Jeoloji Münendisliği Dergisi
Jeoloji Mühendisliği Dergisi

Jeoloji Mühendisliği Dergisi

2015 ARALIK Cilt 39 Sayı 2
COVER
View as PDF
COPYRİHT PAGE
View as PDF
CONTENTS
View as PDF
Utilization and Application of AHP Method in Landslide Susceptibility Mapping Production (Sinop and its Surroundings)
Seda Sellek Fikri Bulut Hakan Ersoy
View as PDF

ABSTRACT: Computer-aided mapping technologies and developments used in improvement of these methods have led to the production of higher performing landslide susceptibility maps. In this study, a thorough review of the literature about the production of landslide susceptibility maps by using AHP (Analytic Hierarchy Process) was made and, also, landslide susceptibility evaluation of Sinop and its surroundings was analyzed by AHP. In the evaluation of landslide susceptibility factors such as aspect, lithology, land use, curvature, slope, elevation and proximity to the main road, river and structural elements are considered to be controlling factors in the landslide process. These factors are turned in to grid maps according to their weighted values and by handling the values in comparison matrices in different manners, and variety of landslide susceptibility maps produced. Analysis of results showed that main controlling factors of landslides are the proximity to main road, aspect and lithology. As a result, in terms of landslide susceptibility, very low landslide susceptibility is determined in the 10.77%, low landslide susceptibility determined in the 10.59%, moderate landslide susceptibility is determined in the 52.64%, high landslide susceptibility determined in the 25.66%, very high landslide susceptibility determined in the 0.34%, of Sinop and its proximity area. This study reveal that AHP, which has been used increasingly in the last years, provides high performance in the study area.

  • Analytical Hierarchy Process (AHP)

  • Gerze

  • Landslide

  • Landslide Susceptibility

  • Sinop

  • Ahmed, B., 2014. Landslide susceptibility mapping using multi-criteria evaluation techniques in Chittagong Metropolitan Area, Bangladesh. Landslides, 12 (6), 1077-1095.

  • Akgun, A., 2012. A comparison of landslide susceptibility maps produced by logistic regression, multi-criteria decision, and likelihood ratio methods: a case study at İzmir, Turkey. Landslides, 9, 93–106.

  • Akgun, A., Bulut, F., 2007. GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environmental Geology, 51, 1377–1387.

  • Akgun, A., Turk. N., 2010. Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis. Environmental Earth Sciences, 61, 595–611.

  • Akgun, A., Dag, S., Bulut F., 2008. Landslide susceptibility mapping for a landslide-prone area (Fndikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environmental Geology, 54, 1127–1143.

  • Aktimur, H. T.,Yurdakul, M. E., Sönmez, M., Karabıyıklıoğlu, N., Kozan, T., Tekin, Z., Canpolat, M., 1993. Sinop İlinin Arazi Kullanım Potansiyeli, MTA Genel Müdürlüğü Jeoloji Etütleri Dairesi, Ankara.

  • Althuwaynee, O. F., Pradhan, B., 2014. Ensemble of Data-Driven EBF model with Knowledge Based AHP Model for Slope Failure Assessment in GIS Using Cluster Pattern Inventory. FIG Congress Engaging the Challenges – Enhancing the Relevance Kuala Lumpur,

  • Althuwaynee, O. F., Pradhan, B., Park, H. J., Lee, J. H., 2014. A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide suscept

  • Ayalew, L., Yamagishi, H., Marui, H., Kanno, T., 2005. Landslides in Sado Island of Japan: Part II. GISbased susceptibility mapping with comparisons of results from two methods and verifications. Engineering Geology, 81, 432– 445.

  • Bagherzadeh, A., Daneshvar, M. R. M., 2013. Mapping of landslide hazard zonation using GIS at Golestan watershed, northeast of Iran. Arabian Journal of Geoscience, 6, 3377–3388.

  • Barka, A., Sütçü, Y. F., Tekin, F., Gedik, İ., Karabıyıkoğlu, M., Saraç, G., Önal, Ö., Arel, E., Özdemir M., 1983. Sinop Yarımadası’nın jeolojisi ve tektonik evrimi, Türkiye Jeoloji Kurultayı Bülteni.

  • Barredo, J. I., Benavides, A., Hervh, J., Van Westen, C. J., 2000. Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana basin, Gran Canaria Island, Spain. International Journal of Applied Earth Observation and Geoinfor

  • Barredo, J. I., Hervh, J., Lomoschitz, A., Benavides, A., Van Westen, C. J., 2010. Landslide Hazard Assement using Gis and multicriteria evaluation techniques in the Tirajana basin, Gran Canaria Island, Spain. RUNOUT Project, funded by the European C

  • Bathrellos, G. D., Gaki-Papanastassiou, K., Skilodimou, H. D., Skianis, G. A., Chousianitis, K. G., 2013. Assessment of rural community and agricultural development using geomorphological–geological factors and GIS in the Trikala prefecture (Central

  • Bhatt, B. P., Awasthi, K. D., Heyojoo, B. P., Silwal, T., Kafle, G., 2013. Using geographic information system and analytical hierarchy process in landslide hazard zonation. Applied Ecology and Environmental Sciences, 1 (2), 14-22.

  • Calligaris, C., Poretti, G., Tariq, S., Melis, M. T., 2013. First steps towards a landslide inventory map of the Central Karakoram National Park. European Journal of Remote Sensing, 46, 272-287.

  • Castellanos Abella, E. A., Van Westen, C. J., 2007. Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation. Landslides, 4 (4), 311-325.

  • Chalkias C., Ferentinou M., Polykretis C., 2014. GISBased Landslide Susceptibility Mapping on the Peloponnese Peninsula, Greece. Geosciences, 4, 176-190.

  • Chen, W., Li, W., Hou, E., Li, X., 2014. GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China. Environmental Earth Sciences, DOI 10.1007/s126

  • Chuan, T., Jing, Z., Jingtao, L., 2009. Emergency assessment of seismic landslide susceptibility: a case study of the 2008 Wenchuan earthquake affected area. Earthquake Engineering and Engineering Vibration, 8 (28), 207-217.

  • Çellek, S., 2013. Sinop-Gerze yöresinin heyelan duyarlılık analizi. Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon, Doktora Tezi, 271 s (yayımlanmış).

  • Daneshvar, M. R. M., 2014. Landslide susceptibility zonation using analytical hierarchy process and GIS for the Bojnurd region, northeast of Iran. Landslides, 11, 1079–1091.

  • Daneshvar, M. R. M., Bagherzadeh, A., 2011. Landslide hazard zonation assessment using GIS analysis at Golmakan Watershed, northeast of Iran. Frontiers of Earth Science, 5 (1), 70-81.

  • Demir, G., Aytekin, M., Akgun, A., Ikizler, S. B., Tatar, O., 2013. A comparison of landslide susceptibility mapping of the eastern part of the North Anatolian Fault Zone (Turkey) by likelihood-frequency ratio and analytic hierarchy process methods.

  • Diop, S., 2012. An Overview of Landslide Occurrence, Inventorization and Susceptibility Mapping in South Africa. Landslide Risk Assessments for Decision Making, Council for Geoscience, UR Forum Mapping Global Risk, July 2-6/ Cape Town, South Africa.

  • Domakinis, C., Oikonomidis, D., Astaras, T., 2008. Landslide mapping in the coastal area between the Strymonic Gulf and Kavala (Macedonia, Greece) with the aid of remote sensing and geographical information systems. International Journal of Remote Se

  • Esmali, Y., Ahmadi, H., 2003. Using GIS & RS in Mass Movements Hazard Zonation –A Case Study in Germichay Watershed, Ardebil, Iran. Map India Disaster Management Conference

  • Ercanoglu, M., Kasmer, O., Temiz, N., 2008. Adaptation and comparison of expert opinion to analytical hierarchy process for landslide susceptibility mapping. Bulletin of Engineering Geology and Environment, 67, 565–578.

  • Feizizadeh, B., Blaschke, T., 2014. An uncertainty and sensitivity analysis approach for GISbased multicriteria landslide susceptibility mapping. International Journal of Geographical Information Science, 28 (3), 610–638.

  • Feizizadeh, B., Blaschke, T., Nazmfar, H., 2014a. GIS-based ordered weighted averaging and Dempster-Shafer methods for landslide susceptibility mapping in the Urmia Lake Basin, Iran. International Journal of Digital Earth, 7 (8), 688-708.

  • Feizizadeh, B., Jankowski, P., Blaschke, T., 2014b. A GIS based spatially-explicit sensitivity and uncertainty analysis approach for multi-criteria decision analysis. Computers &Geosciences, 64, 81–95.

  • Feizizadeh, B., Jankowski, P., Blaschke, T., 2013a. A Spatially Explicit Approach for Sensitivity and Uncertainty Analysis of GIS-Multicriteria Landslide Susceptibility Mapping. ÖAW Verlag, Wien. eISBN 978-3-7001-7438-7, doi:10.1553/ giscience2013s15

  • Feizizadeh, B., Blaschke, T., 2013. GIS-multicriteria decision analysis for landslide susceptibility mapping: comparing three methods for the Urmia lake basin, Iran. Natural Hazards, 65, 2105–2128.

  • Feizizadeh, B., Blaschke, T., Roodposhti, M. S., 2013b. Integrating GIS Based Fuzzy Set Theory in Multicriteria Evaluation Methods for Landslide Susceptibility Mapping. International Journal of Geoinformatics, 9 (3), 49-57.

  • Feizizadeh, B., Blaschke, T., Nazmfar, H., Rezaei Moghaddam, M. H., 2013c. Landslide susceptibility mapping for the Urmia Lake basin, Iran: A multi-criteria evaluation approach using GIS. International Journal of Environmental Research, 7 (2), 319-33

  • Feizizadeh, B., Blaschke, T., Rafiq, L., 2010. Gıs- Based Landslıde Susceptabılıty Mappıng: A Case Study In Bostan Abad County, Iran.http://ispace. researchstudio.at/sites/ispace.researchstudio.at/ files/239_full.pdf

  • Gaprindashvili, G., 2011. Landslide hazard assessment in Georgia. Report on the 1st project of AES Geohazards Stream, Faculty of Geo- Information Science and Earth Observation (ITC) of the University of Twente, Enschede, The Netherlands.

  • Ghosh, S., Carranza, E. J. M., Van Westen, C. J., Jetten, V. G., Bhattacharya, D. N., 2011. Selecting and weighting spatial predictors for empirical modeling of landslide susceptibility in the Darjeeling Himalayas (India), Geomorphology, 131, 35–56.

  • Gorsevski, P. V., Jankowski, P., Gessler, P. E., 2006. An heuristic approach for mapping landslide hazard by integrating fuzzy logic with analytic hierarchy process. Control and Cybernetics, 35 (1), 121-146.

  • Gorsevski, P. V., Jankowski, P., 2010. An optimized solution of multi-criteria evaluation analysis of landslide susceptibility using fuzzy sets and Kalman filter. Computers & Geosciences, 36, 1005–1020.

  • Guoqing, Y., Haibo, Y., Zhizong, T., Baosen, Z., 2011. Landslide Risk Analysis of Miyun Reservoir Area Based on RS and GIS. Procedia Environmental Sciences, 10, 2567 – 2573.

  • Habibi, A., 2014. Landslide hazard zonation for determination appropriate regions with AHP model in dry areas of Iran Khuzestan (Iran). Alireza Habibi International Journal of Forest, Soil and Erosion (IJFSE), 4 (1), 228-826.

  • Hasekiogulları, G. D., Ercanoglu, M., 2012. A new approach to use AHP in landslide susceptibility mapping: a case study at Yenice (Karabuk, NW Turkey). Natural Hazards, 63, 1157–1179.

  • Ilanloo, M., Soltani, Y. M., Jamnani, L. E., Ebrahimi, L., Myrfkhray, S., B. 2014. Earthquake Hazard Zonation using Analytical Hierarchy Method (AHP): A Case Study of Kelardasht. Geodynamics Research International Bulletin, 2 (4), 148-155.

  • Intarawichian, N., Dasananda, S., 2010. Analytical Hierarchy process for landslide susceptibility mapping in Lower Mae Chaem Watershed, Northern Thailand. Suranaree Journal of Science and Technology, 17 (3), 277-292.

  • Ivanova, E., 2014. Landslide susceptibility mapping using Frequency Ratio and Analytic Hierarchy Process (AHP): Comparative study of two areas in Bulgaria. International Conference Analysis and Management of Changing Risks for Natural Hazards,18-19

  • Jin, K. C., Oh, C. Y., Chul, C. U., 2010 The comparative research of landslide susceptibility mapping using FR, AHP, LR, ANN. Journal of Korean Society for Geospatial Information System, 9, 13-20.

  • Kamp, U., Growley, B. J., Khattak, G. A., Owen, L. A., 2008. GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology, 101, 631–642.

  • Kavzoglu, T., Sahin, E. K., Colkesen, I., 2014. Landslide susceptibility mapping using GISbased multi-criteria decision analysis, support vector machines, and logistic regression. Landslides, 11, 425–439.

  • Kayastha, P., Dhital, M. R., DeSmedt, F., 2013. Application of the Analytical Hierarchy Process (AHP) for landslide susceptibility mapping: A case study from the Tinau watershed, west Nepal. Computers & Geosciences, 52, 398–408.

  • Khezri, S., 2011. Landslide susceptibility in the Zab Basin, northwest of Iran. Procedia Social and Behavioral Sciences, 19, 726–731.

  • Komac, M., 2003. Geohazard map of the central Slovenia – the mathematical approach to landslide prediction. Geologıja, 46 (2), 367–372.

  • Komac, M., 2005. A landslide susceptibility model using the Analytical Hierarchy Process method and multivariate statistics in perialpine Slovenia. Geomorphology, 74, 17-28.

  • Kornejady, A., Kohzad, H., Sarparast, M., Khosravi, G., Mombeini, M., 2014. Performance assessment of two “LNRF” and “AHP-Area Density” models in landslide susceptibility zonation. Journal of Life Science and Biomedicine, 4 (3), 169-176.

  • Ladas, I., Fountoulis, I., Mariolakos, I., 2007. Usıng GIS & Multıcrıterıa Decısıon Analysıs in landslide susceptibility mapping -A case study in Messınıa Prefecture area (Sw Peloponnesus, Greece). Bulletin of the Geological Society of Greece, , Proc

  • Ma, F., Wang, J., Yuan, R., Zhao, H., Guo, J., 2013. Application of analytical hierarchy process and least-squares method for landslide susceptibility assessment along the Zhong-Wu natural gas pipeline, China. Landslides, 10, 481–492.

  • Margarint, M. C., Niculita, M., 2014. Comparison and validation of Logistic Regression and Analytic Hierarchy Process models of landslide susceptibility in monoclinic regions. A case study in Moldavian Plateau, N-E Romania. EGU General Assembly, Geop

  • Marjanovıć, M., 2009a. Landslide susceptibility mapping with Support vector machine algorithm The GI-Forum Program Committee framework of Methods of artificial intelligence in GIS, a project of Czech Republic Grant Agency (CR GA 205/09/079).

  • Marjanovıć, M., 2009b. Landslıde Susceptıbılıty Modellıng: A Case Study On Fruška Gora Mountaın, Serbıa. Geomorphologıa Slovaca Et Bohemıca, 9 (1), 29-42.

  • Marjanoviç, M., Bajat, B., Kovaçeviç, M., 2009. Landslide susceptibility assessment with machine learning algorithms, International Conference on Intelligent Networking and Collaborative Systems, IEEE Computer Society, 273-278.

  • Marjanovıć, M., Abolmasov, B., Đurıć, U., Bogdanovıć, S., 2013. Impact of geoenvironmental factors on landslide susceptibility using an AHP method: A case study of Fruška Gora Mt., Serbia. Annales Geologıques De La Penınsule Balka

  • Mezughi, T. H., Akhir, J. M., Rafek, A. G., Abdullah, I., 2012. Analytical Hierarchyy Process Method for mapping landslide susceptibility to an area along the E-W Highway (Gerik-Jeli), Malaysia. Asian Journal of Earth Sciences, 5 (1), 13-24.

  • Mondal, S., Maiti, R., 2013. Integrating the Analytical Hierarchy Process (AHP) and the Frequency Ratio (FR) model in landslide susceptibility mapping of Shiv-khola Watershed, Darjeeling Himalaya. International Journal of Disaster Risk Science, 4 (4)

  • Mondal, S., Maiti, R., 2012. Landslide susceptibility analysis of Shiv-Khola Watershed, Darjiling: A remote sensing & GIS based analytical hierarchy process (AHP). Journal of the Indian Society of Remote Sensing, 40 (3), 483–496.

  • Moradi, S., Rezaei, M., 2014. A GIS-based comparative study of the analytic hierarchy process, bivariate statistics and frequency ratio methods for landslide susceptibility mapping in part of the Tehran metropolis, Iran. Geopersia, 4 (1), 45-61.

  • Moradi, M., Bazyar, M. H., Mohammadi, Z., 2012. GIS-Based Landslide Susceptibility Mapping by AHP Method, A Case Study, Dena City, Iran. Journal of Basic and Applied Scientific Research, 2 (7), 6715-6723.

  • Mustafa, I. S., Din, N. M., Ismail, A., Omar, R. C., Khalid, N. H. N., 2013. Antenna placement for landslide monitoring using analytical hierarchy process (AHP) and Geographical Information System (GIS). IEEE Symposium on Wireless Technology and Appl

  • Niu, F., Luo, J., Lin, Z., Liu, M., Yin, G., 2014. Thaw-induced slope failures and susceptibility mapping in permafrost regions of the Qinghai– Tibet Engineering Corridor, China. Natural Hazards, 74, 1667–1682.

  • Othman, A. N., Mohd, W. M. N. W., Noraini, S,. 2014. Accuracy assessment of landslide prediction models. 8th International Symposium of the Digital Earth (ISDE8) IOP Publishing, IOP Conference Series, Earth and Environmental Science, 18, 1-6.

  • Ouri, A. E., Amirian, S., 2009. Landslide hazard zonation using MR and AHP methods and GIS techniques in Langan watershed, Ardabil, Iran. International Conference on ACRS 2009, Beijing,China.https://www.researchgate.net/ publication/266501883_Landsli

  • Ownegh, M., 2004. Assessing the applicability of Australian landslide databases for hazard management. ISCO - 13th International Soil Conservation Organisation Conference – Brisbane, July.

  • Park, S., Choi, C., Kim, B., Kim, J., 2013. Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea. Environmental Earth Sciences, 68, 1443

  • Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., 2012b. Application of fuzzy logic and analytical hierarchy process (AHP) to landslide susceptibility mapping at Haraz watershed, Iran. Natural Hazards, 63, 965–996.

  • Pourghasemi, H. R., Pradhan, B., Gokceoglu, C., Moezzi, K. D., 2012a. Landslide susceptibility mapping using a Spatial Multi Criteria Evaluation Model at Haraz Watershed, Iran (Chapter 2). Terrigenous Mass Movements, Springer-Verlag Berlin Heidelberg

  • Pourghasemi, H. R., Moradi, H. R., Fatemi Aghda, S. M., 2013. Landslide susceptibility mapping by binary logistic regression, analytical hierarchy process, and statistical index models and assessment of their performances. Natural Hazards, 69, 749–77

  • Pourghasemi, H. R., Moradi, H. R., Fatemi-Aghda, S. M., Gokceoglu, C., Pradhan, B., 2014. GISbased landslide susceptibility mapping with probabilistic likelihood ratio and spatial multicriteria evaluation models (North of Tehran, Iran). Arabian Journ

  • Prabu, S., Ramakrishnan, S. S., 2009. Combined use of Socio Economic Analysis, Remote Sensing and GIS Data for landslide hazard mapping using ANN. Journal of the Indian Society of Remote Sensing, 37, 409–421.

  • Quan, H. C., Lee, B. G., 2012. GIS-Based landslide susceptibility mapping using Analytic Hierarchy Process and Artificial Neural Network in Jeju (Korea). KSCE Journal of Civil Engineering, 16 (7), 1258-1266.

  • Qiu, D., Niu, R., Zhao, Y., 2014. Landslide susceptibility zonation based on the Analytic Hierarchy Process and information method. Applied Mechanics and Materials, 580-583, 2658-2662.

  • Reis, S., Yalcin, A., Atasoy, M., Nisanci, R., Bayrak, T., Erduran, M., Sancar, C., Ekercin, S., 2012. Remote sensing and GIS-based landslide susceptibility mapping using frequency ratio and analytical hierarchy methods in Rize province (NE Turkey).

  • Rozos, D., Bathrellos, G. D., Skillodimou, H. D., 2011. Comparison of the implementation of rock engineering system and analytic hierarchy process methods, upon landslide susceptibility mapping, using GIS: a case study from the Eastern Achaia County

  • Saadatkhah, N., Kassim, A., Lee, M. L., 2014a. Qualitative and quantitative landslide susceptibility assessments in Hulu Kelang area, Malaysia. The Electronic Journal of Geotechnical Engineering, Bundle C, 19, 545-563.

  • Saadatkhah, N., Kassim, A., Lee, M. L., 2014b. Susceptibility assessment of shallow landslides in Hulu Kelang Area, Kuala Lumpur, Malaysia using Analytical Hierarchy Process and Frequency Ratio. Geotechnical and Geological Engineering, 33 (1), 43-57.

  • Shafri, H. Z. M., Zahidi, I. M. S., Bakar, A. S., 2010. Development of landslide susceptibility map utilizing remote sensing and Geographic Information Systems (GIS). Disaster Prevention and Management, 19 (1), 59 – 69.

  • Sinop ÇED, 2007. İl Çevre ve Orman Müdürlüğü, Sinop İli Çevre Durum Raporu, 86 s., Sinop.

  • Solle, M. S., Mustafa, M., Baja, S., Imran, A. M., 2013. Landslide susceptibility zonation model On Jeneberang Watershed using Geographical Information System and Analytical Hierarchy Process. International Journal of Engineering and Innovative Techn

  • Solle, M. S., 2013. Landslide Susceptibility zonation model on Jeneberang Watershed Based On Geographical Information System and Analytical Hierarchy Process. The 2nd Southeast Asian Gateway Evolution Meeting (SAGE), Berlin, Germany.

  • Suh, J., Choi, Y., Roh, T. D., Lee, H. J., Park, H. D., 2011. National-scale assessment of landslide susceptibility to rank the vulnerability to failure of rock-cut slopes along expressways in Korea. Environmental Earth Sciences, 63, 619–632.

  • Tazik, E., Jahantab, Z., Bakhtiari, M., Rezaei, A., Alavipanah, S. K., 2014. Landslide susceptibility mapping by combining the three methods Fuzzy Logic, Frequency Ratio and Analytical Hierarchy Process in Dozain basin. The International Archives of

  • Teimouri, M., Graee, P., 2012. Evaluation of AHP and Frequency Ratio Methods in landslide hazard zoning (Case Study: Bojnord Urban Watershed, Iran). International Research Journal of Applied and Basic Sciences, 3 (9), 1978-1984.

  • Thanh, L. N., DeSmedt, F., 2012. Application of an analytical hierarchical process approach for landslide susceptibility mapping in A Luoi district, Thua Thien Hue Province, Vietnam. Environmental Earth Sciences, 66, 1739–1752

  • Vahidnia, M. H., Alesheikh, A., Alimohammadi, A., Hosseinali, F., 2009. Landslide hazard zonation using quantitative methods in GIS. International Journal of Civil Engineering, 7 (3), 176-189.

  • Wu, C. H., Chen, S. C., 2009. Determining landslide susceptibility in Central Taiwan from rainfall and six site factors using the analytical hierarchy process method. Geomorphology, 112, 190–204.

  • Yalçın A., 2005. Ardeşen (Rize) Yöresinin Heyelan Duyarlılığı Açısından İncelenmesi, Doktora, Fen Bilimleri Enstitüsü, Karadeniz Teknik Üniversitesi, Trabzon.

  • Yalcin, A., Bulut, F., 2007. Landslide susceptibility mapping using GIS and digital photogrammetric techniques: a case study from Ardesen (NETurkey). Natural Hazards, 41, 201–226.

  • Yalcin, A., 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): Comparisons of results and confirmations. Catena, 72, 1–12.

  • Yalcin, A., Reis, S., Aydinoglu, A. C., Yomralioglu, T., 2011. A GIS-based comparative study of frequency ratio, analytical hierarchy process, bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, NE T

  • Yamani, M., Hasanpoor, S., Mostafaei, A., Shadman Roodposhti, M., 2013. Mapping landslide hazard zonation in Great Karoon Aquifer Basin by Analytical Hierarchy Process (AHP) model in Geographic Information System (GIS) environment. Geography and Envi

  • Yang, Z. H., Lan, H. X., Gao, X., Li, L. P., Meng, Y. S., Wu, Y. M., 2015. Urgent landslide susceptibility assessment in the 2013 Lushan earthquakeimpacted area, Sichuan Province, China. Natural Hazards, 75, 2467–2487.

  • Yanrong, L., Aydın, A., Xiqiong, X., Nengpan, J., Jianjun, Z., Özbek, A., 2012. Landslide susceptibility mapping and evaluation along a river valley in China. ACTA Geologica Sinica, 86 (4), 1022-1030.

  • Youssef, A. M., 2015. Landslide susceptibility delineation in the Ar-Rayth area, Jizan, Kingdom of Saudi Arabia, using analytical hierarchy process, frequency ratio, and logistic regression models. Environmental Earth Sciences, 73 (12), 8499-8518.

  • Youssef, A. M., Pradhan, B., Tarabees, E., 2011. Integrated evaluation of urban development suitability based on remote sensing and GIS techniques: contribution from the analytic hierarchy process. Arabian Journal of Geosciences, 4, 463–473.

  • Yoshimatsu, H., Abe, S., 2006. A review of landslide hazards in Japan and assessment of their susceptibility using an analytical hierarchic process (AHP) method. Landslides, 3, 149–158.

  • Zare, M., Jouri, M. H., Salarian, T., Askarizadeh, D., Miarrostami, S., 2014. Comparing of bivariate statistic, AHP and combination methods to predict the landslide hazard in northern aspect of Alborz Mt. (Iran). International Journal of Agriculture



  • Çellek, S , Bulut, F , Ersoy, H . (2015). AHP Yöntemi’nin Heyelan Duyarlılık Haritalarının Üretilmesinde Kullanımı ve Uygulaması (Sinop ve Yakın Çevresi) . Jeoloji Mühendisliği Dergisi , 39 (2) , 59-90 . DOI: 10.24232/jeoloji-muhendisligi-dergisi.295

  • Çellek, S , Bulut, F , Ersoy, H . AHP Yöntemi’nin Heyelan Duyarlılık Haritalarının Üretilmesinde Kullanımı ve Uygulaması (Sinop ve Yakın Çevresi). Jeoloji Mühendisliği Dergisi 39 (2015 ): 59-90

  • Strength and Deformation Properties of Sulphate-rich Clay Rocks and Their Brittle Failure Processes
    Ömer Ündül Florian Amann Peter K. Kaiser
    View as PDF

    ABTRACT: Gypsum precipitation related heaving generates important problems in engineering studies conductedin sulphate rich clay rocks. Formation of gypsum is generally related to the relaxation of previouslyexisting tectonic structures due to stress relief or are related to the microcracks formed by the effect ofcircumferential stresses. Depending on the brittle failure principals, deformation zones are generated inunderground rock structures which are excavated in sulphate rich clay rocks due to the stresses exceedingthe crack initiation stress level. It is suggested that these microcracks in deformation zones are preferentialpathways for gypsum precipitation. In this study, to introduce the failure mechanisms of sulphate rich clayrocks, unconfined and confined compressive strength tests, acoustic emission tests and high resolutionstrain measurements were conducted including microstructural and mineralogical analysis. The samplesused in the study were obtained from Gipskeuper formation of Triassic age from Belchen tunnelslocated in the northern parts of Switzerland. The unit is typically composed of distinct clay layers andstiff anhydrite veins and/or nodules. During the studies, it is concluded that the failure processes in lowdeviatoric stresses are controlled by the clay matrix where the microcracks are initiated. Besides, withincreasing deviatoric stresses or strain the propagating microcracks are hindered by stiff heterogeneousstructures. Furthermore microcracks propagates along the boundary between the clay matrix and the stiffheterogeneous structure or penetrates the stiff heterogeneous structures (anhydrite veins). By evaluatingthe data obtained for larger scale, it is suggested that the stiff heterogeneous structures like anhydriteveins can limit crack propagation and prevent disintegration of rock mass structure. In this respect, eventhe rock mass is terminated after excessing the crack initiation stress level, the heterogeneous structurehinders sudden failure of the rock mass

  • Anhydrite

  • Brittle failure

  • Gypsum

  • Clay

  • Heaving

  • Alonso, E., Berdugo, I.R., 2005. Expansive behaviour of sulphate-bearing clays. International Conference on Problematic soils, Famagusta, edited by Bilsel and Nalbantogu, Eastern Mediterranean University Press, 477-498.

  • Alonso, E., Berdugo, I.R., 2008. Degradation and swelling of sulphate-bearing claystones. VI CSAMR 2006, Cartanga de Indias, edited by Montero and Colmenares, 211-248.

  • Amann, F., Ündül, Ö., Kaiser, P. K., 2013a. Crack initiation and crack propagation in heterogeneous sulfate-rich clay rocks. Rock Mechanics and Rock Engineering, 47 (5), 1849-1865.

  • Amann, F., Ündül, Ö., Löw, S., Kaiser, P. K., 2013b. Fracture processes and in-situ fracture observations in Gipskeuper. Eidgenössisches Departement für Umwelt, Verkehr, Energie und Kommunikation (UVEK) und Bundesamt für Strassen (ASTRA), 1422.

  • Amann, F., Button, E. A., Evans, K. F., Gischig, V. S., Blümel, M., 2011. Experimental study of the brittle behavior of clay shale in short-term unconfined compression. Rock Mechanics and Rock Engineering, 44 (4), 415-430.

  • Amstad, C., Kovari, K., 2001. Untertagbau in quellfähigem Fels, Eidgenössisches Department für Umwelt, Verkehr, Energie und Kommunikation (UVEK) & Bundesamt für Strassen (ASTRA), Zürich

  • Anagnostou, G., Pimentel, E., Serafeimidis, K., 2010. Swelling of sulphatic claystones - some fundamental questions and their practical relevance. Geomechanics and Tunnelling, 3 (5), 567–572.

  • Bieniawski, Z. T., 1967. Mechanism of brittle failure of rock Part I - Theory of fracture process. International Journal of Rock Mechanics and Mining Science, 4 (4), 395-406.

  • Berdugo, I. R., Alonso, E. E., Morales, E., Solé, A., 2009. Tunnelling and Swelling in Triassic Sulphate–Bearing Rocks. Part I. Case studies from Baden–Württemberg. Revista Épsilon N.º 12: 13-37.

  • Brace, W. F., Paulding, B. R., Scholz, C., 1966. Dilatancy in fracture of crystalline rocks. Journal of Geophysical Research, 71 (16), 3939-3953

  • Diederichs, M. S., 2003. Rock fracture and collapse under low confinement conditions. Rock Mechanics and Rock Engineering, 36 (5), 339- 381.

  • Eberhardt, E., Stead, D., Stimpson, B., Read, R. S., 1998. Identifying crack initiation and propagation thresholds in brittle rock. Canadian Geotechnical Journal, 35, 222-233.

  • Fairhurst, C., Cook, N. G. W., 1966. The phenomenon of rock splitting parallel to the direction of maximum compression in the neighborhood of a surface. Proceedings 1th Congress of the International Society of Rock Mechanics, Lisbon, 687-692.

  • Grob, H., 1972. Schwelldruck im Belchentunnel. Proceedings of International Symposium on Underground Opening, Luzern, 99-119.

  • Grob, H., 1976. Swelling and heave in swiss tunnels. Bulletin of International Association of Engineering Geologists, 13, 55-60.

  • Hallbauer, D. K., Wagner, H., Cook, N. G. W., 1973. Some Observation Concerning The Microscopic And Mechanical Behaviour Of Quartzite Specimens In Stiff, Triaxial Compression Tests. International Journal of Rock Mechanics and Mining Science, 10, 713-

  • IGT (Istitut für Geotechnik-ETH), 1995. Hauenstein BasisTunnel – Wisenberg Tunnel, Laboruntersuchungen, Bericht Nr. 4383/9.

  • ISRM, 1979. Suggested Methods for Determining the uniaxial compressive strength and deformability of rock materials. International Journal of Rock Mechanics and Mining Science, 16 (2), 135-140.

  • Kaiser, P. K., Kim, B. H., 2008. Rock Mechanics Challenges in Underground Construction and Mining. 1th Southern Hemisphere International Rock Mechanics Symposium, Australia, edited by Potvin, Carter, Dyskin and Jeffery, 23-38.

  • Kaiser, P. K., 2010. How highly stressed brittle rock failure impacts tunnel design. Eurock, 27–38.

  • Lajtai, E. Z., 1974. Brittle fracture in compression. International Journal of Fracture, 10 (4), 525- 536.

  • Lockner, D. A., Moore, D. E., Reches, Z. 1992. Microcrack interaction leading to shear fracture. 33rd U.S. Rock Mechanics Symposium, edited by Tillerson and Wawersik, Balkema, Rotterdam, 807-816.

  • Madsen, F. T., Nüesch, R., 1991. The swelling behaviour of clay-sulfate rock. 7th International Congress on Rock Mechanics, Aachen, Germany, 285-288.

  • Madsen, F. T., Flückiger, A., Hauber, A., Jordan, L., Vögtli, B., 1995. New investigations on swelling rocks in the Belchentunnel Switzerland. 8th International Congress on Rock Mechanics, Tokyo, 1, 263-267.

  • Martin, C. D., 1997. Seventeenth Canadian Geotechnical Colloquium: The effects of cohesion loss and stress path on brittle rock strength. Canadian Geotechnical Journal, 34, 698-725.

  • Martin, C. D., Chandler, N. A., 1994. The progressive fracture of Lac du Bonnet granite. International Journal of Rock Mechanics and Mining Science, 31, 643–659.

  • Mogi, K., 1962. Study of elastic shocks caused by the fracture of heterogeneous materials and its relations to earthquake phenomena. Bulletin of the Earthquake Research Institute, 40, 125-173.

  • Nicksiar, M., Martin, C. D., 2012. Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks. Rock Mechanics and Rock Engineering, 45 (4), 607- 617.

  • Nicksiar, M., Martin, C. D., 2013. Factors affecting crack initiation in low porosity crystalline rocks. Rock Mechanics and Rock Engineering, 47 (4), 1165-1181.

  • Oğuzberk, U. C., 2010. Gezende Barajı Enerji Tünelinde Su Kaçakları ve Onarım Çalışmalarının Değerlendirilmesi. İstanbul Yerbilimleri Dergisi, 23 (2), 109-120.

  • Scholz, C. H., 1968. Experimental study of the fracturing process in brittle rock, Journal of Geophysical Research, 73 (4), 1447-1454.

  • Steiner, W., 1993. Swelling rock in tunnels: Characterization, effect of horizontal stresses and construction procedure. International Journal of Rock Mechanics and Mining Science, 30 (4), 361-380.

  • Steiner, W., Metzger, R., 1988. Erfahrungen aus Tunneln im quellenden Gestein, Experience from tunnels in swelling rocks. Internal report to Swiss Railways for Project Wisenbergtunnel.

  • Steiner, W., Kaiser, P. K., Spaun, G., 2010. Role of brittle fracture on swelling behavior of weak rock tunnels: hypothesis and qualitative evidence. Geomechanics and Tunnelling, 3 (5), 583-596.

  • Steiner, W., Kaiser, P. K., Spaun, G., 2011. Role of brittle fracture on swelling behavior of weak rock tunnels: evidence from tunnelling case histories. Geomechanics and Tunnelling, 4 (2), 141-156.

  • Tapponier, P., Brace, W. F., 1976. Development of stress-induced microcracks in Westerly Granit. International Journal of Rock Mechanics and Mining Science, 13, 103-112.

  • Vögtli, B., Jordan, P., 1996. Quelldruckentwicklung in Ton- und Sulfatgesteinen. Schweizer Ingenieur und Architekt, 18, 16-180.



  • Ündül, Ö , Amann, F , Kaisser, P . (2015). Sülfatça Zengin Killi Kayaların Dayanım ve Deformasyon Özellikleri ile Gevrek Kırılma Süreçleri . Jeoloji Mühendisliği Dergisi , 39 (2) , 91-116 . DOI: 10.24232/jeoloji-muhendisligi-dergisi.295372

  • Ündül, Ö , Amann, F , Kaisser, P . Sülfatça Zengin Killi Kayaların Dayanım ve Deformasyon Özellikleri ile Gevrek Kırılma Süreçleri. Jeoloji Mühendisliği Dergisi 39 (2015 ): 91-116

  • An Investigation of Biogeochemical Anomalies Along the Mezitli Stream, Mersin
    Ali Bozdoğan Derya Öz Zeynep Özdemir Erkan Demir Zübeyde Hatipoğlu Bağci
    View as PDF

    ABSTRACT: Biogeochemical methods have been widely used for prospects in the recent years. This study aimsto determine biogeochemical anomalities in Platanus orientalis and Phragmites australis plant speciesgrowing the Mezitli Stream. Li, B, Al, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Mo, Cd, Sn, Cs, Baand Pb element content of leaves and twigs of P. orientalis and P.australis, soil and stream water samplestaken from 8 stations in Mezitli (Mersin) area were determined with inductively coupled plasma - massspectrometry (ICP-MS). The result of the statistical analyses show that P. orientalis plant species(ontwigs) can also be used as an indicator plant for B(n = 10, r = 0,76, % 99 reliability, P < 0,01), Cr (n =12, r = -0,67, % 95 reliability, P < 0,05), Sr (n = 9, r = 0,72, %95 99 reliability, P < 0,05) and Pb (n =11, r = 0,63, % 95 reliability, P < 0,05) for biogeochemical prospecting. At the same time; P. australisplant species (on twigs) can be also used as an indicator plant for Cu (n = 11, r = -0,66, % 95 reliability,P < 0,05), Cr (n = 11, r = 0,64, % 95 reliability, P < 0,05) and Li (n = 10, r = 0,77, % 99 reliability, P <0,01) for biogeochemical prospecting. Also the inter-element relationship between the P.orientalis and P.australis plant species which were determined as indicator plants and soil were investigated for Cr, B, Sr,Pb, Cu, Li elements

  • Biogeochemical anomaly

  • Indicator plant

  • B-Cr-Pb-Cu-Sr-Li

  • Mezitli-Mersin

  • Bozcuk, S., 1986. Bitki Fizyolojisi (Metabolik Olaylar). Hatipoğlu Yayınları, 176 s., Ankara.

  • Brooks, R. R., Morrison, R. S., Reeves, R. D., Dudley, T. R., Akman, Y., 1979. Hyperaccumulation of nickel by Alyssum Linnaeus (Cruciferae). Proceedings of The Royal Society’s Physical Sciences, 203, 387-403.

  • Brooks, R. R., Baker, A. J. M., Malaisse, F., 1992. Copper flowers. National Geographic Ressearc and exploration, 8 (3), 338-351.

  • Brooks , R. R., Dunn, C. E., Hall, G. E. M., 1995. Biolocical system in mineral exploration and processing. Elles Horwood Limited, 538 s.

  • Benton, J., Jones, R., 1984. Developments in the measurement of trace metal in foods, in Analyses of Food contaminants. J. Gilbert, Ed., Elsevier, London and New York, 157 p.

  • Demirezen, D., Aksoy, A., 2005. Common hydrophyte a bioindicators of iron and manganee pollition. Ecological Indicators, 6, 388.

  • Dunn, C., 2007. Biogeochemistry in mineral exploration. Consulting Geochemist, 480 s.

  • Dürüst, N., Dürüst, Y., Tuğrul, D., Zengin, M., 2004. Heavy Metal Contents of Pinus Radiata Trees of İzmit (Turkey). Asian Journal of Chemistry, 16 (2), 1129.

  • Erdman, J. A., Kokkola, M., 1984. Workshop 2: Biogeochemistry in Mineral Explorarion, Journal of Geochemical Exploration, 25, 21–40.

  • Gedik, T., 2005. Madenköy (Niğde/Ulukışla) ve Dolaylarının Biyojeokimyasal Anomalilerinin İncelenmesi. Yüksek Lisans Tezi, Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, 113 s.

  • Hutchinson, G. E., 1950. Survey of existing knowledge of biogeochemictry 3: The biogeochemistry of vertebrate excreta. Bulletin of the American Museum of Natural History, 96, 71-94.

  • Hoening, H., Borger, M., 1983. Particular problems encountered in trace metal analysis of plant by AAS, Spectrochimica Acta, 38B (5/6), 673–880.

  • Kacar, B., 1984. Bitki Beslenmesi. Ankara Üniversitesi Zıraat Fakültesi Yayınları, No:289, Ankara, 317 s.

  • Köksoy, M., 1991. Uygulamalı Jeokimya. Hacettepe Yayınları,Yayın No.64, Ankara, 368 s.

  • Nagaraju, A., Karimulla, S., 2002. Accumulation of elements in plants and soil in and around Nellore Mica Belt, Andhra Pradesh, India – a biogeochemical study. Environmental Geology, 41, 852-860.

  • Özbek, H., Kaya, Z., Gök, M., Kaptan, H., 1995. Toprak Bilimi. Çukurova Üniversitesi Ziraat Fakültesi, Genel Yayın No: 73 Ders Kitapları Yayın No:16, Adana.

  • Özdemir, Y., 1992. Türk çaylarında kimyasal bileşimin incelenmesinde spektrofotometrik ve kromatografik yöntemlerin yeri. İnönü Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, 178 s.

  • Özdemir, Z., Zorlu, S., Eryılmaz, F. Y., 2003. Toprakta metal kirliliğinin saptanmasında indikatör (belirleyici) bitkilerin kullanılması. 10. Yıl Sempozyumu, Mersin, 89.

  • Özdemir, Z., Demir, E., 2010. Fındıkpınarı-Erdemli Mersin bölgesinde nikel akümülatörü bir bitki Alyssum murale Waldst & Kit. Jeoloji Mühendisliği Dergisi, 34 (1), 57-70.

  • Özdemir, Z., 2005. Pinus brutia as a biogeochemical medium to detect iron and inc in soil analysis, chromite deposits of the area Mersin, Turkey. Chemie Der Erde-Geochemitry, 65, 79-88.

  • Özdemir, Z., Zorlu, S., Akyıldız, M., Yücesoy Eryılmaz, F., 2014. Determination of indicator plants for boron in the Kırka (Eskişehir-Turkey) boron deposit area. International Journal of Geosciences, 5, 77-84.

  • Page, V., Le Bayon, R. C., Feller, U., 2006. Partitioning of zinc, cadmium, manganese and cobalt in wheat (Triticum aestivum) and lupin (Lupinus albus) and further release into the soil. Environmental and Experimental Botany, 58, 269–278.

  • Rose, A. W., Hawkes, H. E., Webb, J. S., 1979. Geochemistry in mineral Exploration, 2nd ed. Academic Press, New York, 657 p.

  • Schroll, E., (Ed)., 1975. Anallytische Geochemie Enke Verl. Bd. I. Stuttgart, 292 s.

  • Sharma, P., Dubey, R. S., 2005. Lead toxicity in plants. Brazilian Journal of Plant Physiology, 17 (1), 35- 52.

  • Şenol, M., Duman, T. Y., 1998. Adana-Mersin dolayının jeoloji etüdü raporu.

  • TSE 266. Sular – İnsani Tüketim Amaçlı Sular, 2005. Türk Standardları Enstitüsü, Ankara

  • Yılmaz, C., 2004. Bitkisel üretimde besin elementleri. Hasad Yayıncılık Ltd. Şti, 142 s.

  • Yürekli, A. K., Aslanargun, B. A., 2002. Bitkilerde Mineral Beslenme Fizyolojisi. Anadolu Üniversitesi Yayınları Eskişehir, 1432, 119 s.

  • Zorlu, S., Çetin, E., Özdemir, Z., 2004. Gömülü cevhere rehber bitkiler. Mavi Gezegen Dergisi, 9, 37-42.



  • Demir, E , Özdemir, Z , Hatipoğlu Bağcı, Z . (2015). Mezitli Deresi Boyunca Biyojeokimyasal Anomalilerin İncelenmesi, Mersin . Jeoloji Mühendisliği Dergisi , 39 (2) , 117-133 . DOI: 10.24232/jeoloji-muhendisligi-dergisi.295378

  • Demir, E , Özdemir, Z , Hatipoğlu Bağcı, Z . Mezitli Deresi Boyunca Biyojeokimyasal Anomalilerin İncelenmesi, Mersin. Jeoloji Mühendisliği Dergisi 39 (2015 ): 117-133

  • ISSUE FULL FİLE
    View as PDF