ABSTRACT:In order to reduce the damages caused by the landslides, it is very important to predict the landslide occurrences
and to determine the landslide susceptibility areas by the current methods in the literature. In this respect, it is aimed
to produce landslide susceptibility maps of Ulus district of Bartın where landslides develop in the same lithology.
The important point of the study is that Chebyshev theorem is tested for selected study area in this study and the
susceptibility map produced by this method is compared with the landslide susceptibility map produced by using data A total of 195 landslides were mapped in the study area and two different sampling strategies, Chebyshevs theorem
and landslide mass were used in the determination of landslide and non-landslide areas. In this study, landslide
susceptibility analysis has been done for the study area by using topographic elevation, aspect, curvature and NDVI
parameters. In the susceptibility analysis using both sampling strategies, Frequency Ratio (FO) method, which is
frequently used in literature, was used and two different susceptibility maps were produced. The performance of the
susceptibility maps was evaluated according to Area Under Curve method (ROC-AUC) and the AUC values were
determined as 0.78 for Chebyshev theorem and 0.72 for the sampling technique according to the number of pixels in
the entire landslide mass, respectively. According to these values, both susceptibility maps were acceptable and the
performance of the susceptibility map produced by sampling with the Chebyshev theorem is relatively higher than
the other sampling method. This result shows that Chebyshev method used in the study is an alternative method that
can be used effectively in landslide susceptibility mapping studies and that the susceptibility map produced by this
method has a successful prediction capacity.
Area Under Curve (AUC)
Chebyshev Theorem
Frequency Ratio (FR)
Landslide Susceptibility
Sampling Technique
Aditian, A., Kubota, T., Shinohara, Y., 2018. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology, 318, 101-111.
Akgün, A., Dağ, S., Bulut, F., 2008. Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood frequency ratio and weighted linear combination models. Environmental Geology, 54, 11271143.
Akgün, A., Türk, N., 2010. İki ve çok değişkenli istatistik ve sezgisel tabanlı heyelan duyarlılık modellerinin karşılaştırılması: Ayvalık (Balıkesir, Kuzeybatı Türkiye) örneği. Jeoloji Mühendisliği Dergisi, 34(2), 85-112.
Akgün, A, Sezer, E.A., Nefeslioglu, H.A., Gökçeoğlu, C., Pradhan, B., 2011. An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Computers Geosciences, 38(1), 23-34.
Akgün, A., 2012. A comparison of landslide susceptibility maps produced by logistic regression, multicriteria decision and likelihood ratio methods: case study at Izmir, Turkey. Landslides, 9(1), 93-106.
Akgün, A., Erkan, O., 2016. Landslide susceptibility mapping by geographical information systembased multivariate statistical and deterministic models: in an artificial reservoir area at Northern Turkey. Arabian Journal of Geosciences, 9, 165, doi: 1
Akgün, A., 2018. Bulanık Uyarlanabilir Rezonans Teorisi (FuzzyART) Yöntemi Kullanılarak Heyelan Duyarlılık Analizi: Tonya (Trabzon) Örneği. GÜFBED/GUSTIJ 8(1), 135-146. doi: 10.17714/gumusfenbil.346532.
Akyol, Z., Arpat, E., Erdoğan, B., Göğer, E., Güner, Y., Şaroğlu, F., Şentürk, İ., Tütüncü, K. ve Uysal, Ş., 1974. 1/50.000 ölçekli Türkiye Jeoloji Haritası Serisi, Zonguldak E29 a, E29 b, E29 c, E29 d, Kastamonu E30 a, E30 d. MTA Yayınları, Ankara.
Aleotti, P., Chowdhury, R., 1999. Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and Environment, 58, 21-44.
Althuwaynee, O.F., Pradhan, B., Park, H.J., 2014. A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mappin
Ayalew, L., Yamagishi, H., 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65, 15-31.
Beguería, S., 2006. Validation and evaluation of predictive models in hazard assessment and risk management. Natural Hazards, 37(3), 315329.
Can, A., Dagdelenler, G., Ercanoglu, M., Sonmez, H., 2019. Landslide susceptibility mapping at Ovacık-Karabük (Turkey) using different artificial neural network models: comparison of training algorithms. Bulletin of Engineering Geological Environment
Cevik, E., Topal, T., 2003. GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environmental Geology, 44, 949-962.
Chen, W., Li, W., Chai, H., Hou, E., Li, X., Ding, X., 2016. GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China. Environmental Earth Scienc
Chen, W., Pourghasemi, H.R., Panahi, M., Kornejady, A., Wanh, J., Xie, X., Cao, S., 2017. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and sup
Choi, J., Oh, H.-J., Lee, C., Lee, S., 2012. Combining landslide susceptibility maps obtained from frequency ratio, logistic regression and artificial neural network models using ASTER images and GIS, Engineering Geology, 124, 12-23.
Clerici, A., Perego, S., Tellini, C., Vescovi, P., 2006. A GIS-Based automated procedure for landslide susceptibility mapping by the conditional analysis method: The Baganza valley case study (Italian Northern Apennines). Environmental Geology, 50, 9
Conforti, M., Pascale, S., Robustelli, G., Sdao, F., 2014. Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (Northern Calabria, Italy). Catena, 113, 236-2
Dağ, S., Bulut, F., Alemdağ, S., Kaya, A., 2011. heyelan duyarlılık haritalarının üretilmesinde kullanılan yöntem ve parametrelere ilişkin genel bir değerlendirme. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi,1(2), 151-176.
Dağdelenler, G., 2013. Heyelan Duyarlılık Haritalarının Üretilmesinde Örneklem ve Doğrulama Stratejilerinin Değerlendirilmesi (Gelibolu Yarımadasının Doğu Kesimi). Doktora Tezi, Hacettepe Üniversitesi, Ankara.
Dağdelenler, G., Nefeslioğlu, H.A., Gökçeoğlu, C., 2016. Modification of seed cell sampling strategy for landslide susceptibility mapping: an application from the Eastern part of the Gallipoli Peninsula (Canakkale, Turkey). Bulletin of Engineering Ge
Dağdelenler, G., Ercanoğlu, M., Sönmez, H., Özsayın, E., Güleç, F., 2017. Topoğrafik haritalardan yararlanarak heyelan envanter haritalamasının coğrafi bilgi sistemleri (CBS) ortamında otomatik olarak elde edilmesine yönelik bir çalışma: Ulus (Bartın
Dirican, A., 1991. ROC eğrisi çözümlenmesi ile tanı testlerinin değerlendirilmesi ve bilgisayar uygulaması. Doktora tezi, İstanbul Üniversitesi Sağlık Bilimleri Enstitüsü, İstanbul.
Duman, T.Y., Can, T., Gokceoglu, C., 2006. Application of logistic regression for landslide susceptibility zoning of Cekmece Area Istanbul Turkey. Environmental Geology, 51(2), 241-256.
EMDAT, 2016. The International Disaster Database. http://www.emdat.be.
Ercanoğlu, M., 2005. Landslide susceptibility assessment of SE Bartin (West Black Sea region, Turkey) by artificial neural networks. Natural Hazards and Earth System Sciences, 5, 979992.
Ercanoğlu, M., Kasmer, O., Temiz, N., 2008. Adaptation and comparison of expert opinion to analytical hierarchy process for landslide susceptibility mapping. Bulletin of Engineering Geology and Environment, 67, 565-578.
Ercanoğlu, M., Temiz, F.A., 2011. Application of logistic regression and fuzzy operators to landslide susceptibility assessment in Azdavay (Kastamonu, Turkey). Environmental Earth Sciences, 64, 949-964.
Ercanoğlu, M., Dağdelenler, G., Özsayın, E., Alkevli, T., Sönmez, H., Özyurt, N.N., Kahraman, B., Uçar, İ., Çetinkaya, S., 2016. Application of Chebyshev theorem to data preparation in landslide susceptibility mapping studies: an example from Yenice
Erener, A., Düzgün, H.S.B., 2010. Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of more and romsdal (Norway). Landslides, 7(1), 55-68.
Erener, A., Düzgün, H.S.B., 2012. Landslide susceptibility assessment: what are the effects of mapping unit and mapping method? Environmental Earth Science, 66, 859877. DOI 10.1007/s12665-011-1297-0.
Ersoy, Ş., Nurlu, M., Gökçe, O., Özmen, B., 2017. 2016 Yılında Dünyada ve Türkiyede Meydana Gelen Doğa Kaynaklı Afet Kayıplarının İstatistiksel Değerlendirmesi. Mavi Gezegen, Sayı:22, 13-27 s.
Faraggi, D., Reiser, B., 2002. Estimation of the area under the ROC curve. Stat Med. 21, 3093-3106.
Fawcett,T., 2006. An introduction to ROC analysis. Pattern Recognition Letters, 27, 861- 874.
Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., Savage, W.Z., 2008. On behalf of the itc-1 joint technical committee on landslides and engineered slopes: guidelines for landslide susceptibility, hazard and risk zoning for land use plann
Fernandez, T., Irigaray, C., El Hamdouni, R., Chacon, J., 2003. methodology for landslide susceptibility mapping by means of a GIS application to the contravies area (Granada, Spain). Natural Hazards, 30(3), 297-308.
Gorum, T., Gonencgil, B., Gokceoglu, C., Nefeslioglu, H.A., 2008. Implementation of reconstructed geomorphologic units in landslide susceptibility mapping: The Melen Gorge (NW Turkey). Natural Hazards, 46(3), 323351.
Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P., 1999. Landslide hazard evolution: a review of current techniques and their applicaton in a multi-scale study, Central Italy. Geomorphology, 31, 181-216.
Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., Ardizzone, F., 2005. Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72, 272299.
Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., Galli, M., 2006. Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Natural Hazards and Earth System Sciences, 6, 115131.
Kanungu, D.P., Arora, M.K., Sarkar, S., Gupta, R.P., 2009. A fuzzy set based approach for integration of thematic maps for landslide susceptibility zonation. Georisk, Vol. 3, Issue 1, 30-43.
Kawabata, D., Bandibas, J., 2009. Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN). Geomorphology, 113, 97-109.
Komac, M., 2006. A landslide susceptibility model using the Analytical Hierarchy Process method and multivariate statistics in perialpine Slovenia. Geomorphology, 74 (1-4), 17-28.
Kundu, S., Saha, A.K., Sharma, D.C., 2013. Remote sensing and gis based landslide susceptibility assessment using binary logistic regression model: a case study in the ganeshganga watershed himalayas. Journal of the Indian Society of Remote Sensing,
Lee, S., Talib, J.A., 2005. Probabilistic landslide susceptibility and factor effect analysis. Enviromental Geology, 47(7), 982-990.
Lee, S., Min, K., 2001. Statistical analysis of landslide susceptibility at Yongin, Korea. Environmental Geology, 40, 1095-1113.
Melchiorre, C., Matteucci, M., Azzoni, A., Zanchi, A., 2008. Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology, 94, 379-400.
Nandi, A., Shakoor, A., 2009. A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110(1-2), 11-20. doi: 10.1016/j.enggeo. 2009.10.001.
Nefeslioglu, H., Gokceoglu, C., Sonmez, H., 2008. An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Engineering Geology, 97(3/4),171
Nefeslioğlu, H.A., Gökçeoğlu, C., Sönmez, H., Görüm, T., 2011. Medium-scale hazard mapping for shallow landslide initiation: the Buyukkoy catchment area (Cayeli, Rize, Turkey). Landslides, 8(4), 459-483.
Obuchowski, N.A., 2005. ROC analysis. American Journal of Roentgenology, 184, 364-372.
Ozdemir, A., Altural, T., 2013. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180-197.
Pradhan, B., Lee, S., 2010. Landslide susceptibility assessment and factor effect analysis: back propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling and
Pradhan, B., 2013. A comparative study on the predictive ability of the decision tree support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350-365. doi: 10.1016/j.cageo. 2012.08.023
Romer, C., Ferentinou, M., 2016. Shallow landslide susceptibility assessment in a semiarid environment-A Quarternary catchment of KwaZulu-Natal, South Africa. Engineering Geology, 201, 29-44.
San, B.T., 2014. An evaluation of SVM using polygon-based random sampling in landslide susceptibility mapping: The Candir catchment area (western Antalya Turkey). International Journal of Applied Earth Observation and Geoinformation, 26, 399-412. doi
Suzen, M.L., Doyuran, V., 2004. Data driven bivariate landslide susceptibility assessment using geographical information systems: A method and application to Asarsuyu catchment, Turkey. Engineering Geology, 71, 303-321.
Tien Bui, D., Tuan, T., Klempe, H., Pradhan, B., Revhaug, I., 2016. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression,
Tunusluoglu, M.C., Gökçeoğlu, C., Nefeslioğlu, H.A. ve Sönmez, H., 2008. Extraction of potential debris source areas by logistic regression technique: A case study from Barla. Besparmak and Kapi Mountains (NW Taurids. Turkey). Environmental Geology,
Ozdemir, A., Altural, T., 2013. A comparative study of frequence ratio weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180-197.
Umar, Z., Pradhan, B., Ahmad, A., Jebur, M.N. ve Tehrany, M.S., 2014. Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province. Indonesia, CATENA, 118, 1
Van Westen, C.J., Castellanos, E., Kuriakose, S.L., 2008. Spatial data for landslide susceptibility, hazard and vulnerability assessment: An overview. Engineering Geology, 102, 112-131.
Varnes, D.J., 1978. Slope Movement Types and Processes. In: Schuster, R.L. and Krizek, R.J., Eds., Landslides: analysis and control, National Research Council, Washington DC, Transportation Research Board, Special Report 176, National Academy Press,
Wang, L.J., Sawada, K., Moriguchi, S., 2013. Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy. Computers and Geosciences, 57, 81-92.
Wang, L.J., Guo, M., Sawada, K., Lin, J., Zhang, J., 2015. Landslide susceptibility mapping in Mizunami City, Japan: a comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models. Catena,
Yalçın, A., Bulut, F., 2007. Landslide susceptibility mapping using GIS and digital photogrammetric techniques: A case study from Adresen (NETurkey). Natural Hazards, 41, 201-226.
Yalçın, A., 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Adresen (Turkey): Comparisons of results and confirmations. Catena, 72, 1-12.
Yalçın, A., Reis, S., Aydınoğlu, A.C., Yomralıoğlu, T., 2011. A GIS-based comparative study of frequency ratio, analytical hierarchy process. bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, Ne Tu
Yao, X., Tham, L.G., Dai, F.C., 2008. Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China. Geomorphology, 101, 572582.
Yesilnacar, E., Topal, T., 2005. Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study Hendek region (Turkey). Engineering Geology, 79(3-4), 251-266. doi:10.1016/j. enggeo. 2005.02.0
Yılmaz, I., 2009. Landslide susceptibility mapping using frequency ratio logistic regression artificial neural networks and their comparison: A case study from Kat landslides (Tokat-Turkey). Computers & Geosciences, 35(6), 1125-1138. doi: 10.1016/j.c
Yılmaz, I., 2010. The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability and artificial neural networks. Environmental Earth Sciences, 60(3), 505-519. doi: 10.1007/s12665-009-0191-5.
Dağdelenler, G . (2020). İki Farklı Örneklem Tekniği Kullanılarak Oluşturulan Heyelan Duyarlılık Haritalarının Frekans Oranı (FO) Yöntemi ile Karşılaştırılması . Jeoloji Mühendisliği Dergisi , 44 (1) , 19-38 . DOI: 10.24232/jmd.740509
Dağdelenler, G . İki Farklı Örneklem Tekniği Kullanılarak Oluşturulan Heyelan Duyarlılık Haritalarının Frekans Oranı (FO) Yöntemi ile Karşılaştırılması. Jeoloji Mühendisliği Dergisi 44 (2020 ): 19-38