Jeoloji Münendisliği Dergisi
Jeoloji Mühendisliği Dergisi
ISSN: 1016-9172 | e-ISSN: 2564-6753 | Yayın Aralığı: Yılda 2 Sayı | Yayın Başlangıç Yılı: 1977
Son Sayıyı Görüntüle

Home Page

2020 ARALIK Cilt 44 Sayı 2

PDF Olarak Görüntüle
PDF Olarak Görüntüle
PDF Olarak Görüntüle
Assessment of Engineering Properties of Al-Haweri Scoria, NW Sana’a, Yemen
Ibrahim A. Al-Akhaly Abubaker A. Al-Sakkaf
PDF Olarak Görüntüle

ABSTRACT: Yemen has an appreciable amount of scoria aggregate, but a very small proportion is used as cement additionsby local cement factories in blended Portland cement production and very rarely as aggregates in to the productionof lightweight blocks. Scoria aggregates are widespread in and around the volcanic cones present in Sana’a-Amranvolcanic field. This paper presents the results of evaluation of engineering properties of natural scoria, collected fromAl-Haweri volcanic cone, NW Sana’a, Yemen as lightweight aggregate. Chemical composition and petrographicalcharacteristics of scoria were determined. The physical properties of the scoria aggregate such as flakiness andelongation indices, specific gravity, water absorption, unit weight, clay lumps and materials finer than 75µm gaveacceptable results, but the gradation indicated it would need to be processed before use in a mix. The porosity ishigh, 60.79%. The Los Angeles abrasion and the aggregate crushing values are higher than the limits of ASTM andBS specification, but the aggregate impact value is close to the upper limits of BS specification. The soundness iswithin the ASTM specification limits. Therefore, it can be concluded that scoria aggregates can be used to producestructural concrete and masonry blocks with a relatively low density. The scoria aggregates satisfied the requirementsof lightweight aggregate for structural concrete and masonry blocks purposes.

Al-Haweri
Light Weight Aggregate
Scoria Aggregate
Sanaá
Yemen
ACI, 2000. Use of raw or processed natural Pozzolans in Concrete, ACI Committee 232, Manual of Concrete Pratice ACI 232.1.
Al-Akhaly, I.A., Al-Anweh, A.M., El-Anbaawy, M.I., 2018. Preliminary assessment of utilization of Al-Jaif Scoria (NW Sana’a, Yemen) for cement production. SQU Journal for Science, 23(2), 111-119. doi:http://dx.doi.org/10.24200/squjs. vol23iss2.
Al-Naaymi, T.A., 2015. Assessment of pumice and scoria deposits in Dhamar-Rada’ volcanic field SW- Yemen, as a pozzolanic materials and lightweight aggregates. International Journal of Innovative Science, Engineering and Technology, 2(9), 386-402.
Al-Anweh, A.M., 2010. Geology and cement industrial applications on carbonate and clay deposits around Sana’a basin, Republic of Yemen. MSc. Thesis, Geology Department, Faculty of Science, Cairo University, Egypt.
Alhozaimy, A., Fares, G., Alawad, O.A., Al- Negheimish, A., 2015. Heat of hydration of concrete containing powdered scoria rock as a natural pozzolanic material. Construction and Building Materials, 81, 113–119.
Al-Jabri, K.S., Hag, A.W., Al –Nuaimi, A.S., Al – Saidy, A.H., 2008. Concrete blocks for thermal insulation in hot climate. Cement and Concrete Research, 35, 1472-1479.
Al-Sabri, A.M., 2009. Geology and economic potentiality of the scoria deposits in Dhamar- Rada volcanic field, Yemen. Ph.D. Thesis, Sana’a University, Faculty of Science, Earth and Environmental Science Department
Al-Swaidani, A.M., 2017. Production of more durable and sustainable concretes using volcanic scoria as cement replacement. Materiales de Construcción, 67(326):e118 http://dx.doi.org/ 10.3989/mc.2017.00716.
Al-Swaidani, A.M., Aliyan, S.D., Adarnaly, N., 2016. Mechanical strength development of mortars containing volcanic scoria-based binders with different fineness. Engineering Science and Technology, an International Journal, 19 (2), 970-979.
Amigo, Á., Lara, L., Smith, V., 2013. Holocene record of large explosive eruptions from Chaitén and Michinmahuida volcanoes, Chile. Andean Geology, 40 (2), 227-248. doi: 10.5027/ andgeoV40n2-a03.
ASTM C33 / C33M-18. 2018. Standard specification for concrete aggregates, ASTM International, West Conshohocken, PA.
ASTM C88-99a. 1999. Standard test method for soundness of aggregates by use of sodium sulfate or magnesium sulfate, ASTM International, West Conshohocken, PA.
ASTM C127-01. 2001. Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate, ASTM International, West Conshohocken, PA.
ASTM C131-06. 2006. Standard test method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles Machine, ASTM International, West Conshohocken, PA.
ASTM C136-01. 2001. Standard test method for sieve analysis of fine and coarse aggregates, ASTM International, West Conshohocken, PA.
ASTM C618-12. 2012. Standard specification for coal fly ash and raw or calcined natural pozzolan for use in concrete, ASTM International, West Conshohocken, PA.
ASTM D3398-00. 2000. Standard Test Method for Index of Aggregate Particle Shape and Texture, ASTM International, West Conshohocken, PA.
Barahim, A.M., 2009. Comparing compressive strength of concrete by using light weight aggregate (Scoria-Tuff volcanic) from Alargoub area with concrete of normal coarse aggregate. 2nd Engineering Conference, Faculty of Engineering, Aden University, A
Beydoun, Z.R., As-Saruri, M.A., El-Nakhal, H., Al-Ganad, I.N., Baraba, R.S., Nani, A.O., Al- Aawah, M.H., 1998. International Lexicon of Stratigraphy, Republic of Yemen. IUGS and Ministry of Oil and Mineral Resources, Sana’a, Republic of Yemen. 245p
Billong, N., Melo, U.C., Njopwouo, D., Louvet, F., and Bonnet, J.P., 2013. Physicochemical characteristics of some cameroonian pozzolans for use in sustainable cement like materials. Materials Sciences and Applications, 4, 14-21. http://dx.doi.org/10
Bozkurt, N., Yazicioglu, S., 2015. Sustainable structural lightweight concrete design and the investigation of the mechanical properties. Bitlis Eren University Journal of Science & Technology, 5(2), 62-67.
BS 812: Part 1. 1975. Methods for determination of particle size and shape. British Standards Institution, London, UK.
BS 812: Part 2. 1975. Determination of relative densities and water absorption of coarse aggregates. British Standards Institution, London, UK.
BS 812: Part 105.1. 1989. Determination of aggregate particle shape (flakiness index). British Standards Institution, London, UK.
BS 812: Part 105.2. 1989. Determination of aggregate particle shape (elongation index). British Standards Institution, London, UK.
BS 812: Part 112. 1990. Methods for determination of aggregate impact value (AIV). British Standards Institution, London, UK.
Demirdag, S., Gunduz, L., 2008. Strength properties of volcanic slag aggregate lightweight concrete for high performance masonry units. Construction and Building Materials, 22, 135-142.
Dieu, M.J., Pranesh, M.R., Wali, U.G., 2016. Engineering characteristics of volcanic rock aggregates of Rwanda. International Journal of Civil Engineering and Technnology, 7(3), 81-90.
Engidasew, T.A., 2013. Engineering geological characterization of volcanic rocks of Ethiopian and Sardinian highlands to be used as construction materials. Ph.D. Thesis, Università degli Studi di Cagliari. Cagliari, Italy (unpublished).
FIB, 1983. FIB manual of light weight aggregate concrete. 2nd edition, Surrey University Press, Galasgow, 259p.
González-Maurel, O., Godoyc, B., Rouxb, P., Rodríguez, I, Maríne, C., Menzies, A., Bertin, D., Morata, D., Vargas, M., 2019. Magmatic differentiation at La Poruña scoria cone, Central Andes, northern Chile: Evidence for assimilation during turbulent
Hossain, K.M.A., 2005. Volcanic ash and pumice as cement additives: pozzolanic, alkali–silica reaction and autoclave expansion characteristics. Cement and Concrete Research, 35, 1141-1144.
Hossain, K.M.A., 2006. Blended cement and lightweight concrete using scoria: mix design, strength, durability and heat insulation characteristics. Physical Sciences, 1, 5-16.
Hossain, K.M.A, Ahmed, S., Lachemi, M., 2011. Lightweight concrete incorporating pumice based blended cement and aggregate: mechanical and durability characteristics, Construction and Building Material, 25, 1186-1195.
Hossain, K.M.A., Julkarnine, K.M., Anwar, M.S., 2015. Evolution of strength and durability of scoria concrete in sea environment. Journal of Multidisciplinary Engineering Science and Technology, 2(6), 1268.
Kamseu, E., Leonelli, C., Perera, D.S., Melo, U.F., Lemougna, P.N., 2009. Investigation of volcanic ash-based geo-polymers as potential building materials. Ceramics International, 58(2), 136- 140.
Kilic, A., Atis, C.D., Yasar, E., Ozcan, F., 2003. High-strength lightweight concrete made with scoria aggregate containing mineral admixtures. Cement and Concrete Research, 33, 1595–1599.
Juimo, W., Cherradi, T. Abidi, L., Oliveira L., 2016. Characterisation of natural pozzolan of “Djoungo” (Cameroon) as lightweight aggregate for lightweight concrete. International Journal of GEOMATE, 11(27), 2782-2789.
Lagerblad, B., Jacobsson, B., 1997. Smectite clays and concrete durability. Proceedings 19 th. International Conference Cement Microscopy, 151-162.
Lemougna, P.N., MacKenzie, K.J., Melo, U.F., 2011. Synthesis and thermal properties of inorganic polymers (geopolymers) for structural and refractory applications from volcanic ash. Ceramics International, 37(8), 3011-3018. doi:10.1016/j.ceramint.201
Lo, T.Y., Cui, H.Z., 2004. Effect of porous lightweight aggregate on strength of concrete. Materials Letters, 58, 916-919.
Moufti, M.R., Sabtan A.A., El-Mahdy O.R., Shehata, W.M., 1999. Preliminary geological and engineering assessment of the pyroclastic deposits in the central part of Harrat Rahat. JKAU: Earth Sciences, 11, 59-88.
Moufti, M.R., Sabtan A.A., El-Mahdy O.R., Shehata, W.M., 2000. Assessing of industrial utilization of scoria materials in the central Harrat Rahat, Saudi Arabia. Engineering Geology, 57, 155- 162.
Mouli, M., Khelafi, H., 2008. Performance characteristics of lightweight aggregate concrete containing natural pozzolan, Building and Environment, 43, 31–36.
Mrema, A.L., Mboya, H.A., 2013. Feasibility of lightweight aggregate concrete for structural and non-structural works in Tanzania, (Zingoni, A. (Ed.in Research and Applications in Structural Engineering, Mechanics and Computation. London: CRC Press),
Nawy, E.G., 2008. Concrete construction engineering handbook, 2nd edition, CRC Press, Boca Raton.
Ozvan, A., Tapan, M., Erik, O., Efe, T., Depci, T., 2012. Compressive strength of scoria added portland cement concretes. Gazi University Journal of Science, 25(3), 769-775.
Sabtan, A.A., Shehata, W.M., 2000. Evaluation of engineering properties of scoria in central Harrat Rahat, Saudi Arabia. Bulletin of the Engineering Geology and the Environment, 59, 219-225.
Schlaich, M., Zareef, M.E. 2008. Infra-lightweight concrete. Taylor & Francis Group, London, ISBN 978-0-415-47535-8.
Suseno, H., Soehardjono, A., Wardana, I., Rachmansyah, A., 2017. Suitability of medium-K basaltic andesite pumice and scoria as coarse aggregates on structural lightweight concrete. International Journal of Engineering and Technology, 9(4), 3318-3329
Sveinsdottir, E.L., Magnusdottir, B., Hardardottir, V., Holmgeirsdottir, T., Kristmannsdottir, H., Tryggvason, N., 1999. The effect of alteration minerals on the quality of construction aggregates (in Icelandic). IBRI Report No. 99-01, 53p.
Tchakouté, H.K., Kong, S., Djobo, J.N., Tchadjié, L.N., Njopwouo, D., 2015. A comparative study of two methods to produce geopolymer composites from volcanic scoria and the role of structural water contained in the volcanic scoria on its reactivity.
Tchamabé, B.C., Carrasco-Núñeza, G., Miggins, D.P., Németh, K., 2020. Late Pleistocene to Holocene activity of Alchichica maar volcano, eastern Trans-Mexican Volcanic Belt. Journal of South American Earth Sciences, 97, 102404.
Tchamdjou, W.H., Grigoletto, S., Michel, F., Courard, L., Abidi, M.L., Cherradi, T., 2017. An investigation on the use of coarse volcanic scoria as sand in Portland cement mortar. Case Studies in Construction Materials, 7, 191–206.
Topcu, İ. B., 1997. Semi lightweight concretes produced by volcanic slags. Cement and Concrete Research, 27, 15-21.
Van Atta, R.O., Ludowise H., 1976. Causes of degradation in basaltic aggregates and durability testing. 14th Engineering Geological and Soils Engineering Symposium, 241-254.
Van Rooy, J. L., 1991. The influence of the mineralogy on the durability of Drakensberg basalts. In Blight et al.: Geotechnics, in the African Environment, 383-392.
Warati, G. K., Darwish, M.M., Feyessa, F.F., Ghebrab, T., 2019. Suitability of scoria as fine aggregate and its effect on the properties of concrete. Sustainability, 11, 4647, doi:10.3390/ su11174647.
Winsley, J. B., Muthukannan, M., 2018. A preliminary study on the physical properties of an alternative coarse aggregate made with red soil and fly ash. The Open Construction and Building Technology Journal, 12, 1-8. doi: 10.2174/1874836801812010001.
Yasar, E., Atis, C.D., Kilic, A., Gulsen, H., 2003. Strength properties of lightweight concrete made with basaltic pumice and fly ash. Materials Letters, 57, 2267-2270.
YGSMRB, 2019. Yemen Geological Survey and Mineral Resources Board, www.ygsmrb.org.ye (accessed on 7 Dec. 2019).
Evaluation of Design Criteria of Rock-Hewn Storages in Cappadocia Region by Numerical Analyses
İsmail Dinçer Mutluhan Akin Ahmet Orhan Can Duru
PDF Olarak Görüntüle

test

Cappadocia
Rock-Hewn
Natural Storage
Numerical Modeling
Deformation
Aydan, Ö., Ulusay, R., 2003. Geotechnical and geoenvironmental characteristics of man-made underground structures in Cappadocia, Turkey. Engineering Geology, 6, 245-272.
Aydan, Ö., Ulusay, R., 2013. Geomechanical evaluation of Derinkuyu Antique Underground City and its implications in geoengineering. Rock Mechanics and Rock Engineering, 46, 731- 754.
Aydar, E., Schmitt, A.K., Çubukçu, H.E., Akin L., Ersoy, O., Şen, E., Duncan, R.A., Atici G., 2012. Correlation of ignimbrites in the central Anatolian volcanic province using zircon and plagioclase ages and zircon compositions. Journal of Volcanolog
Berndt-Ersöz, S., 2006. Phyrigian rock-cut shrines: Structure, Functional Cult Practice. LeidenXX, XXI, 206.
Bieniawski, Z.T., 1992. Method revisited: coal pillar strength formula based on field investigations. In: Proceedings of the workshop on coal pillar mechanics and design. U.S. Department of the Interior, Bureau of Mines, IC 9315, Pittsburgh, PA, 158–
Çorakbaş, F., 2012. The comparison of rock-cut architecture sites in Turkey and Italy with special emphasis on Cappadocia. World Applied Sciences Journal, 17(11),1445-1453.
Deere, D.U., Miller, R.P., 1966. Engineering classification and index properties of intact rock. Technical Report No: AFNL-TR-65-116, Kirtland Air Force Base Weapons Laboratory, New Mexico.
Dinçer, İ., Bostancı, M., 2019. Capillary water absorption characteristics of some Cappadocian ignimbrites and the role of capillarity on their deterioration. Environmental Earth Sciences, 78, 7.
Dinçer, İ., Orhan, A., Frattini, P., Crosta, G.B., 2016. Rockfall at the heritage site of the Tatlarin Underground City (Cappadocia, Turkey). Natural Hazards, 82 (2), 1075-1098.
Harunoğulları, M., Kayar, S., 2015. Ortahisar’da (Ürgüp) doğal soğutmalı yeraltı depolarının coğrafi analizi. Coğrafyacılar Derneği Uluslararası Kongresi Bildiriler Kitabı, 21-23 Mayıs 2015, 74-84, Gazi Üniversitesi, Ankara.
Hoek, E., Carranza-Torres, C.T., Corkum, B., 2002. Hoek-Brown failure criterion-2002 edition. In: Proceedings of the Fifth North American Rock Mechanics Symposium, vol 1, Toronto, 267–273.
ISRM (International Society for Rock Mechanics), 2007. The complete ISRM suggested methods for rock characterization. In: Ulusay R, Hudson JA (eds), Testing and Monitoring: 1974–2006.
Kaşmer, Ö., Ulusay, R., 2013. Effects of geoengineering characteristics of the soft tuffs and environmental conditions on the rock-hewn historical structures at Zelve Open Air Museum (Cappadocia, Turkey). Environmental and Engineering Geosciences, 19
Logie, C.V., Matheson, G.M., 1982. A critical review of the current state of the art design of mine pillars. 1st International Conference Stability in Underground Mining. Vancouver (Ed. C.O. Brawner) 359-382.
Mark, C., 2006. The evolution of intelligent coal pillar design: 1981- 2006. Proceedings of 25th International Conference on Ground Control in Mining, Morgantown, West Virginia, 325-334.
Merve, J. N., 2003. New pillar strength formula for South African coal. Journal of the Southern African Institute of Mining and Metallurgy, 103(5), 281-292.
NBG, 1985. Norwegian Rock Mechanics Group: Handbook in Engineering Geology—rock (in Norwegian). Tapir, Trondheim.
Obert, L., Duvall, W.I., 1967. Rock Mechanics and the Design of Structures in Rock, John Wiley & Sons Inc., New York, 542-545.
Özata, Ş., 2015. Kapadokya bölgesi kaya oyma yapı sorunları ve çözüm önerileri. Yıldız Teknik Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İstanbul, 160 s.
Ren, Q., Wang, F., Chen, B., Zhao, M., Peng, Z., Yang, M., 2020. Study on stability prediction of pillars based on Bieniawski Pillar Strength Formula: a case of a phosphate mine. Geotechnical and Geological Engineering, 38, 4033-4044. https:// doi.or
Rocscience, 2019a. RS2, 2D finite element program for soil and rock applications. Rocscience Inc, Toronto, Canada.
Rocscience, 2019b. RocData, Rock, soil and discontinuity strength analysis. Rocscience Inc, Toronto, Canada.
Salamon, M.D.G., Munro, A.H., 1967. A study of the strength of coal pillars. Journal of the Southern African Institute of Mining and Metallurgy, 68, 55-67.
Sülükçü, S., 2019. Kapadokya Bölgesi’ndeki kayadan oyma yeraltı depolarının duraylılığının değerlendirilmesi. Doktora Tezi, Jeoloji Mühendisliği Bölümü, Hacettepe Üniversitesi, Ankara.
T.C. Resmi Gazete, 2017. Kayadan Oyma Yapıların Tasarım, Hesap ve Yapım Esaslarına Dair Yönetmelik, 18 Ekim 2017. Sayı: 30214. Başbakanlık Basımevi, Ankara.
Temel, A., 1992. Petrological and geochemical properties of the Cappadocian explosive volcanism. PhD Thesis, Department of Geological Engineering, Hacettepe University, Ankara.
Topal, T., 1995. Formation and deterioration of fairy chimneys of the Kavak tuff in Ürgüp-Göreme area (Nevsehir–Turkey). PhD Thesis, Middle East Technical University, Ankara, Turkey.
Topal, T., Doyuran, V., 1995. Effect of discontinuities on the development of fairy chimneys in the Cappadocia region (Central Anatolia-Turkey). Turkish Journal of Earth Sciences, 4(1), 49–54.
Topal, T., Doyuran, V., 1997. Analysis of deterioration of the Cappadocian tuff. Environmental Geology, 34(1), 5–20.
Toprak, V., Keller, J., Schumacher, R., 1994. Volcanotectonic features of the Cappadocian Volcanic Province. In: International Volcanological Congress-IAVCEI, Ankara, Excursion Guide.
Tuncay, E., 2009. Rock rupture phenomenon and pillar failure in tuffs in the Cappadocia region (Turkey). International Journal of Rock Mechanics and Mining Sciences, 46, 1253–1266.
Ulusay, R., Aydan, Ö., 2018. The 2016 Hans Cloos Lecture: geo-engineering aspects on the structural stability and protection of historical man-made rock structures: an overview of Cappadocia Region (Turkey) in the UNESCO’s World Heritage List. Bullet
Ulusay, R., Aydan, Ö., Geniş, M., Tano, H., 2013. Stability assessment of Avanos Congress Centre (Cappadocia, Turkey) in soft tuffs through an integrated scheme of rock engineering methods. Rock Mechanics and Rock Engineering, 46, 1303–1321.
Ulusay, R., Gökçeoğlu, C., Topal, T., Sönmez, H., Tuncay, E., Ergüler, Z.A., Kasmer, Ö., 2006. Assessment of environmental and engineering geological problems for the possible re-use of an abandoned rock-hewn settlement in Ürgüp (Cappadocia), Turkey.
Yavuz, H., 2001. Yielding pillar concept and its design. 17th International Mining Congress and Exhibition of Turkey- MCET 2001, ISBN 975- 395-417-4.
Zhu, X., Liu, J., Yang, L. Hu, R., 2014. Energy performance of a new Yaodong Dwelling, in the Loess Plateau of China. Energy and Buildings, 70, 159–166.
Evaluation of Swelling Properties of Soils in Güdül (Ankara) Area
Riza Soypak Ali Kayabaşi
PDF Olarak Görüntüle

ABSTRACT: this study, swelling properties of fine grained soils that surfacing around Güdül and its environments were

studied in order to determine causes of cracks and plaster spills on 1 and 3 storey buildings in Güdül district of

Ankara. 19 boreholes with a depth of 5 m to 15 m were drilled. Groundwater was not observed except BH-4, BH-9

and BH-16. 21 standard penetration test samples and 30 undisturbed soil samples were taken from these boreholes.

Swelling pressure tests, swelling percent tests, soil classification and index tests were carried out with these samples.

The SPT N60 blow counts from which samples were taken are ranging between 12 and 49 and the mean average

N60values are determined as 25 blow counts.%59 of the soil samples are determined as low plastic clay (CL) low

plastic silt (ML) or low plastic organic material (OL). %41 of the soil samples are determined as high plastic clay

(CH)- High plastic organic material (OH) or high plastic silt (MH). The mean swelling pressure is 45.83 kPa and

the highest swelling pressure is 111.29 kPa determined from the swelling pressure tests. Activity, swelling potential,

swelling pressure maps of Güdül and its surrounding were prepared. While the activity of soil is 0.5 arround the

Emirler district, the activity of the soils is 1.4 arround Yeni district which locates 5 km north of Emirler district.

Likewise, the swelling potential and swelling pressure values are 1.5% and 25 kPa around Emirler district, while 6% and 65 kPa around Yeni district. Except for the location of BH-17, there is a significant increase in swelling

percentage and swelling pressure values from south to north direction. If the foundation soils interact with water,

swelling pressure may cause risk for 1-3 storey buildings.

Güdül
Swelling percent
Swelling pressure
Cracks
Plaster spills
Akçer-Ön, S., Greaves, A. M., Manning, S. W., Ön, Z. B., Çağatay, M. N., Sakınç, M., Oflaz, A., Tunoğlu, C., Salihoğlu, R., 2020. Redating the formation of Lake Bafa, western Turkey: Integrative geoarchaeological methods and new environmental and dat
Aksu, A. E., Piper, D. J. W., Konuk, T., 1987. Quaternary growth patterns of Büyük Menderes and Küçük Menderes deltas, western Turkey. Sedimentary Geology, 52(3-4), 227-250.
Alabalık ve Sazan türü balıkların yaşadığı suların korunması ve iyileştirilmesi hakkında yönetmelik. (2014.01.12). Resmi Gazete (Sayı: 28880). Erişim Adresi: https://www. resmigazete.gov.tr/eskiler/2014/01/20140112-2. htm (29.01.2020).
Algül, F., Beyhan, M., 2018. Bafa Gölü sediment ve su kalitesinin ağır metaller bakımından değerlendirilmesi. Bilge International Journal of Science and Technology Research, 2(2), 128- 138.
Atıksu Arıtma Tesisleri Teknik Usuller Tebliği. Resmi Gazete (Sayı: 27527). Erişim Adresi: https://www. resmigazete.gov.tr/eskiler/2010/03/20100320-7. htm (12.12.2019).
Back, W., 1961. Techniques for mapping of hydrochemical facies. US Geological Survey Professional Paper, 424, 380-382.
Balık, S., Ustaoğlu, M. R., 1989. Bioecological and economical investigation of Acanthobrama mirabilis in Bafa Lake. Doğa Türk Zooloji Dergisi, 13(3), 141-174.
Bozkurt, E., Oberhansli, R., 2001. Menderes Massif (western Turkey): structural, metamorphic and magmatic evolution – a synthesis. International Journal of Earth Sciences, 89, 679–708.
Brückner, H., Herda, A., Kerschner, M., Müllenhoff, M., Stock, F., 2017. Life cycle of estuarine islands—From the formation to the landlocking of former islands in the environs of Miletos and Ephesos in western Asia Minor (Turkey). Journal of Archaeo
Brückner, H., Müllenhoff, M., Gehrels, R., Herda, A., Knipping, M., Vött, A., 2006. From archipelago to floodplain–geographical and ecological changes in Miletus and its environs during the past six millennia (Western Anatolia, Turkey). Zeitschrift f
Chowdhury, M. A. I., Ahmed, M. F., Ali, M. A., 2003. Influence of upstream sediment on arsenic contamination of groundwater in Bangladesh. Fate of arsenic in the environment. Bangladesh University of Engineering and Technology, Dhaka and the United N
Cirik, S., Metin, C., Cirik, Ş., 1989. Bafa Gölü planktonik algleri ve mevsimsel değişimleri. Çukurova Üniversitesi V. Bilimsel ve Teknik Çevre Kongresi Tebliğleri, 06.05.1989, Adana, 604-613.
Cooper, H. H., Jacob, C. E., 1946. A generalized graphical method for evaluating formation constants and summarizing well-field history. Eos, Transactions American Geophysical Union, 27(4), 526-534.
Dora, O. Ö., 1975. Menderes masifinde alkali feldspatların yapısal durumları ve bunların petrojenetik yorumlarda kullanılması. Bulletin of the Geological Society of Turkey, 18, 111-12
Dora, O. Ö., 2011. Menderes Masifi’ndeki jeolojik araştırmaların tarihsel gelişimi. Maden Tetkik ve Arama Dergisi, 142 (142).
Durov, S. A., 1948. Natural waters and graphic representation of their composition. Doklady Akademii Nauk SSSR, 59(3), 87-90.
Dügel, M., Kazancı, N., 2004. Assessment of water quality of the Büyük Menderes River (Turkey) by using ordination and classification of macroinvertebrates and environmental variables. Journal of Freshwater Ecology, 19(4), 605-612.
Erdoğan, B., Güngör, T., 2004. The problem of the core-cover boundary of the Menderes Massif and an emplacement mechanism for regionally extensive gneissic granites, western Anatolia (Turkey). Turkish Journal of Earth Sciences, 13(1), 15-36.
Erdoğan, S., 2011. A chemical reaction to a physical impact: Lake Bafa wetland ecosystem (Turkey) case. Ankara Üniversitesi Çevre Bilimleri Dergisi, 3, 1-8.
EU (European Union), 2014. Drinking Water Regulations, S.I. No. 122 of 2014.
Gibbs, R. J., 1970. Mechanisms controlling world water chemistry. Science, 170 (3962), 1088- 1090.
Gray, N.F., 2008. Drinking Water Quality: Problems and Solutions. New York: Cambridge University Press.
Hetzel, R., Reischmann, T., 1996. Intrusion age of Pan- African augen gneisses in the southern Menderes Massif and the age of cooling after Alpine ductile extensional deformation. Geological Magazine, 133(5), 565-572.
IAH (International Association of Hydrogeologists), 1979. Map of Mineral and Thermal Water of Europe Scale: 1:500.000, IAH, United Kingdom.
Kazancı, N., Dündar, S., Alçiçek, M. C., Gürbüz, A., 2009. Quaternary deposits of the Büyük Menderes Graben in western Anatolia, Turkey: Implications for river capture and the longest Holocene estuary in the Aegean Sea. Marine Geology, 264(3-4), 165-
Kazancı, N., Girgin, S., Dügel M., 2008. Research on the limnology of Bafa Lake in South-Western Turkey and climate change impacts. Review of Hydrobiology, 207-223.
Knipping, M., Müllenhoff, M., Brückner, H., 2008. Human induced landscape changes around Bafa Gölü (western Turkey). Vegetation History and Archaeobotany, 17(4), 365-380.
Koç, C., 2008. The effects of the environment and ecology projects on lake management and water quality. Environmental monitoring and assessment, 146(1-3), 397-409.
Küçüksümbül, A., 2018. Söke Ovası ve Bafa Gölü çevresinin hidrojeolojik incelenmesi: Jeotermal Potansiyeli, Toprak ve Su Kirliliği. Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü. Yüksek Lisans Tezi.
Lloyd, J.W., Heathcote J.A., 1985. Natural inorganic hydrochemistry in relation to groundwater, an introduction. Clarence Press, Oxford.
MTA (Maden Tektik ve Arama Genel Müdürlüğü), 2002. 1:500000 Ölçekli Aydın, Denizli, Muğla Bölgesi Jeoloji Haritası. Ankara. Türkiye.
Müllenhoff, M., Handl, M., Knipping, M., Brückner, H., 2004. The evolution of Lake Bafa (Western Turkey)–Sedimentological, microfaunal and palynological results. Coastline Reports, 1(2004), 55-66.
OSİB (Orman ve Su İşleri Bakanlığı), 2012. Bafa Gölü Su Kalite Değerlendirme Raporu. Ankara. Türkiye.
Pettine, M., Camusso, M., Martinotti, W., 1992. Dissolved and particulate transport of arsenic and chromium in the Po River (Italy). Science of the Total Environment, 119, 253-280.
Sarı, H.M. Balık, S. Özbek, M. Aygen, C., 2001. The Macro and Meiobenthic Invertabrate Fauna of Lake Bafa. Anadolu University Journal of Science and Technology, 2(2), 285-291.
Schoeller, H., 1935. Utilite de la notion des exchanges de bases pour le comparison des eaux souterraines. Société Géologie Comptes Rendus Sommaire et Bulletin, série, 5, 651-657.
Seçmen, Ö., Leblebici, E., 1982. Ege Bölgesi, İç Anadolu Batısı ve Akdeniz Bölgesinin Batısında Bulunan Göl ve Bataklıkların Flora ve Vejetasyonu. TUBİTAK Proje No: TBAG-407.
Seyitoğlu, G., Işık, V., 2015. Batı Anadolu’da Geç Senozoyik genişleme tektoniği: Menderes Çekirdek Kompleksinin yüzeylemesi ve ilişkili havza oluşumu. MTA Dergisi, 151, 49-109.
Seyler, P., J. M. Martin., 1990. Distribution of arsenite and total dissolved arsenic in major French estuaries: dependence on biogeochemical processes and anthropogenic inputs. Marine Chemistry, 29, 277-294.
Singh, M., Singh, A. K., Srivastava, N., Singh, S., Chowdhary, A. K., 2010. Arsenic mobility in fluvial environment of the Ganga Plain, northern India. Environmental Earth Sciences, 59(8), 1703-1715.
Socha, M. T., Ensley, S. M., Tomlinson, D. J., Johnson, A. B., 2003. Variability of water composition and potential impact on animal performance. In Proc. from the Intermountain Nutrition Conference, Salt Lake City, UT, 85-96.
Somay, M. A., Gemici, Ü., 2012. Groundwater quality degradation in the Buyuk Menderes River coastal wetland. Water, Air, & Soil Pollution, 223(1), 15-27.
Sümer, Ö., İnci, U., Sözbilir, H., 2013. Tectonic evolution of the Söke Basin: Extension-dominated transtensional basin formation in western part of the Büyük Menderes Graben, Western Anatolia, Turkey. Journal of Geodynamics, 65, 148-175.
Şengör, A.M.C., Yılmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75, 181-241.
Tarcan, G., Gemici, Ü., 2014. Egemar balık üretim tesisi hidrojeolojik değerlendirilmesi. Dokuz Eylül Üniversitesi Jeoloji Mühendisliği Bölümü.
Tarcan, G., Gemici, Ü., Savaşçın, M.Y., 2007. Bafa Gölü tuzluluğunun jeolojik, hidrojeolojik ve hidrojeokimyasal değerlendirilmesi. Dokuz Eylül Üniversitesi-DEVAK Jeotermal Enerji Araştırma ve Uygulama Merkezi, Bilimsel Raporlar Serisi.
Theis, C. V., 1935. The relation between the lowering of the piezometric surface and the rate and duration of discharge of a well using groundwater storage. Eos, Transactions American Geophysical Union, 16(2), 519-524.
Thornthwaite, C. W., 1948. An approach toward a rational classification of climate. Geographical Review, 38(1), 55-94.
TS-266 (Türk Standartları İnsani Tüketim Amaçlı Sular Hakkında Yönetmelik), (1997.03.18). Resmi Gazete.
TS-266 (Türk Standartları İnsani Tüketim Amaçlı Sular Hakkında Yönetmelik), (2005.02.17). Resmi Gazete. Erişim Adresi: http://www. resmigazete.gov.tr/eskiler/2005/02/20050217-3. htm (29.01.2020)
TS-266 (Türk Standartları İnsani Tüketim Amaçlı Sular Hakkında Yönetmelik), (2013.03.07). Resmi Gazete (28580). http://www.resmigazete. gov.tr/eskiler/2013/03/20130307-7.htm (29.01.2020).
Van den Berk, V., 1991. The likely environmental impact of world bank support project in Büyük Menderes River Basin. Santa Barbara: ICB.
Varol, S., Davraz, A., 2014. Assessment of geochemistry and hydrogeochemical processes in groundwater of the Tefenni plain. Enviromental Earth Science, 71 (11), 4657-4673.
WHO (World Health Organization), 2004. Guidelines for drinking-water quality. Genova, Schweiz. 1-540
WHO (World Health Organization), 2008. Guidelines for Drinking-water Quality. Genova, Schweiz. 1-515.
WHO (World Health Organization), 2011. Guidelines for drinking-water quality. Genova, Schweiz. 1-541.
WHO (World Health Organization), 2017. Guidelines for drinking-water quality. Genova, Schweiz. 1-542.
Yabanlı, M., Coşkun, Y., Öz, B., Yozukmaz, A., Sel, F., Öndeş S., 2013. Bafa Gölü’nden elde edilen levreklerde ve göl suyunda ağır metal içeriğinin belirlenmesi ve balık/halk sağlığı açısından durum değerlendirmesi. Bornova Veteriner Bilimleri Dergis
An Approach to the Planning and Environmental Geology of Erziıncan Plain and its Surroundings
Doğuş Boz Ali Yilmaz
PDF Olarak Görüntüle

ABSTRACT:Erzincan plain is located in an area, where earthquakes, landslides, avalanches, floods and other natural

disasters are mainly dominant in the upper part of Fırat River basin in the East Anatolian Region. Earthquakes of

various magnitudes occurred throughout the history of Erzincan. Earthquakes occurred in the 1939 and 1992 years

led to many casualties and lost of the properties. In the present study, in the light of regional and local geology of the

Erzincan Plain and vicinity considering – its geomorphology, hydrogeology, natural resources, land-use capability,

currentland-use and its environmentel geology have been presented and related future land use planning have been

evaluated. Environmental systems have been defined in the frame of environmental geology. These systems are

mainly Erzincan Plain System, Ergandağ System and Man-made or Antropogenic System. Environmental units those

characterize each system have been identified. Thus, land-use capabilities of 26 environmental units have been evaluated depending on their general properties, index characteristics and natural disaster risks. The evaluations of

land-use capabilities have been carried out on the basis of land-use forms. The matters, which are necessary to be

considered to wards to the planning of the region in the future, have been presented. Based on the recommended plan,

it is possible to control a great deal of environmental problems and protect the Erzincan Plain and surroundings, as

well.

Environmental Geology
Erzincan Plain
Environmental Systems
Environmental Units
Land Use Planing
Akpınar, Z., 2010. Erzincan havzasının tektonik gelişiminin Paleomanyetik yöntemlerle analizi. Cumhuriyet Üniversitesi Fen Bilimleri Enstitüsü, Doktora tezi, Sivas, 170s.
Aktimur, T., Tekirli, M. E., Yurdakul, M. E., 1988. Erzincan ve çevresinin arazi kullanım potansiyeli. MTA Derleme Rapor no. 8381, Ankara, 326s.
Aktimur, T., Yurdakul, M. E., Sarıaslan, M., Mutlu, G., Keçer, M., Yıldırım, T., Akkuş, İ., 1995. Geology of Erzincan regional petrology of Quaternary volcanic rocks. Symposium on the Black Sea Region Eds. Erler et al., General Directorate of MTA, An
ANON, 1979. Classification of rocks and soils for engineering geological mapping. Part 1: Rock and soil materials. IAEG Bulletin, 19, 364–371.
Arpat, E., Şaroğlu, F., 1975. Türkiye’de bazı önemli genç tektonik olaylar. Türkiye Jeoloji Kurumu Bülteni, 18/1, 91-101.
Avcı, N., Kılıçdağı, R., Ayaz, M., 1997. Sivas kentinin çevre jeolojisi ve doğal kaynakları. MTA Orta Anadolu 1. Bölge Müdürlüğü, Sivas, 169s.
Barka, A., 1984. Erzincan Havzası’nın bazı neo-tektonik özellikleri. I. Ulusal Deprem Sempozyumu, Bildiriler kitabı, Erzurum, s. 223- 247.
Barka, A. A., Gülen, L., 1989. New constraints on the age and total offset of the North Anatolian Fault Zone: implifications for tectonics of the Eastern Mediterranean Region. METU Journal of Pure Applied Science, 21, 39-63.
Boz, D., 2015. Erzincan İli ve Dolayının Çevre Jeolojisi ve Geleceğe Yönelik Planlaması. TC Cumhuriyet Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek lisans tezi (Yayımlanmamış), Sivas, 109 s.
Brown, L. F., Jr., Fisher, W. L. , Erxleben, A. W, McGowen, J. H., 1971. Resource capability units, their utility in land-and water-use management with examples from the Texas Coastal Zone: The University of Texas at Austin, Bureau of Economic Geolog
Cendero, A., 1974. Environmental geology of the Santander Bay area, Northern Spain. Environmental Geology, 1, 97-114.
Çevre ve Şehircilik Bakanlığı, 2012. Türkiye çevre sorunları ve öncelikleri envanteri değerlendirme raporu, Ankara, 196s
Doornkamp, J. C., Brunsden, D., Cooke, R. U., Jones, David K. C., Griffiths, J. S., 1987. Environmental geology mapping: an international review. Geological Society Engineering Geology Special Publication, 4. s. 215-219. ISSN 0267-9914.
DSİ, 1981. Erzincan Ovası hidrojeolojik etüt raporu, Devlet Su İşleri Genel Müdürlüğü (DSİ), Jeoteknik Hizmetler ve Yeraltı Suları Dairesi Başkanlığı, Ankara, 124s.
DSİ, 2010. Fırat nehri yan kolları su kalitesi. Orman ve Su İşleri Bakanlığı, Devlet Su İşleri Genel Müdürlüğü, 82. Şube Müdürlüğü, Erzincan
Emre, Ö., Duman T. Y., Kondo, H., Olgun, Ş., Özalp, S., Elmacı, H., 2012. 1/250 000 ölçekli Türkiye Diri Fay Haritası Serisi, Erzincan (NJ 37-3) Paftası, Seri no: 44, Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
Erzincan Valiliği, 2011. Erzincan İli Çevre Durum Raporu, Erzincan Çevre İl Müdürlüğü, Erzincan, 268s.
Faccini, F., Piccazzo, M. And Robbiano, A., 2008. Environmental geological maps of San Fruttuoso Bay (Portofino Park, Italy). Journal of Maps, 4/1, 431-443.
ISRM, 1981. Rock Characterization Testing and Monitoring. (Ed.), E. T. Brown, ISRM (International Society for Rock Mecanics) Suggested Methods. Pergaman Press, Oxford, England, 211s.
Keçer, M., 1985. Erzincan Ovası’nın ve yakın çevresinin jeomorfolojisi. İ.Ü Deniz Bilimleri ve Coğrafya Enstitüsü, Jeomorfoloji Anabilim Dalı, Yüksek lisans tezi, İstanbul.
Kılıçdağı, R., Sarıaslan, M., Ak, S., Şanver, S., Akbulut, I., Nisan, E., 1999. Kayseri kenti’nin çevre jeolojisi ve doğal kaynakları. MTA Derleme Rapor No: 10.322, Ankara, 125s.
Koçyiğit, A., 1991. Neotectonic structures and related landforms expressing the contractional and extensional strains along the North Anatolian Fault at the northwestern margin of the Erzincan basin, NE Turkey. Bulletin of İstanbul Technical Universi
MTA, 2003. KAF boyu jeoloji haritası-(Erzincan- Tanyeri), 1/100.000 ölçekli ek, Maden Tetkik ve Arama Genel Müdürlüğü (MTA), Jeoloji Etütleri Dairesi, Ankara.
MTA, 2012a. 1/250. 000 Ölçekli Türkiye diri fay haritası, Erzincan (NJ 37-3) paftası, Seri no:44, Maden Tetkik ve Arama Genel Müdürlüğü (MTA), Jeoloji Etütleri Dairesi, AnkaraMTA, 2012b. Erzincan ili maden ve enerji kaynakları, MTA Genel Müdürlüğü, A
MTA, 2012b. Erzincan ili maden ve enerji kaynakları, MTA Genel Müdürlüğü, Ankara, 5s.
Mulder, E.F.J.ve Hillen, R., 1990. Preparation and application of engineering and environmental geological maps in the Netherlands. Engineering Geology, 29, 279-290.
Özgül, N. 1981, Munzur dağlarının jeolojisi. MTA Derleme Rapor No, 6995, Ankara, 136s.
Shrestha, O. M., Koirala, A., Hanisch, J., Busch, K., Kerntke, M. ve Jager, S., 1999. A geoenvironmental map for sustainable development of the Kathmandu Valley, Nepal. GeoJournal, 49, 165-172.
Tudes, S. Ceryan, S. ve Bulut, F., 2012. Geoenvironmental evaluation for planning: an example from Gumushane City, close to the North Anatolia Fault Zone, NE Turkey. Bulletin of Engineering Geology and the Environment, 71 (4), 679-690.
Turner, A.K., Coffman, D.M., 1973. Geological for planning: a review of environmental geology, Quarterly of the Colorado School of Mines, 68 s.
Ulusay, R., 2010. Uygulamalı Jeoteknik Bilgiler. TMMOB Jeoloji Mühendisleri Odası yayınları, no. 38, Ankara, 458s
Vernes, D. J., 1978, Slope Movement Types and Processes. In Land slides: Analysis and Control. Edited by R. L. Schusterand R. J. Krizek. Transportation Research Board, National Academy of Science, Washington. Special Report 176, Chapter 2, 11-33.
Yılmaz, A. 1985. Yukarı Kelkit Çayı ile Munzur Dağları arasının temel jeoloji özellikleri ve yapısal evrimi: Türkiye Jeoloji Kurumu Bülteni, 28/2, 79-92.
Yılmaz, A., Atmaca, E., 2006. Environmental geological assessment of a solid waste disposal site: A case study in Sivas, Turkey. Environmental Geology, 50, 67- 689.
Yılmaz, A. 2008. Çevre Jeolojisi. CÜ Mühendislik Fakültesi Yayını no: 107, Sivas, 379s.
Yılmaz, A. 2009. Çevre Jeotekniği. CÜ Mühendislik Fakültesi Yayını no: 116, Sivas, 276s.
Step Test and Constant Rate Pump Test Planning, Evaluation of Analytical and Numerical Analysis
Emrah Dirmit
PDF Olarak Görüntüle

ABSTRACT:In hydrogeological research studies, long-term constant flow pump tests are used as a common method for

determining aquifer parameters. After the well development studies is completed in newly drilled wells, a preliminary

analysis process of the well’s interaction with the aquifer should be carried out by conducting a step drawdown test.

Aquifer transmissivity (T) and the well loss parameters (C) should be determined by analyzing step drawdown

test at variable discharge rate. Thus, for long-term pump testing, accurate pump selection and more reliable

information about the transmissivity (T) of aquifer can be obtained. In this study was conducted within the borders of

Himmetdede in Kayseri province, and many observation wells and dewatering wells were opened within the project

area in order to contribute to the dewatering works of the enterprise carrying out mining activities and to reveal the

hydrogeological structure. Constant rate pump test and step test results in SK-1 dewatering well, which is thought

to be important for open pit mine dewatering studies, are discussed in this study. Aquifer transmissivity (T) and well loss coefficient (C) values were calculated using different analytical solution methods. Analysis of long-term pump

testing using different numerical methods is presented. Comparisons of the results were made and the contributions

of both analytical and numerical methods to the solution of aquifer parameters were presented.

Aquifer Transmissivity (T)
Constant Rate Pump Test
Step Test
Well Loss
Mine Dewatering
Clark, L., 1977. The analysis and planning of step drawdown tests. Quarterly Journal of Engineering Geology and Hydrogeology, 10, 125-143.
Cooper, H. H., Jacob, C. E., 1946. A generalized graphical method for evaluating formation constants and summarizing well field history. American Geophysical Union Transactions, 27, 526-534.
Eden, R. N., Hazel, C. P., 1973. Computer and graphical analysis of variable discharge pumping tests of wells. Civil Engineering Trans. International Engineering, Austria, 5-10.
Hazel, C. P., 1973. Lecture notes: Groundwater Hydraulics. Australian Water Resources Council. (yayınlanmamış).
Jacob, C.E., 1946. Drawdown test to determine effective radius of artesian well. Proc. Am.Soc. Civil Engineers, 79 (5).
Johnson, E. E., 1966. Groundwater and wells, a reference book for the water-well in industry, Edward E. Johnson, Inc. Saint Paul, Minnesota, 440p.
Kruseman, G.P., N.A. de Ridder, 2000. Analysis and Evaluation of Pumping Test Data, Second Edition, Publication 47. International Institute for Land Reclamation and Improvement, Wageningen, The Netherlands, 377 p.
Lennox, D.H., 1966. Analysis and application of stepdrawdown tests. Journal of Hydraulics Division, ASCE, 92 (6), 25-47.
Logan, 1., 1964. Estimating transmissibility from routine production tests of water wells. Ground Water, 2, 35-37.
Muskat, M., 1937. The flow of homogeneous fluids through porous media. McGraw Hill Book Co., New York.
Ramey, H. J., 1982. Well-loss function and the skin effect: A review. In: Narasimhdn, T.N. (ed.) Recent trends in hydrogeology. Geol. Soc. Am., Special Paper, 189, pp. 265-271.
Skinner, A. C., 1988. Practical experience of borehole performance evaluation. Journal of Institution of Water Environmental Management, 2, 332-340.
Walton, W. C., 1962. Selected analytical methods of well and aquifer evaluation. Bull. 49. State of Illinois. Department of Registration and Education, Urbana, Illinois.
PDF Olarak Görüntüle