The Journal of Geological Engineering is published by the Chamber of Geological Engineers of TMMOB twice a year, in June and December, since 1977. The manuscripts submitted to the journal are evaluated using peer review procedures. The Journal of Geological Engineering is indexing in Scopus, Google Scholar, TÜBİTAK-ULAKBİM TR Dizin.
Journal of Geological Engineering covers national and international researches in applied geological engineering domain such as engineering geology, geotechnics, water resources management and hydrogeology, environmental geology and waste management, geothermal, drilling techniques and applications, natural hazards, natural disasters and disaster management. Besides, interdisciplinary studies including civil, mining, geophysics, petroleum, environment, city and regional planning using geosciences data are also accepted. Unpublished original researches about aforementioned topics are published either in Turkishor English.
Manuscript submissions are accepted via DergiPark System.
To contact the editor, use the following e-mail address: jmd@jmo.org.tr
2022 HAZİRAN Cilt 46 Sayı 1
Abstract: Due to increasing urban populations, many modern cities attempt to solve problems associated with theincreasing demand for public transportation by constructing these systems underground. To create new metro lines,multiple underground excavations must be carried out in several locations; these are often close to each otherin shallow and weak geological environments due to geometric limitations as well as access-related restrictions.Settlement troughs can occur as a result of these excavations, potentially causing serious damage to the structureswithin the settling area. This study evaluated the data collected by monitoring the extent of surface deformationduring the excavation process in four different locations on the Kirazlı-Olimpiyat-Başakşehir Metro Line as wellas two different locations on the Ataköy-İkitelli Metro Line; all of these sites were located on the European side ofIstanbul. The geometry of the surface settlement troughs that formed due to these tunnel excavations was examined;a total of 12 sections were investigated in this study. An analysis of the monitoring data reveals that, in similar geological environments, successively excavated tunnels with the same geometry and tunnelling methods can disturbthe geological environment through which the tunnels are constructed; in particular, if the second tunnel passesthrough the same section, this results in the formation of an increasing and asynchronous surface settlement trough.This result indicates that the material parameter (K), which affects the size of the settlement trough formed inscenarios with twin subway tunnels with close axes and that are excavated at shallow depths, has different valuesat the wings of the settlement trough that forms after the tunnels have been excavated, and that this change in Kinfluences the shape of the surface settlement trough. This study suggests that predicting any changes in K, whichis dependent on the characteristics of the surrounding rock, is important in order to mitigate any potential risks,especially at the design stage of any project that requires the excavation of multiple tunnels at shallow depths and inweak geological environments.
Abstract: The aim of the study is to examine the landslide affecting the electricity pole of Kadıncık II HEPP located inÇevreli Village of Tarsus District of Mersin Province ,and to perform a comparative analysis of different stabilizationmethods. While the Güvenç formation with claystone, claystone-siltstone ,and marl intercalations is observed in thestudy area, mudstone-claystone intercalated conglomerate, pebbly sandstone ,and coarse-grained sandstone levelsare observed in the Kuzgun formation at the upper elevations. The instability problem in the mentioned location hasthe potential to expand in a large landslide that encompasses the energy transmission line over time. Within thescope of this study, the existing landslide was examined, ,and its failure mechanism was revealed, ,and alternativestabilization methods were developed to prevent possible instabilities that would affect the electricity pole. In thiscontext, drilling studies for engineering geology were carried out in the vicinity of the electricity pole in the studyarea ,and disturbed ,and undisturbed samples were taken for laboratory analysis. On the other hand, shear strengthparameters of the failed material were determined by means of back-analyses. Thus, the current situation ,and the performance of the stabilization suggestions under saturated ,and/ dynamic conditions were evaluated. In order toprevent possible failures, alternatives of backfill ,and bored pile application were investigated by limit equilibriumanalysis. As a result of the analyses, it has been revealed that the stabilization methods evaluated can providestability in different conditions ,and that the high-cost electricity pole # 2 will not be at risk.
Abstract: Using the Bouguer gravity data obtained from the World Gravity Map (WGM2012), the shallow crustalstructure of Van Lake and its vicinity has been studied in this study. In this context, it is aimed to investigate thelateral boundaries of the geological units of the region by applying total horizontal derivative and tilt angle methodsto the vertical derivative values of the gravity data. The maximum amplitude values of the total horizontal derivativeand zero amplitude values of the tilt angle were used to reveal the horizontal boundaries. In addition to the similaritybetween the results of this study and the results of previous studies, new discontinuity boundaries were determined.In addition, the average depths of the soft/hard sediments, basement and Conrad topographies were calculated withthe amplitude spectrum in the study area. In addition, with the inverse solution, the basement topography of theregion was calculated and mapped. As a result of the amplitude spectrum calculation, the average depths of soft/hardsediment, basement and Conrad interfaces were determined as 3.1 km, 6.2 km and 14.4 km, respectively. In additionto the determination of the mass boundaries that present a density difference, it has been calculated that the depthvalues of the basement topography vary between 5.6 and 6.7 km with the inverse solution.
Abstract: Badlands are areas that cannot be used for agricultural and animal husbandry purposes. It is even impossibleto walk on some parts of them. However, they can be used for tourism and educational purposes. In the world,there are badlands used for tourism and educational purposes and visited by thousands of people every year. Itis also possible to see badlands, which cover a large area, almost in any region of Turkey. Turkey has badlandsthat can compete with other badlands in the world in terms of geosite potential. Indeed, certain badlands suchas Rhododendron Ridge, Küpyar Badland, Nallıhan Badland, Devil City Badland, Rainbow Hills (Erzurum) andRainbow Hills (Iğdır) have succeeded in attracting peoples attention with their interesting features. However, noholistic assessment has been carried out regarding the geosite potential of the badlands in Turkey. The main purposeof this research is to determine the educational and touristic value of certain badlands in Turkey as a geosite and tocompare these areas with their examples in the world. Accordingly, quantitative geosite assessment methods wereused in the research. The results of the assessment revealed that Nallıhan Badland, which is one of the badlandssubjected to assessment in the research, is the badland that has the highest geosite potential of Turkey with its main (educational and scientific) and additional (touristic and functional) values. Also, this area has high geotouristicvalue among other examples in the world. It was concluded that Turkey, which has important badlands in terms ofgeosite potential, does not evaluate these badlands for tourism and especially educational purposes.