various physical andmechanical strength properties of materials can be used to estimate the required engineering propertiesof rocks. For these reasons, simple test method such as ultrasonic sonic velocity test is used widely. Thissimple test has been world widely used to estimate the UCS and E of the rock materials, because of theirrapidity, simplicity, portability, low cost, non-destructiveness and easiness in both specimen preparationand test conduction. In this study, simple test methods and UCS tests were conducted on the samplesobtained from the beige limestones outcropping in the southern zone of the eastern Pontides and somestatistical correlations were established between results of simple tests and UCS test results. Regardingthe test results obtained by the direct and indirect methods, meaningful statistical relations between therock properties are obtained.  

  • Physical properties

  • Limestone

  • Mechanical properties

  • Ultrasonic velocity

  • Altıntaş, M, 1996. Sismik parametreler ile bazı kaya mekaniği parametreleri arasındaki ilişkiler. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, Ankara 96 s (yayınlanmamış)

  • Babacan, A.E., Ersoy, H., Gelisli, K., 2009. Determination of physical and mechanic properties of rocks with direct and indirect methods: A case study on the beige limestones in the Eastern Pontides. Proceedings of The 21st International Mining Congr

  • CANMET, 1997a. Laboratory Classification Tests. In Pit Slope Manual of CANMET, Supplement 3-1, Canada Centre for Mineral and Energy Technology Report 77-25, 31 p.

  • CANMET, 1997b. Laboratory Classitication Tests, In Pit Slope Manual of CANMET, Supplement 3-1, Canada Centre for Mineral and Energy Technology Report 77-26, 74 p.

  • Chakraboty, A., Okaya, D., 1995. Frequency-time decomposition of seismic data using waveletbased methods. Geophysics, Vol. 60, 6: 1906– 1916.

  • Ersoy, H., Özdemir, A., Yalçınalp, B., 2009. Geology and geotechnical properties of kalecik (Gümüşhane) travertines. Proceedings of The 21st International Mining Congress and Exhibition of Turkey, Antalya, 639-648.

  • Güven, İ.H., 1993. Doğu Pontidlerin Jeolojisi ve 1/250.000 Ölçekli Kompilasyonu. MTA Yayınları, Ankara, 65 s.

  • ISRM., 1981. Rock Characterisation Testing and Monitoring ISRM Suggested Methods. Brown, E.T., (Editor), Pergamon Press, 211 p.

  • Kahraman, S., 2001. Evaluation of simple methods for assessing the uniaxial compressive strength of rock. International Journal of Rock Mechanics and Mining Sciences, Volume 38, 7, 981-994

  • Karakuş, M., Kumral, M., Kılıç, O., 2005. Predicting elastic properties of intact rocks from index tests using multiple regression modelling, International Journal of Rock Mechanics and Mining Sciences, 42, 2, 323-330

  • Ketin, I., 1966. Anadolu’nun Tektonik Birliktelikleri. Maden Tetkik ve Arama Dergisi, 66, 23-34.

  • Malinaric, S., Kostial, P., 1998. Contribution to the Signal Processing of Ultrasonic Pulses. Journal of Physics, Volume 31, 8, 970–977.

  • Okay, A.I., Şahintürk, O., 1997. Geology of the eastern Pontides. A.A.P.M Report of Regional and Petroleum Geology of the Black Sea and Surrounding Region, 68, 291– 311.

  • Pelin, S., 1977. Alucra (Giresun) Güneydoğu yöresinin jeolojisi ve petrol olanakları bakımından incelenmesi. KTÜ Yayını, Trabzon, 87 s.

  • Saka, M., Schneider, E., Holder, P.A., 1989. A new approach to detect and size closed cracks by ultrasonic. Research in Nondestructive Evaluation, Volume 1, 2, 65-75

  • Singh, T.N., Sharma, P.K., 2008. A correlation between P-wave velocity, impact strenght index, slake durability index and uniaxial compressive strength. Bulletin of Engineering Geology and the Environment, Volume 67, 1, 17-22.

  • Telford, W.M., Geldart, L.P., Scheriff, R.E., 1993. Applied Geophysics. Cambridge University Press, London, 225 p.



  • Babacan, A , Erspy, H , Gelişli, K . (2012). Kayaçların Fiziksel, Mekanik ve Elastik Özelliklerinin Ultrasonik Hız Tekniği ve Zaman-Frekans Analiziyle Belirlenmesi: Bej Kireçtaşları (KD Türkiye) Üzerine Örnek Bir Çalışma . Jeoloji Mühendisliği Dergis

  • Babacan, A , Erspy, H , Gelişli, K . Kayaçların Fiziksel, Mekanik ve Elastik Özelliklerinin Ultrasonik Hız Tekniği ve Zaman-Frekans Analiziyle Belirlenmesi: Bej Kireçtaşları (KD Türkiye) Üzerine Örnek Bir Çalışma. Jeoloji Mühendisliği Dergisi 36 (201

  • View as PDF
    ISSUE FULL FİLE
    View as PDF