Jeoloji Münendisliği Dergisi
Jeoloji Mühendisliği Dergisi

Jeoloji Mühendisliği Dergisi

2018 HAZİRAN Cilt 42 Sayı 1
COVER
View as PDF
COPYRİHT PAGE
View as PDF
CONTENTS
View as PDF
Evaluation of Water Quality Parameters of Söğütlü River (Trabzon) Using Geographical Information System
Arzu Firat Ersoy Duygu Karagüllü
View as PDF

ABSTRACT: The need for drinking, use, energy and water for many purposes is increasing day by day as a source oflife for all living things. Unplanned use of water resources is one of the most important problems today. Due tooveruse, water resources are adversely affected and polluted by environmental factors. The management of waterresources in this framework is important not only in terms of water quantity but also in terms of its quality. Inthis study, hydrochemical properties of water samples taken from 17 different points in Trabzon city Söğütlü Riverand its branches were determined and the basin was classified in terms of different water quality parameters byusing spatial analysis techniques. Dissolved oxygen (DO) values at Söğütlü Stream ranged from 2.76 to 11.24 mg/l;Hardness values (FS) vary between 50.75-218.48 mg/l. pH value in surface water is between 6.63 and 7.5; theelectrical conductivity (EC) value is between 61-258 μS/cm and the total dissolved solids (TDS) is between 58-223 mg/l. Surface water of Söğütlü Stream classified as Fe, Mn and Al is in II., III. and IV category according to“Classifications of Inland Surface Water Resources”. In terms of NO2 and NO3 pollution parameters, also water class is in II., III. and IV. category. Physical, chemical and pollution analyses made on the surface water of SöğütlüRiver show that surface water has been polluted in recent years due to unfavorable environmental conditions.

  • Water quality

  • physical and chemical parameters

  • IDW

  • Söğütlü River

  • Trabzon

  • Celep, S., 2009. Trabzon İli Yeraltı ve Yerüstü Sularının Hidrojeolojik, Hidrokimyasal İncelenmesi ve Su Kalitesinin İncelenmesi. Yüksek Lisans Tezi, KTÜ, Fen Bilimleri Enstitüsü, Trabzon.

  • Gültekin, F., Fırat Ersoy, A., Hatipoğlu, E. ve Celep, S., 2011. Trabzon İli Akarsularının Yağışlı Dönem Su Kalitesi Parametrelerinin Belirlenmesi. Ekoloji, 21, 82 , 77-88.

  • Gültekin, F., Fırat Ersoy, A., Hatipoğlu, E. ve Celep, S., 2013. Quality Assessment of Surface and Groundwater in Solaklı Basin (Trabzon, Turkey). Bulletin of Engineering Geology and the Environment, 72, 2 , 213-224

  • Güven, İ.H., 1993. Doğu Pontidlerin Jeolojisi ve 1/250.000 Ölçekli Kompilasyonu. MTA Yayınları, Ankara, 65 s.

  • Güven, İ., 1998. 1/100000 Ölçekli Açınsama Nitelikli Türkiye Jeoloji Haritaları, Trabzon-C28 ve D28 paftaları. Jeoloji Etütleri Dairesi, MTA Genel Müdürlüğü, Ankara

  • Kara, C. ve Çömlekçioğlu, U., 2004. Karaçay (Kahramanmaraş)’ın Kirliliğinin Biyolojik ve Fiziko-Kimyasal Parametrelerle İncelenmesi. KSÜ Fen ve Mühendislik Dergisi, 7, 1.

  • Ketin, I., 1966. Anadolu’nun Tektonik Birliktelikleri. Maden Tetkik ve Arama Dergisi, 66, 23-34.

  • Korkmaz, S., 1993. Tonya-Düzköy (GB Trabzon) Yöresinin Stratigrafisi, KTÜ Jeoloji Müh. Bölümü 3. Türkiye Jeoloji Bülteni, 36, 151- 158.Okay, A.I., Şahintürk, O., 1997. Geology of the eastern Pontides. Report of Regional and Petroleum Geology of the B

  • Resmi Gazete, 2009. Su Kirliliği Kontrolü Yönetmeliği Numune Alma ve Analiz Metodları, Çevre ve Orman Bakanlığı, Başbakanlık Basımevi. 27372.

  • Resmi Gazete, 2009. Su Kirliliği Kontrolü Yönetmeliği Numune Alma ve Analiz Metodları, Çevre ve Orman Bakanlığı, Başbakanlık Basımevi. 27372.



  • Fırat Ersoy, A , Karagüllü, D . (2018). Söğütlü Deresi (Trabzon) Su Kalitesi Parametrelerinin Coğrafi Bilgi Sistemleri Kullanılarak Değerlendirilmesi . Jeoloji Mühendisliği Dergisi , 42 (1) , 1-16 . DOI: 10.24232/jmd.434133

  • Fırat Ersoy, A , Karagüllü, D . Söğütlü Deresi (Trabzon) Su Kalitesi Parametrelerinin Coğrafi Bilgi Sistemleri Kullanılarak Değerlendirilmesi. Jeoloji Mühendisliği Dergisi 42 (2018 ): 1-16

  • Determination of Structural Discontinuities in Cyprus Island by Using EGM08 Gravity Data
    Mustafa Ali Elmas
    View as PDF

    ABSTRACT: In this study, it was aimed to determine the structural discontinuities of the Cyprus Island by applying totalhorizontal derivative and tilt angle techniques to the vertical first derivative data of satellite gravity data. Whendetermining the structural discontinuities of the zone, the maximum amplitudes of the total horizontal derivativemap and the zero amplitude values of the tilt angle map were utilized. The specified lineaments are comparedwith known discontinuities in the study area. Along with a good harmony between this study and previous studies,new discontinuity boundaries were determined. In addition, the basement topography of the Cyprus Island iscalculated by using the Parker-Oldenburg inversion algorithm. It is believed that the study will contribute to a betterunderstanding of the geological structure of the region.

  • Horizontal Gradient Magnitude

  • Tilt Angle

  • Cyprus Island

  • First Vertical Derivative

  • Structural Discontinuity

  • Altınoğlu, F.F., Sarı, M., Aydın, A., 2015. Detection of Lineaments in Denizli Basin of Western Anatolia Region Using Bouguer Gravity Data. Pure and Applied Geophysics, 172, 415–425.

  • Ambraseys, N. N., Adams, R. D., 1993. Seismicity of the Cyprus region. Terra Nova, 5, 8-94

  • Arısoy, M. Ö., Dikmen, Ü., 2011. Potensoft: MATLAB-based software for potential field data processing, modelling and mapping. Computer & Geosciences, 37, 935–942.

  • Baroz, F., 1979. Étude géologique dans le Pentadaktylos et la Mésaoria (Chypre septentrionale). 2 volumes, Ph. D. thesis, 365 p., University os Nancy, France.

  • Bear, L. M., 1963. The mineral resources and mining industry of Cyprus, Geology Survey Bulletin, 1, 184 p.

  • Bhattacharyya, B.K., 1967. Some general properties of potential fields in space and frequency domain: a review. Geoexploration 5 (3), 127–143.

  • Cooper, G. R. J., Cowan, D. R., 2006. Enhancing potential field data using filters based on the local phase. Computers and Geosciences, 32 (10), 1585-1591.

  • Çuhadar, Ö., Akça, N., Teymur, S., İlleez, H. İ., Alaygut, D., 1997. KKTC Beşparmak Dağları kuzeyindeki Miyosen yaşlı birimlerin stratigrafisi, petrografisi ve jeokimyasal değerlendirmesi. TPAO Rapor No. 3762, 36 s., Ankara.

  • Ercan, Ö. A., Şeren, A., Elmas, A., 2014. Gold and silver prospection using magnetic, radiometry and microgravity methods in the Kışladağ province of Western Turkey. Resource Geology, DOI: 10.1111/rge.12024.

  • Ergon, M., 1986. Kıbrıs jeolojisi ve maden yatakları üzerine bazı jeofizik irdelemeler. Jeoloji Mühendisliği, 28, 35–42.

  • Evjen, H. M., 1936. The place of the vertical gradient in gravitational interpretations. Geophysics, 1, 127–136.

  • Gass, L. G., Masson-Smith, D., 1963. The geology and gravity anomalies of the Troodos Massif, Cyprus. Philosophical Transaction of the Royal Society, London, A255, 417-467.

  • Gaudry, A., 1862. Géologie de l’île de Chypre. Mém. Soc. Géol. France. Sér.2, 7(3), 106 p.

  • Gomez-Ortiz, D., Agarwal, B. N. P., 2005. 3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3-D horizontal density interface by Parker–Oldenburg’s algorithm. Computer Geosciences, 31, 513–520

  • Greenbaum, B., 1972. Magmatic processes at oceanic ridges: Evidence from the Troodos Massif, Cyprus. Natural Philosophical Society, 238, 18- 21.

  • Gunn, P. J., 1975. Linear transformations of gravity and magnetic fields. Geophysical Prospecting, 23 (2), 300-312

  • Hakyemez, H. Y., Turhan, N., Sönmez, İ., 2002. Kuzey Kıbrıs Türk Cumhuriyeti’nin jeolojisi. MTA Rapor No:10608, 69 s., Ankara.

  • Hakyemez, A., 2004. Kuzey Kıbrıs OligosenPliyosen istiflerinin planktonik foraminifera biyostratigrafisi. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Doktora Tezi, 362 s (yayımlanmamış).

  • Kempler, D., Ben Avraham, Z., 1987. The tectonic evolution of the Cyprian Arc. Annual Tectonic, 1, 58-71.

  • Khan, M. A., Summers, C., Bamford, S. A. D., Chorston, N., Poster, K. vc Vine, F. J., 1972. A. reversed refraction line in the Troodos Massif, Cyprus. Nature Physical Science, 238, 134-136.

  • Lyngsie, S. B., Thybo, H., Rasmussen, T. M., 2006. Regional geological and tectonic structures of the North Sea area from potential field modelling. Tectonophysics, 413 (3–4), 147–170.

  • McCallum, J. E., Robertson, A. H. F., 1995a. Sedimentology of two fan-delta systems in the Plio-Pleistocene of the Mesaoria Basin, Cyprus. Sedimentary Geology, 215-244.

  • McCallum, J. E., Robertson, A. H. F., 1995b. Late Pliocene – early Pleistocene Athalassa Formation, north central Cyprus: carbonate sand bodies in a shallow seaway between two emerging landmasses. Terra Nova, 7, 265-277

  • Miller, H. G., Singh, V., 1994. Potential field tilt -a new concept for location of potential field sources. Journal of Applied Geophysics, 32, 213–217.

  • Moores, E. M., Vine, F. J., 1971. The Troodos; Massif, Cyprus and other ophiolites as oceanic crust evaluation and implications. Philosophical Transaction of the Royal Society, 268, 443-468.

  • Nabighian, M. N., 1972. The Analytic Signal of two dimensional magnetic bodies with polygonal cross section: Its properties and use for automated anomaly interpretation. Geophysics, 37, 507–517.

  • Oldenburg, D. W., 1974. The inversion and interpretation of gravity anomalies. Geophysics, 39, 526–536

  • Oruç, B., 2010. Edge detection and depth estimation using a tilt angle map from gravity gradient data of the Kozaklı-Central Anatolia Region, Turkey. Pure and Applied Geophysics, DOI: 10.1007/ s00024-010-0211-0

  • Oruç, B., Keskinsezer, A., 2008. Structural setting of the northeastern Biga Peninsula (Turkey) from tilt derivatives of gravity gradient tensors and magnitude of horizontal gravity components. Pure Applied Geophysics, 165, 1913-1927.

  • Oruç, B. ve Selim, H., 2011. Interpretation of magnetic data in the Sinop area of Mid Black Sea, Turkey, using tilt derivative, Euler deconvolution, and discrete wavelet transform. Journal of Applied Geophysics 74, 194–204.

  • Oruç, B., Sertçelik, İ., Kafadar, Ö., Selim, H. H., 2013. Structural interpretation of the Erzurum Basin, Eastern Turkey, using curvature gravity gradient tensor and gravity inversion of basement relief. Journal of Applied Geophysics, 88,105–113.

  • Parker, R. L., 1973. The rapid calculation of potential anomalies. Geophysical Journal International, 31, 447–455.

  • Pavlis, N. K., Holmes, S. A., Kenyon, S. C., Factor. J. K., 2008. An earth gravitational model to degree 2160: EGM2008. EGU General Assembly 2008, Vienna, Austria, April 13–18, 2008. http:// earth-info.nga.mil/GandG/wgs84/gravitymod/ egm2008. (Erişim

  • Robertson, A. H. F., 1975. Cyprus umbers: basaltsediment, relationships on a Mesozoic ocean ridge. Journal of Geological Society, 131, 511- 531

  • Robertson, A. H. F., 1977. Tertiary uplift history of the Troodos Massif, Cyprus. Geological Society of America Bulletin, 88, 1763-1772.

  • Robertson, A. H. F., Hudson, J. D., 1974. Pelagic sediments in the Cretaceous and Tertiary history of the Troodos Massif, Cyprus. In: Hsü, K. J., Jenkyns, C. H., (eds.), Pelagic sediments on the land and under the Sea. International Association of Se

  • Robertson, A. H. F., Woodcock, N. H., 1979. Tectonic settings of the Troodos Massif in the east Mediterranean. Proceedings of International Ophiolite Symposium, Cyprus, 36-49.

  • Robertson, A. H. F., Woodcock, N. H., 1986. The role of the Kyrenia Range Lineament, Cyprus, in the geological evolution of the eastern Mediterranean area. Philosophical Transaction of the Royal Society, London, A 317, 141-177.

  • Robertson, A. H. F., Xenophontos, C., 1993. Development of concepts concerning the Troodos ophiolite and adjacent unit in Cyprus. In: Prichard, H.M., Alabaster, T., Harris, N. B. W., Neary, C. R., (eds.), Magmatic Processes and Plate Tectonics. Geolo

  • Robertson, A. H. F., Kidd R. B., Ivanov A. F., Woodside J. M., Galindo-Zaldivar J., Nieto L., 1995. Eratosthenes Seamount, easternmost Mediterranean: Evidence of Plio-Quaternary collisional-related processes in the easternmost Mediterranean. Terra No

  • Sönmez, T., 2015. Doğu Marmara bölgesinin litosfer dinamiklerinin EGM08 gravite anomalileri, izostazik ve termomekanik analizlerle araştırılması. Yüksek Lisans Tezi, K.O.Ü., Fen Bilimleri Enstitüsü, Kocaeli.

  • Şengör, A. M. C., Yılmaz, Y., 1981. Tethyan evolution ol Turkey : A plate tectonic approach. Tectonophysics, 75, 181 - 241.

  • Vine, F. J., Moores, E. M., 1989. Paleomagnetic results from the Troodos igneous massif, Cyprus. Transactions American Geophysical Union, 50, 131.

  • Weiler, Y., 1965. The folded Kythrea Flysch in Cyprus. Ph. D. Thesis, The Hebrew University of Jerusalem, 71 p



  • Elmas, A . (2018). Kıbrıs Adası Yapısal Süreksizliklerinin EGM08 Gravite Verileri Kullanılarak Belirlenmesi . Jeoloji Mühendisliği Dergisi , 42 (1) , 17-32 . DOI: 10.24232/jmd.434135

  • Elmas, A . Kıbrıs Adası Yapısal Süreksizliklerinin EGM08 Gravite Verileri Kullanılarak Belirlenmesi. Jeoloji Mühendisliği Dergisi 42 (2018 ): 17-32

  • Effect of Difficult Ground Conditions on Tunnel Excavations in Kabataş-Mecidiyekoy Metro (Istanbul) Tunnel
    Mehmet Özçelik
    View as PDF

    ABSTRACT: In recent years, transportation tunnels have been excavated by mechanical methods. The selection of a suitableexcavator for the geological structure is an important factor in achieving an efficient tunnel excavation. For thispurpose, geological formations along the Kabataş-Mecidiyeköy tunnel alignment have been evaluated in terms ofexcavation mechanics. The Istanbul Metro Project between Kabatas-Mecidiyekoy stations includes two types oftunnel excavations, tunnel boring machines (TBM) and New Austrian Tunneling Method (NATM). The total length ofthe two lines of the tunnel to be opened using TBM is 6180 m. In addition, the total length of the two lines to be openedby NATM method is 4490 m. In this study, soil and rock units along the Kabataş-Mecidiyeköy tunnel alignment wereclassified in terms of engineering geology, and tunneling, and the effects of difficult ground conditions on tunnelexcavation were investigated. In addition, the related information is given for the permeability of the geological unitsand the groundwater level.

  • Istanbul

  • Metro

  • Tunnel excavation

  • Weiler, Y., 1965. The folded Kythrea Flysch in Cyprus. Ph. D. Thesis, The Hebrew University of Jerusalem, 71 p

  • Arıoğlu, B., Yüksel, A., Arıoğlu, E., 2002. İzmir metro projesi Nenehatun tünelindeki geoteknik çalışmalar ve değerlendirilmesi. ECAS2002 Uluslararası Yapı ve Deprem Mühendisliği Sempozyumu, 14 Ekim 2002, Orta Doğu Teknik Üniversitesi, Ankara, Türkiy

  • ARTSON Geoteknik (Artson Araştırma Sondajları Mühendislik Ticaret Limitet Şirketi), 2016a. İstanbul Metrosu Kabataş-Mecidiyeköy arası Jeolojik-Jeoteknik etüd raporu. Cilt 1, İstanbul (yayımlanmamış).

  • ARTSON Geoteknik (Artson Araştırma Sondajları Mühendislik Ticaret Limitet Şirketi), 2016b. İstanbul Metrosu Kabataş-Mecidiyeköy arası Jeolojik-Jeoteknik etüt raporu. Cilt 2, İstanbul (yayımlanmamış).

  • ÖNORM B 2203-1. 2001. Austrian Standards Institute, Underground works, Part 1: Cyclic Driving. Works contract, Issue 2001-12-01

  • Barton, N.R., Lien, R., Lunde, J., 1974. Engineering classification of rock masses for the design of tunnel support. Rock Mechanics and Rock Engineering, 6 (4), 189–236.

  • Bieniawski, ZT., 1993. Classification of rock masses for engineering: The RMR system and future trends. Comprehensive Rock Engineering Pergamon, 3, 553 s.

  • Dalgıç, S., 2004. Factors affecting the greater damage in the Avcılar area of Istanbul during the 17 August 1999 Izmit Earthquake. Bulletin of the International Association for Engineering Geology and the Environment, Bulletin of Engineering Geology

  • Deere, D.U., Peck, R.B., Monsees, J.E., Schmidt, B., 1969. Design of tunnel liners and support systems, Report to UMTA, DOT, available through NTIS.

  • Deere, D.U., Merrift, A.H., Cording, E.J., 1974. Engineering geology and underground construction. 2nd International Congress of Engineering GeoIogy, Sao Paulo, Brasil, 18-24 August, 1974.

  • Güven, G., 2009. İstanbul metrosu Otogar-Kirazlı 1 arasının mühendislik jeolojisi ve tünel kazılarına bağlı oluşan deformasyonların değerlendirilmesi, Yüksek Lisans Tezi, İTÜ Fen Bilimleri Enstitüsü, Jeoloji Mühendisliği Programı, İstanbul (yayımlanm

  • Hoek, E., Brown, E.T., 1980. Underground excavations in rock. Institutions of Mining and Metallurgy. London, 382 s

  • Hoek, E., 2000. Kaya Mühendisliği. TMMOB Maden Mühendisleri Odası Yayını, Ankara, 319 s.

  • Ketin, İ., 1991. İstanbul ve dolayının jeoloji haritası. İSKİ, İstanbul (yayınlanmamış).

  • Seymen, İ., 1995. İzmit Körfezi ve çevresinin jeolojisi, İzmit Körfezi Kuvarterner istifi. (ed. Meriç, E.), Kocaeli Valiliği Çevre Koruma Vakfı, Kocaeli.

  • Terzaghi, K., 1950. Geologic aspects of soft ground tunneling. Chapter 11 in Applied Sedimentation, R. Task and D. Parker, eds. New York, John Wiley & Sons

  • Tunçdemir, H., 1998. Arazi basıncının dengelenmesi esasına göre çalışan tam cephe tünel açma makinelerinin kazı performansını etkileyen zemin özellikleri ve İzmir Metrosu örneği. 4.Ulusal Kaya Mekaniği Sempozyumu, 22-23 Ekim, Zonguldak.

  • Ulusay, R., Sönmez, H., 2000. Hoek-Brown yenilme ölçütüne ilişkin değişiklik önerileri ve bunların uygulanabilirliği. Jeoloji Mühendisliği Dergisi, 23/24 (1), 1-21.



  • Özçelik, M . Kabataş-Mecidiyeköy Metro (İstanbul) Tünellerinde Zor Zemin Koşullarının Tünel Kazısına Etkisi. Jeoloji Mühendisliği Dergisi 42 (2018 ): 33-48

  • Özçelik, M . Kabataş-Mecidiyeköy Metro (İstanbul) Tünellerinde Zor Zemin Koşullarının Tünel Kazısına Etkisi. Jeoloji Mühendisliği Dergisi 42 (2018 ): 33-48

  • Evaluation of Problems Encountered During the Construction of the Çamlıca Hill Access Tunnels
    Feyat Taz Ömer Ündül Hasan Denek
    View as PDF

    ABSTRACT: In Istanbul, where population is rapidly increasing, underground engineering structures such as subways and tunnels are being constructed to minimize disruptions in transportation. Çamlıca Hill Access Tunnels are constructed to access road transportation to Çamlıca Mosque. Tunnels are excavated in the Kurtköy, Aydos and Gözdağ formations in Istanbul Paleozoic sequence and in the Cretaceous dykes that intrude in to these units. Within the scope of this study, excavation and support works and geo-engineering problems of T2 Tunnel (km:0+795 - 1+066) and Approach Tunnel (km:0+275 - 0+308) belonging to Çamlıca Hill Access Tunnels are studied to be evaluated together with numerical analyses. During tunneling works, additional improvement works have been done especially due to inadequate excavation and support systems. However, it has been determined that proper stability conditions can not be achieved in the tunnels. In addition, generally overbreak, deformations and water inflow are other geo-engineering problems. In the evaluation of these problems affecting the rate of advance and cost, the geological characteristics of the region, the rock properties of the units encountered during the tunnel excavation, rock mass characteristics, excavation and support applications, and current tunnel observations are discussed together. The rock material and rock mass parameters obtained in the study were evaluated in two dimensional numerical analysis based on Hoek-Brown failure criterion and finite element method (Rocscience © Phase 2D software). Longitudinal geological models that were prepared for the examined sections of the tunnel, elastic-plastic zone boundaries and thickness were determined, geological boundary conditions that caused abovementioned problems have been tried to describe. Together with the evaluation of the laboratory data, observations in tunnels and numerical analyses, rock environment that moderate-frequently jointed clayey sandstone and arkosic sandstone with highly and completely weathered (V-VI) levels and especially weak zones (shear, faults etc.) were determined the highest overbreak potential area. In addition it has been revealed overbreak potential is low at rock environment that is slight-moderately fractured, slight-moderately (II-III) weathered arkosic sandstones and quarz arenite without any structural component (fault, shear zone etc.).

  • Çamlıca Hill Access Tunnels

  • Istanbul Paleozoic sequence

  • geo-engineering properties

  • numerical analyses

  • Abdüsselamoğlu, Ş., 1963. İstanbul Boğazı doğusunda mostra veren paleozoyik arazide stratigrafik ve paleontolojik yeni müşahedeler. İstanbul Teknik Üniversitesi, Maden Fakültesi, İstanbul.

  • Albayrak, Z., 1994. Göçüklerin enjeksiyonla onarımı demiryolu tünellerindeki problemlerin enjeksiyonla onarımı. Ulaşımda Yeraltı Kazıları I. Sempozyumu, 211-228.

  • Aydan, Ö., Dalgıç, S., 1998. Prediction of deformation behaviour of 3 lanes Bolu tunnels through squeezing rocks of North Anotolian Fault Zone (NAFZ). Reg. Symp. on Sedimentary Rock Engineering, Taipei, 228–233.

  • Aydan, Ö., Ulusay, R., Kawamoto, T., 1997. Assessment of rock mass strength for underground excavations. Proceedings of the 36th US Rock Mechanics Symposium, 777–786.

  • Aydan, Ö., 2000. Fay çiziklerinden yerkabuğuna etkiyen gerilmelerin saptanması için yeni bir yöntem ve uygulaması. Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırma Merkezi Bülteni, 22, 223-236.

  • Aysal N., Keskin M., Peytcheva I., Duru O., Akgündüz S., 2015. Geochronology, Geochemistry and Isotope Systematics of a mafic-intermediate dyke complex in the İstanbul zone, Northern Turkey. Goldschmidt 2015. Prag, Çek Cumhuriyeti., 16- 21, 155-155.

  • Altınlı, E., 1954. Çamlıcalar şariyajlı mıdır?. Fen Fakültesi Mecmuası Seri B, 19 (3), 213-222.

  • Barton, N., 1995. The influence of joint properties in modelling jointed rock masses. Keynote Lecture, 8th ISRM Congress. Vol 3. Balkema, Rotterdam, Tokyo, 1023–1032.

  • Baykal, F., Kaya, O., 1965. İstanbul Silüriyeni hakkında. Maden Tetkik ve Arama Enstitüsü Türkiye Bülteni, 64, 1-8.

  • Bieniawski, Z.T., 1973. Engineering classification of jointed rock masses. Trans. S. Afr. Inst. Civ. Eng. 15 (12), 335–344.

  • Bilgin, N., Çopur, H., Balci, C., Tumac, D. 2008. “The selection of a TBM using full scale laboratory tests and comparison of measured and predicted performance values in Istanbul Kozyatagi- Kadikoy metro tunnels”. World Tunnel Congress 2008 Proceedi

  • Bilgin, N., 2016. An appraisal of TBM performances in Turkey in difficult ground conditions and some recommendations. Tunnelling and Underground Space Technology, 57, 265-276.

  • Dalgıç, S., 2000. The influence of weak rocks on excavation and support of the Beykoz Tunnel. Turkey. Engineering Geology 58, 137-148.

  • Dalgıç, S., 2002. A comparison of predicted and actual tunnel behavior in the Istanbul Metro, Turkey. Engineering Geology, 63, 69-82.

  • Dalgıç, S., 2003. Tunneling in fault zones, Tuzla tunnel, Turkey. Tunnelling and Underground Space Technology, 18, 453-465.

  • Eriş, İ., Vardar, M., 1994. İstanbul metrosu Taksim-4. Levent güzergâhı temel kayaçlarının jeomekanik özellikleri ve duraylılık sorunu. Ulaşımda Yeraltı Kazıları I. Sempozyumu, 1-3 Aralık 1994, İstanbul: TMMOB Maden Mühendisleri Odası, 163-178.

  • Geniş, M., Başarır, H., Özarslan, A., Bilir, E., Balaban, E., 2007. Engineering geological appraisal of the rock masses and preliminary support design, Dorukhan Tunnel, Zonguldak, Turkey, Engineering Geology, 92, 14-26.

  • Gürocak, Z., 2011. Analyses of stability and support design for a diversion tunnel at The Kapikaya Dam Site, Turkey. Bulletin of Engineering Geology and the Environment, 70, 41-52.

  • Hoek, E., 1983. Strength of jointed rock masses, 23rd Rankine Lecture. Géotechnique, 33(3), 187-223.

  • Hoek, E., 2012. Blast damage factor D, Technical Note for RocNews

  • Hoek, E., Brown, E.T., 1980. Underground Excavations in Rock. Inst. Min. Metall., London, 527.

  • Hoek, E., Carranza-Torres, C., Corkum, B., 2002. Hoek-Brown failure criterion-2002 Edition.

  • Hoek, E., Marinos, P., Benissi, M., 1998. Applicability of the Geological Strength Index (GSI) classification for very weak and sheared rock masses. The case of the Athens Schist Formation. Bulletin of Engineering Geology and the Environment, 57(2),

  • Hoek, E., Diederichs, M.S., 2006. Empirical estimation of rock mass modulus. International Journal of Rock Mechanics & Mining Sciences, 43, 203-215.

  • International Society for Rock Mechanics (ISRM), 1981, In: Brown, E.T. (Ed.), Rock characterization testing and monitoring-ISRM suggested methods, New York, Pergamon

  • International Society for Rock Mechanics (ISRM), 2007. The Complete ISRM suggested methods for rock characterization, Testing and Monitoring Kozan, Ankara.

  • Kalamaris, G.S., Bieniawski, Z.T., 1995. A rock mass strength concept for coal incorporating the effect of time. Proc. of 8th Int. Cong. Rock Mechanics. ISRM, 1. Balkema, Rotterdam, 295–302.

  • Kaya, O., 1978. İstanbul ordovisyeni ve silüriyeni. Hacettepe Üniversitesi Yerbilimleri Enstitüsü, 4, 1-22.

  • Ketin, İ., 1958. Çamlıca bölgesinin tektoniği hakkında. Türkiye Jeoloji Kurumu Bülteni, 7, 10-18.

  • Lom, N., Ülgen, S.C., Sakinç, M., Şengör, A.M.C., 2016. Geology and stratigraphy of Istanbul region. Geodiversitas, 38 (2), 175-195.

  • Mahmutoğlu, Y., 2011. Surface subsidence induced by twin subway tunnelling in soft ground conditions in İstanbul. Bulletin of Engineering Geology and the Environment, 70, 115-131.

  • Marinos, P., Hoek, E., 2000. GSI: a geologically friendly tool for rock mass strength estimation. In: Proceedings of the GeoEng2000 at the International Conference on Geotechnical and Geological Engineering, Melbourne, Technomic Publishers, Lancaster

  • McCallien, W.J., Ketin, İ., 1947. The structure of Çamlıca, Western Asia Minor, near Istanbul. Annales de I’Université d’Ankara, 1, 209-226.

  • Melemoğlu İnşaat, 2016. Çamlıca Tepesi Ulaşım Tünelleri Jeolojik ve Jeoteknik Raporu, 134 s.

  • Önalan, M., 1981. İstanbul Ordovisiyen ve Silüriyen istifinin çökelme ortamları. Yerbilimleri Dergisi, İstanbul Üniversitesi Mühendislik Fakültesi, 161-177.

  • Önalan, M., 1982. Pendik bölgesi ile adaların jeolojisi ve sedimenter özellikleri. İstanbul Üniversitesi Yerbilimleri Fakültesi, Doçentlik Tezi, 156s

  • ÖNORM B 2203, 1994. Untertagebauarbeiten Werkvertragsnorm, Avusturya.

  • Özgül, N., 2011. Stratigraphy and some structural features of the İstanbul palaeozoic, Turkish Journal of Earth Sciences, 21, 817-866.

  • Özsan, A., Başarır, H., Yücel, S., Cücen, Ö., 2009. Engineering geological evaluation and preliminary support design for the metro extension tunnel, Ankara. Bulletin of Engineering Geology and the Environment, 68, 397-408.

  • Palmström, A., Singh, R., 2001. The deformation modulus of rock masses-comparisons between in situ tests and indirect estimates. Tunnelling and Underground Space Technology 16, 115–131.

  • Ramamurthy, T., 1986. Stability of rock mass. 8th Annual Lecture. Indian Geotechnical Journal, 1–74.

  • Rocscience, 2011. Phase 2D Version 8.005, User’s Guide. Rcoscience Inc., Toronto, Canada.

  • Rocscience, 2013. Dips v.6.008, User’s Guide. Rcoscience Inc., Toronto, Canada.

  • Sheorey, P.R., 1997. Empirical rock failure criteria. Balkema, Rotterdam, 176.

  • Sönmez, H., Gökçeoğlu, C., Nefeslioğlu, H.A., Kayabaşı, A., 2006. Estimation of rock modulus: for intact rocks with an artificial neural network and for rock masses with a new empirical equation. International Journal of Rock Mechanics and Mining Sci

  • Taz, F., 2016. Çamlıca Tepesi Ulaşım Tünellerinin yapım aşamalarında karşılaşılan sorunların jeomühendislik açıdan değerlendirilmesi. İstanbul Üniversitesi Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi.

  • Tuncay, E., Ulusay, R., Watanabe, H., Tano, H., Aydan, Ö., Yüzer, E., 2002. Akustik emisyon (AE) tekniği: 2-AE tekniğiyle Türkiye’de arazi gerilmelerinin belirlenmesi konusunda bir ön inceleme. Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırm

  • Tüysüz, O., Aksay, A., ve Yiğitbaş, E., 2004. Batı Karadeniz bölgesi litostratigrafi birimleri. Maden Tetkik ve Arama Genel Müdürlüğü.

  • Varol, A., Dalgıç, S., 2006. Grouting applications in the Istanbul Metro, Turkey. Tunnelling and Underground Space Technology, 21, 602-612.

  • Volkmann, G., Schubert, W., 2005. The use of horizontal inclinometers for the optimization of the rock mass - support interaction, Underground Space Use: Analysis of the Past and Lessons for the F ture, Proceedings of the 31st ITA-AITES World Tunnel

  • Yılmaz, Ö., Çınar, M., Özdemir, T., Varol, A., 1994. İstanbul metrosu tünel kazı çalışmalarında yaşanan problemler ve çözümleri. Ulaşımda Yeraltı Kazıları I. Sempozyumu, 93-112.



  • Taz, F , Ündül, Ö , Denek, H . (2018). Çamlıca Tepesi Ulaşım Tünellerinin Yapım Aşamalarında Karşılaşılan Sorunların Değerlendirilmesi . Jeoloji Mühendisliği Dergisi , 42 (1) , 49-76 . DOI: 10.24232/jmd.434139

  • Taz, F , Ündül, Ö , Denek, H . Çamlıca Tepesi Ulaşım Tünellerinin Yapım Aşamalarında Karşılaşılan Sorunların Değerlendirilmesi. Jeoloji Mühendisliği Dergisi 42 (2018 ): 49-76

  • Surface Subsidence Problem Due to Groundwater Withdrawal; A Historical Review
    Nurkan Karahanoğlu
    View as PDF

    ABSTRACT: Scientific investigations for surface subsidence caused by groundwater date go back to 1890’s. Technologicaland industrial developments have rapidly increased the demand for groundwater and this resulted heavily use ofgroundwater resources. This phenomenon, observed in industrial areas and causing damage to infrastructures,has been related to heavy production of water-oil-and gas. In the following years, research studies have beenfocused on mathematical formulation of the interrelated mechanism of fluid withdrawal and subsidence. In theformulation, mechanical and physical behaviour of the flow and subsidence mechanisms are used together toanalyze their interrelationships. Research studies have been accelerated by Terzaghi’s consolidation model andBiot’s mathematical formulation of the phenomenon. In the following years, solution of the equations were tried byanalytical methods, however, they were not applicable to complex problems. Use of the numerical methods (Finite Elements and Finite Differences) and high capacity computers have been applied to solve the problems and this hasspeeded up the research studies.This paper summarizes the research studies related to subsidence due to fluid withdrawal and the scientificdevelopment has been reviewed. The mechanisms of subsidence and fluid flow have been explained and caseexamples are given from countries which seriously suffer from surface subsidence.

  • Surface subsidence

  • deformation and fluid flow interrelation

  • poroelasticity

  • Aboustit, B. L., Advani, S.H., Lee, J.K., 1985. Variational principles and finite element simulations for thermo-elastic consolidation. International Journal for Numerical and Analytical Methods in Geomechanics, 9, 45-69.

  • Bear, J., Çorapçıoğlu, M.Y., 1981a. Mathematicalmodel for regional land subsidence due to pumping. 1. Integrated aquifer subsidence equations based on vertical displacement only. Water Resources Research, 17(4), 937-946.

  • Bear, J., Çorapçıoğlu, M.Y., 1981b. Mathematicalmodel for regional land subsidence due to pumping. 2. Integrated aquifer subsidence equations for vertical and horizontal displacements. Water Resources Research, 17, 4, 947-958.

  • Bear, J., Çorapçıoğlu, M.Y., 1981c. A mathematicalmodel for consolidation in a thermoelastic aquifer due to hot water injection or pumping. Water Resources Research, 17, 3, 723-736.

  • Biot, M.A., 1941. General theory of 3 D consolidation. Journal of Applied Physics, 12, 155-164.

  • Biot, M.A., 1955. Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 26, 2, 182-185.

  • Burbey, T.J., Helm, D.C., 1999. Modeling threedimensional deformation in response to pumping of unconsolidated aquifers. Environmental & Engineering Geoscience, 5, 2, 199-212.

  • Calderhead, AI., Martel, R., Garfias, J., Rivera, A., Therrien, R., 2012. Sustainable management for minimizing land subsidence of an over-pumped volcanic aquifer system: tools for policy design. Water Resources Management, 26, 7, 1847- 1864.

  • Castelletto, N., Ferronato, M., Gambolati, G., Putti, M., Teatini, P., 2008. Can Venice be raised by pumping water underground? A pilot project to help decide. Water Resources Research, 44 (1), WO 1408.

  • Chang, C.D., Mallman, E., Zoback, M. 2014. Timedependent subsidence associated with drainageinduced compaction in Gulf of Mexico shales bounding a severely depleted gas reservoir. AAPG Bulletin, 98, 6, 1145-1159.

  • Cheo, K. Lee, Sophie N. Fallou, Chiang C. Mei, 1992. Subsidence due to pumping from a soil stratum with a soft aquitard. Philosophical Transactions of The Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 339, 1653, 193

  • Çelik, M., Afşin, M., 1998. The role of hydrogeology in solution-subsidence development and its environmental impacts; a case-study for Sazlıca (Niğde, Turkey). Environmental Geology, 36 (3–4), 335-342.

  • Çorapçıoğlu, M. Y., 1984. Land subsidence-a stateof- the-art review. In: Bear J., Corapcioglu M.Y. (eds.) Fundamentals of Transport Phenomena in Porous Media. NATO ASI Series (Series E: Applied Sciences), Vol 82. Springer, Dordrecht

  • Çorapcioglu, M.Y., Brutsaert, W., 1977. Viscoelastic aquifer model applied to subsidence due to pumping. Water Resources Research, 13(3), 597-604.

  • Domenico, P.A., Mifflin, M.D., 1965. Water from low permeability sediments and land subsidence. Water Resources Research, 1(4), 563-576.

  • Ezquerro, P., Herrera, G.,Marchamalo, M., Tomas, R., Bejar-Pizarro, M., Martinez, R., 2014. A quasielastic aquifer deformational behavior: Madrid aquifer case study. Journal of Hydrology, 519, 1192-1204.

  • Faunt, C.C., Sneed, M., Traum, J., Brandt, J.T., 2016. Water availability and land subsidence in the Central Valley, California, USA. Hydrogeology Journal, 24(3), 675-684.

  • Fuller, M.L., 1908. Summary of the controlling factors of artesian flows. U.S. Geol. Surv. Bull., 319, 44 pp.

  • Galloway, D.L., Burbey, T.J., 2011. Review: regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8), 1459- 1486.

  • Galloway, D.L, Sneed, M., 2013. Analysis and simulation of subsidence accompanying groundwater abstraction and compaction of susceptible aquifer systems in the USA. Boletin De La Sociedad Geologica Mexicana, 65, 123- 136.

  • Gambolati, G., Ferronato, M., Teatini, P., Deidda, R., Lecca, G., 2001. Finite element analysis of land subsidence above depleted reservoirs with pore pressure gradient and total stress formulations. International Journal for Numerical and Analytical

  • Gambolati, G., Freeze, R.A., 1973. Mathematical simulation of the subsidence of Venice-1, Theory. Water Resources Research, 9(3), 721- 733.

  • Gambolati, G., Gatto, P., Freeze, R.A., 1974. Mathematical simulation of the subsidence of Venice-2, Water Resources Research, 10(3), 563-577.

  • Gambolati, G., Ricceri, G., Bertoni, W., Brighenti, G., Vuillermin, E., 1991. Mathematical simulation of the subsidence of Ravenna. Water Resources Research, 27(11), 2899-2918.

  • Gambolati, G., Teatini, P., 2015. Geomechanics of subsurface water withdrawal and injection. Water Resources Research, 51(6), 3922-3955.

  • Gambolati, G.,Teatini, P., Bau, D., Ferronato, M., 2000. Importance of poroelastic coupling in dynamically active aquifers of the Po river basin, Italy. Water Resources Research, 36(9), 2443- 2459., G.,Teatini, P., Bau, D., Ferronato, M., 2000. Impor

  • Hu, R.L., Yueb, Z.Q., Wang, L.C., Wang, S.J., 2004. Review on current status and challenging issues of land subsidence in China. Engineering Geology, 76, 65-77.

  • Ingerson, I. M.,1941. The hydrology of the of the Southern San Joaquin Valley, California, and its relation to important water supplies. Eos, Transactions, American Geophysical Union, 22 (1), 20-45.

  • Jacob, C.E., 1940. The flow of water in an elastic artesian aquifer. Eos, Transactions, American Geophysical Union, 21, 574-586.

  • Jafari, F., Javadi, S., Golmohammadi, G., Karimi, N., Mohammadi, K., 2016. Numerical simulation of groundwaterflow and aquifer-system compaction using simulation and InSAR technique: Saveh basin, Iran. Environmental Earth Sciences, 75(9), Article Num

  • Kang, D.H., Li, J., 2015. 3-D land subsidence simulation using the NDIS package for MODFLOW. Proc. IAHS, 372, 437–442.

  • Karahanoğlu, N., Doyuran, V., Akkaş, N., 1984. Finite element simulation of hot-water type geothermal reservoirs. Journal of Volcanology and Geothermal Research, 23, 357-382.

  • Kihm, J. H., Kim, J. M., Song, S.H., Lee, G. S., 2007. Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation due to groundwater pumping in an unsaturated fluvial aquifer system. Journal of Hydrology, 335(1-2),

  • Kim, J.M., 2004. Fully coupled poroelastic governing equations for groundwater flow and solid skeleton deformation in variably saturated true anisotropic porous geologic media. Geosciences Journal, 8(3), 291-300

  • Kim, J.M., 2005. Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation in unsaturated true anisotropic aquifers due to groundwater pumping. Water Resources Research, 141, 1, Article Number: W01003.

  • Kim, J.M., Parizek, R.R., 1999. Three-dimensional finite element modelling for consolidation due to groundwater withdrawal in a desaturating anisotropic aquifer system. International Journal for Numerical and Analytical Methods in Geomechanics, 23, 6

  • Kontogianni, V., Pytharouli, S., Stiros, S., 2007. Ground subsidence, Quaternary faults and vulnerability of utilities and transportation networks in Thessaly, Greece. Environmental Geology, 52(6), 1085-1095.

  • Kumarcı K., Ziaie, A., Kyioumarsi, A., 2008. Land subsidence modeling due to ground water drainage using “WTAQ” software. Proceedings of 10th WSEAS International Conference on Automatic Control, Modelling and Simulation, Istanbul, Turkey, May 27-30,

  • Lei, H., Xu, T., Jin, G., 2015. TOUGH2 Biot-A simulator for coupled thermal-hydrodynamicmechanical processes in subsurface flow systems: Application to CO2 geological storage and geothermal development. Computers & Geosciences, 77, 8-19.

  • Lewis, R.W., Roberts, P.J., Schrefler, B.A., 1989. Finite element modelling of two phase heat and fluid flow through deforming porous media. Transport in Porous Media, 4, 319-334.

  • Lewis, R.W., Karahanoğlu, N.,1981. Simulation of subsidence in geothermal reservoirs. Numerical Methods in Thermal Problems, 2, 326-335.

  • Lewis, R.W., Schreffler, B.A., 1978. A fully coupled consolidation model of the city of Venice. Water Resources Research, 14(2), 223-230.

  • Li, J., 2002. Modeling and sensitivity analysis of aquifer parameters for subsidence due to pumping-injecting water. Proc 9th International Conference on Hydraulic Information Management MONTREAL, CANADA Hydraulic Information Management, Edited By Bl

  • Li, J., 2003. A nonlinear elastic solution for 1-D subsidence due to aquifer storage and recovery applications. Hydrogeology Journal, 11(6), 646- 658

  • Li, J., Helm, D.C., 1997. Numerical formulation of dynamic behavior within saturated soil characterized by elasto-viscous behavior with an application to Las Vegas Valley. Computer Methods And Advances in Geomechanics, 2, 911-916.

  • Li, P., Wang, K., Li, X.G., Lu, D.T., 2014. Analytical solutions of a finite two-dimensional fluidsaturated poroelastic medium with compressible constituents. International Journal for Numerical and Analytical Methods in Geomechanics, 38(11), 1183-11

  • Lin, PL., Hsu, KC., Lin, CW., Hwung, HH., 2015. Modeling compaction of multi-layer-aquifer system due to groundwater withdrawal. Engineering Geology, 187, 143-155.

  • Lin Z. , Huili G. , Xiaojuan L., Rong W., Beibei C., Zhenxue D., Teatini, P.,2015. Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Engineering Geology, 193, 243-255.

  • Liu, C.H., Pan, Y.W., Liao, J.J., Huang, C.T., Ouyang, S., 2004. Characterization of land subsidence in the Choshui River alluvial fan, Taiwan. Environmental Geology, 45(8), 1154-1166.

  • Loupasakis, C., Rozos, D., 2009. Finite-element simulation of land subsidence induced by water pumping in Kalochori village, Greece. Quarterly Journal of Engineering Geology and Hydrogeology, 42, 369-382

  • Meinzer, O.E., 1928. Compresibility and elasticity of artesian aquifers. Economic Geology, 23, 263- 291.

  • Mitchell, J.K., 1962. Components of pore water pressure and their engineering significance. Clays and Minerals, Pergamon, N.Y., 162-184.

  • Nguyen, T.Q., Helm, D.C., 1998. Land subsidence due to ground-water withdrawal in Hanoi, Vietnam. Land Subsidence Case Studies and Current Research: Proceedings of the Dr. Joseph F. Poland Symposium on Land Subsidence, Association of Engineering Geol

  • Ortega-Guerrero, A., Cherry, J.A., Rudolph, D.L.,1993. Large-scale aquitard consolidation near Mexico-City, Ground Water, 31(5), 708- 718.

  • Ortega-Guerrero, A, Rudolph, D.L., Cherry, J.A., 1999. Analysis of long-term land subsidence near Mexico City: Field investigations and predictive modeling. Water Resources Research, 35(11), 3327-3341.

  • Ortiz-Zamora, D., Ortega-Guerrero, A., 2010. Evolution of long-term land subsidence near Mexico City: Review, field investigations, and predictive simulations. Water Resources Research, 46, Article Number: W01513.

  • Pacheco-Martinez, J., Hernandez-Marin, M., Burbey, TJ., Gonzalez-Cervantes, N., Ortiz-Lozano, JA., Zermeno-De-Leon, M.E., Solis-Pinto, A., 2013. Land subsidence and ground failure associated to groundwater exploitation in the Aguascalientes Valley, M

  • Paleologos, E.K., Mertikas, S.P., 2013. Evidence and implications of extensive groundwater overdraftinduced land subsidence in Greece. European Water, 43, 3-11.

  • Pei, S.P., Chen, C.G.,Jiao, J.J., 2000. Geological hazards related to groundwater exploitation - Land subsidence in Suzhou City, China. Proceedings of the International Symposium on Hydrogeology and the Environment, 546-552.

  • Poland, J.F., 1958. Land subsidence due to groundwater development. Journal of Irrigation and Drainage Division, American Society of Civil Engineering. 84(IR3), 11pp.

  • Poland J.F., 1960. Land subsidence in the San Joaquin Valley, California, and its effect on estimates of ground water resources. Comm. Sub Terranean Waters Publ. 52, 324-335.

  • Poland J.F., 1961. The coefficient of storage in a region of major subsidence caused by compaction of an aquifer system. US Geological Survey Professional paper 424-B, B52-B54.

  • Poland, J.F., 1984. Guidebook to studies of land subsidence due to groundwater withdrawal. USGS Report, Studies and Reports in hydrology 40, UNESCO, Paris, 305 p.

  • Poland J.F., Davis, G.H., 1956. Subsidence of the land surface in Tulare-Wasco (Delano) and Los Banos-Kenttleman City areas, San Joaquin Valley, California. Eos, Transactions, American Geophysical Union, 37(3), 287-296.

  • Poland, J.F., Garret, A.A., Sinnott, A., 1959. Geology, hydrology and chemical character of ground waters in the Torrance-Santa Monica area, California. US Geological Survey, Water Supply Paper, 1461, 142-146.

  • Poland J.F., Davis G.H., 1969. Land subsidence due to withdrawal of fluids, Reviews in Engineering Geology, Vol 2, edited by D.J. Varnes ve G. Kirsch, Geological Society America, Boulder Col. 187-269.

  • Pratt, W. E., 1927. Some questions on the cause of the subsidence of the surface in the Goose Creek field, Texas. American Association of Petroleum Geologists Bulletin, 11(8), 887–889.

  • Psimoulis, P., Ghilardi, M., Fouache, S., Stiros, S., 2007. Subsidence and evolution of the Thessaloniki plain, Greece, based on historical leveling and GPS data. Engineering Geology, 90, 1-2, 55-70.

  • Riley, F.S., 1998. Mechanics of aquifer systems - The scientific legacy of Joseph F. Poland, Land Subsidence Case Studies and Current Research: Proceedings of the Dr. Joseph F. Poland Symposium On Land Subsidence. Edited by Borchers, J.W., Associatio

  • Schmid, W., Hanson, R.T., Leake, S.A., Hughes, J.D., Niswonger, RG., 2014. Feedback of land subsidence on the movement and conjunctive use of water resources. Environmental Modelling & Software, 62, 253-270.

  • Settari, A., Walters, D.A., Stright, D.H. Jr., Aziz, K., 2008. Numerical techniques used for predicting subsidence due to gas extraction in the North Adriatic Sea. Petroleum Science and Technology, 26, 10-11, 1205-1223.

  • Shearer, T.R., 1998. A numerical model to calculate land subsidence, applied at Hangu in China. Engineering Geology, 49(2), 85-93.

  • Shen, S.L., Xu, Y.S., 2011. Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Canadian Geotechnical Journal, 48(9), 1378-1392.

  • Shen, S.L., Xu, Y.S., Hong, Z.S., 2006. Estimation of land subsidence based on groundwater flow model. Marine Georesources & Geotechnology, 24(2), 149-167.

  • Shi, X.Q., Xue, Y.Q., Ye, S.J., Wu, J.C., Zhang, Y., Yu, J., 2007. Characterization of land subsidence induced by groundwater withdrawals in Su-Xi- Chang area, China. Environmental Geology, 52(1), 27-40.

  • Sideri, D., Modis, K., 2014. Spatiotemporal estimation of land subsidence and ground water level decline in West Thessaly basin, Greece. Natural Hazards, Natural Hazards, 76(2), 939-954.

  • Stiros, S.C., 2001. Subsidence of the Thessaloniki (northern Greece) coastal plain, 1960–1999. Engineering Geology, 61(4), 243-256.

  • Taylor, D.W., 1948. Fundamentals of soil mechanics. John Wiley NY, 700 p.

  • Teatini, P., Ferronato, M., Gambolati, G., Bertoni, W., Gonella, M., 2005. A century of land subsidence in Ravenna, Italy, Environmental Geology. 47(6), 831-846.

  • Teatini, P., Ferronato, M., Gambolati, G.,Gonella, M., 2006. Groundwater pumping and land subsidence in the Emilia-Romagna coastland, Italy: Modeling the past occurrence and the future trend. Water Resources Research, 42(1), Article Number: W01406.

  • Terzaghi, K., Peck, R.B., 1948. Soil mechanics in Engineering Practice. John Wiley NY, 566 p.

  • Tsai, T.L., 2015. A coupled one-dimensional viscoelastic-plastic model for aquitard consolidation caused by hydraulic head variationsin aquifers. Hyrological Processes, 29, 4779-4793.

  • Üstün, A., Tuşat, E., Yalvaç, S., Özkan, I., Eren, Y., Özdemir, A., Bildirici, I.O., Üstüntaş, T., Kırtıloğlu, O.S., Mesutoğlu, M., Doğanalp, S., Canaslan, F., Abbak, R.A., Avşar, N.B., Şimşek, F.F., 2015. Land subsidence in Konya Closed Basin and it

  • Wang, J., Wu, Y., Liu, X., Yang, T., Wang, H., Zhu, Y., 2016. Areal subsidence under pumping well–curtain interaction in subway foundation pit dewatering: conceptual model and numerical simulations. Environmental Earth Sciences, 75, 198.

  • Wang, S.J., Lee, C.H., Hsu, K.C., 2015. A technique for quantifying groundwater pumping and land subsidence using a nonlinear stochastic poroelastic model. Environmental Earth Sciences, 73(12), 8111-8124.

  • Wu, J.C., Shi, X.Q., Ye, S.J., Xue, Y.Q., Zhang, Y., Yu, J., 2009. Numerical simulation of land subsidence induced by groundwater overexploitation in Su- Xi-Chang area, China. Environmental Geology, 57, 1409-1421.

  • Xu, Y.S., Shen, S.L., Cai, Z.Y., Zhou, G.Y., 2008. The state of land subsidence and prediction approaches due to groundwater withdrawal in China. Natural Hazards, 45,123-135

  • Xu, Y.S., Ma, L., Shen, S. L., Sun, W.J., 2012. Evaluation of land subsidence by considering underground structures that penetrate the aquifers of Shanghai, China. Hydrogeology Journal, 20(8), 1623-1634.

  • Yang, Y., Song, X.F., Zheng, F.D., Liu, L.C., Qiao, X.J., 2015. Simulation of fully coupled finite element analysis of nonlinear hydraulic properties in land subsidence due to groundwater pumping. Environmental Earth Sciences, 73, 4191-4199.

  • Ye, S.L., Luo, Y.,Wu, J.C., Yan, X.X., Wang, H.M., Jiao, X., Teatini, P., 2016a. Three dimensional numerical modeling of land subsidence in Shanghai China. Hydrogeology Journal, 24(3), 695-709.

  • Ye, S., Xue, Y., Wu, J., Yan, X., Yu, J., 2016b. Progression and mitigation of land subsidence in China. Hydrogeology Journal, 24(3), 685-693.

  • Ye, S., Xue, Y., Wu, J., Zhang, Y., Wei, Z., Li, Q., 2011. Regional land subsidence model embodying complex deformation. Proceedings of the Institution of Civil Engineers-Water Management, 164(10), 519-531.

  • Yeh, H.D., Lu, R.H., G.T. Yeh, 1996. Finite Element modeling for land displacement due to pumping. International Journal for Numerical and Analytial Methods in Geomechanics, 20, 79-99.

  • Yokoo, Y., Yamagata, K., Nagaoka, H., 1971a. Finite element method applied to Biot’s consolidation theory. Soils and Foundations, 11(1), 29-46.

  • Yokoo, Y., Yamagata, K., Nagaoka, H., 1971b. Finite element analysis of consolidation following undrained deformation. Soils and Foundations, 11(4), 37-58.

  • Zang, Y., Wu, J.C., Xue,Y.Q., Wang, Z.C., 2017. Fully coupled three-dimensional nonlinear numerical simulation of pumping-induced land movement. Environmental Earth Sciences,76(16), 552.

  • Zhang, Y., Wu, J.,Xue, Y.Q., Wang, Z.C., Yao, Y.G.,Yan, X.X., Wang, H.M., 2015. Land subsidence and uplift due to long-term groundwater extraction and artificial recharge in Shanghai, China. Hydrogeology Journal, 23(8), 1851-1866.

  • Zienkiewicz, O.C., 1977. The finite element method. McGraw Hill, Berkshire, 787.



  • Karahanoğlu, N . (2018). Yeraltısuyu Çekimi Sonucu Oluşan Yüzey Çökmesi Problemi; Bilimsel Araştırmaların Tarihsel Gelişimi . Jeoloji Mühendisliği Dergisi , 42 (1) , 77-106 . DOI: 10.24232/jmd.434142

  • Karahanoğlu, N . Yeraltısuyu Çekimi Sonucu Oluşan Yüzey Çökmesi Problemi; Bilimsel Araştırmaların Tarihsel Gelişimi. Jeoloji Mühendisliği Dergisi 42 (2018 ): 77-106

  • Nepheline Syenite: A Review
    Serhan Haner
    View as PDF

    ABSTRACT: Nepheline syenite is a siliciously poor syenitic rock composed of nepheline, sodium and alcaline feldspars.Although it is wide spread on the earth, the nepheline deposits that have economic value are limited. Commerciallyspeaking, nepheline syenite contains at least 20% nepheline and 60% feldspar. Such economic deposits are in Russia,Canada, Norway, Brazil, China and Turkey. Main uses of nepheline syenite are glass and ceramic industries. It isa source of alumina (Al2O3) and plays a role of melting products such as sanitary ware, porcelain, tile, glass andfiberglass. Because of the numerous advantages on ceramic and glass products, its consumption is high in Asia,Europe and America. In this review, characteristics of nepheline syenite, its formation, production and consumption,usage areas and technology are given

  • Feldspar

  • Igneous rock

  • Nepheline

  • Nepheline syenite

  • Brown, T.J., Idoine, N.E., Raycraft, E.R., Shaw, R.A., Deady, E.A., Hobbs, S.F., Bide, T., 2017. World mineral production 2011-15. British Geological Survey, 87 p.

  • BS, 2015. B&S Yatırım A.Ş., Türkiye. http://www.bsnefelin. com/tr/index.php, son erişim 12.02.2018.

  • Ciullo, P.A., 1996. Industrial minerals and their uses. Noyes Publications, New Jersey, No:96-29173, 632 p.

  • Deniz, K., 2010. Buzlukdağı (Kırşehir) alkali magmatik kayaçların jeolojisi, petrolojisi ve konfokal raman spektrometresi ile incelenmesi. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Yüksek Lisans Tezi, 138 s.

  • Dolan, M.L., Hains, D.H., Ash, D.R., 1991. Highalumina rocks in Ontario: resources and process technology. Queen’s Printer, Ontario, 130 p.

  • Guillet, G.R., 1994. Nepheline syenite. (editor: D.D. Carr). Industrial Minerals and Rocks (6th Edition). Society for Mining, Metallurgy, and Exploration, Inc., Littleton, Colorado, 711-730.

  • Kennedy, B.A., 1990. Nepheline syenite. (editor: B.A. Kennedy). Surface Mining (2nd Edition). Society for Mining, Metallurgy and Exploration, Inc., Littleton, Colorado, 214-217.

  • Kunduracı, N., Aydın, T., Akbay, A., 2016. The effect of nepheline syenite addition on the sintering behaviour of sanitaryware bodies. Journal of the Australian Ceramic Society, 52 (2), 82-86.

  • McLemore, V.T., 2006. Nepheline Syenite. (editor: J.E. Kogel, N.C. Trivedi, J.M. Barker, S.T. Krukowski). Industrial Minerals & Rocks (7th Edition). Published by Society for Mining, Metallurgy, and Exploration, Inc., Colorado, 653-670.

  • McVey, H., 1988. A study of markets for British Columbia’s nepheline syenite and feldspathic minerals. Mineral Marketing, Inc., No:0005032857, 50 p.

  • MİGEM, 2016. 4-A grubu madenler ocakbaşı satış fiyatları. Maden İşleri Genel Müdürlüğü, http:// test.migem.gov.tr/duyurular/malikonular.html, son erişim 12.02.2018.

  • Smelror, M., 2014. Mineral resources in Norway 2013 production data and annual report. Geological Survey of Norway, No:2, 54 p.

  • MSDS, 2015. Nepheline syenite safety data sheet. Unimin Corporation, No: 013-U-GHS https:// www.psh.ca/MSDS/Nepheline%20Syenite.pdf, son erişim 12.02.2018.

  • MTA, 2016. Feldispat (feldspat). Maden Tetkik ve Arama Genel Müdürlüğü, http://www.mta. gov.tr/v3.0/bilgi-merkezi/feldispat, son erişim: 12.02.2018.

  • Negm, A.T., Abouzeid, A.Z., Boulos, T., Ahmed, H., 2000. Nepheline syenite processing for glass and ceramic industries. Physicochemical Problems of Mineral Processing, 34, 5-16.

  • NSW, 2008. Nepheline syenite. Government of New South Wales Department of Primary Industries. https://www.resourcesandenergy.nsw.gov.au/__ data/assets/pdf_file/0010/238177/Nepheline. pdf, son erişim: 12.02.2018.



  • Haner, S , Demir, M . (2018). Nefelinli Siyenit: Bir Gözden Geçirme . Jeoloji Mühendisliği Dergisi , 42 (1) , 107-120 . DOI: 10.24232/jmd.434144

  • Haner, S , Demir, M . Nefelinli Siyenit: Bir Gözden Geçirme. Jeoloji Mühendisliği Dergisi 42 (2018 ): 107-120

  • ISSUE FULL FİLE
    View as PDF