Jeoloji Münendisliği Dergisi
Jeoloji Mühendisliği Dergisi
ISSN: 1016-9172 | e-ISSN: 2564-6753 | Yayın Aralığı: Yılda 2 Sayı | Yayın Başlangıç Yılı: 1977
Son Sayıyı Görüntüle

Home Page

2022 HAZİRAN Cilt 46 Sayı 1

PDF Olarak Görüntüle
PDF Olarak Görüntüle
PDF Olarak Görüntüle
Changes in Settlement Troughs Induced by Subway Tunnel Excavations in Weak Geological Environments in Istanbul
Candaş Topal Yilmaz Mahmutoğlu
PDF Olarak Görüntüle

Abstract: Due to increasing urban populations, many modern cities attempt to solve problems associated with theincreasing demand for public transportation by constructing these systems underground. To create new metro lines,multiple underground excavations must be carried out in several locations; these are often close to each otherin shallow and weak geological environments due to geometric limitations as well as access-related restrictions.Settlement troughs can occur as a result of these excavations, potentially causing serious damage to the structureswithin the settling area. This study evaluated the data collected by monitoring the extent of surface deformationduring the excavation process in four different locations on the Kirazlı-Olimpiyat-Başakşehir Metro Line as wellas two different locations on the Ataköy-İkitelli Metro Line; all of these sites were located on the European side ofIstanbul. The geometry of the surface settlement troughs that formed due to these tunnel excavations was examined;a total of 12 sections were investigated in this study. An analysis of the monitoring data reveals that, in similar geological environments, successively excavated tunnels with the same geometry and tunnelling methods can disturbthe geological environment through which the tunnels are constructed; in particular, if the second tunnel passesthrough the same section, this results in the formation of an increasing and asynchronous surface settlement trough.This result indicates that the material parameter (K), which affects the size of the settlement trough formed inscenarios with twin subway tunnels with close axes and that are excavated at shallow depths, has different valuesat the wings of the settlement trough that forms after the tunnels have been excavated, and that this change in Kinfluences the shape of the surface settlement trough. This study suggests that predicting any changes in K, whichis dependent on the characteristics of the surrounding rock, is important in order to mitigate any potential risks,especially at the design stage of any project that requires the excavation of multiple tunnels at shallow depths and inweak geological environments.

  • Twin Tunnel

  • Istanbul Metro

  • Geotechnical Monitoring

  • Settlement Trough

  • Addenbrooke, T. I., Potts, D.M., 2001. Twin tunnel interaction: surface and subsurface effects. International Journal of Geomechanics, 1(2), 249–271.

  • Ağbay, E., Topal, T., 2020. Evaluation of twin tunnel-induced surface ground deformation by empirical and numerical analyses (NATM part of Eurasia tunnel, Turkey). Computers and Geotechnics, 119, 103367.

  • Arıç, C., 1955. Haliç-Küçükçekmece Gölü Bölgesinin Jeolojisi. (Doktora Tezi), İ.T.Ü Maden Fakültesi, İstanbul, 45 s.

  • Arioglu, E., 1992. Surface movements due to tunnelling activities in urban areas and minimization of building damages. short course, Istanbul Technical University, Mining Engineering Department (in Turkish).

  • Chakeri, H., Ünver, B., 2013. A new equation for estimating the maximum surface settlement above tunnels excavated in soft ground. Environmental Earth Sciences, 71, 3195–3210. DOI 10.1007/s12665-013-2707-2.

  • Demir, S., 2018. İstanbul Metrosu Kirazlı-İkitelli Arasında İkiz Tünel Kazılarına Bağlı Oluşan Yüzey Oturmalarının Değerlendirilmesi. Yüksek Lisans Tezi, İTÜ Fen Bilimleri Enstitüsü, İstanbul, Türkiye.

  • Ercelebi, S. G., Copur, H., Ocak, I., 2011. Surface settlement predictions for Istanbul Metro tunnels excavated by EPB-TBM. Environmental Earth Sciences, 62(2). 010-0530-6.

  • Fang, Y. S., Lin, J. S., Su, C. S., 1994. An estimation of ground settlement due to shield tunnelling by the Peck-Fujita method. Canadian Geotechnical Journal, 31(3),

  • Glossop, N.H., 1978. Soil Deformation Caused by Soft Ground Tunneling, PhD Thesis, University of Durham.

  • Güven, G., 2008. İstanbul Metrosu Otogar-Kirazlı-1 Arasının Mühendislik Jeolojisi ve Tünel Kazılarına Bağlı Oluşan Deformasyonların Değerlendirilmesi, Yüksek Lisans Tezi, İTÜ Fen Bilimleri Enstitüsü, İstanbul, Türkiye.

  • Herzog, M., 1985. Die Setzungsmulde über saicht liegenden Tunneln. Bautechnik (Berlin, 1984), 62(11), 375–377.

  • Hunt, D., 2005. Predicting the ground movements above twin tunnels constructed in London Clay (Doctoral dissertation, University of Birmingham).

  • Mahmutoğlu, Y., 2011. Surface subsidence induced by twin subway tunneling in soft ground conditions in Istanbul. Bulletin of Engineering Geological Environment, 70, 115–131, DOI 10.1007/ s10064-010-0289-8.

  • Martos, F., 1958. Concerning an approximate equation of the subsidence trough and its time factors. In: International Strata Control Congress, Leipzig. Deutsche Akademie der Wissenschaften zu Berlin, Section fur Bergbau. Berlin, 191–205.

  • O’Reilly, M. P., New, B. M., 1982. Settlements above tunnels in the UK—Their magnitude and prediction. Proc., Tunnelling’82, IMM, London, 173–181.

  • Peck, R. B., 1969. Deep Excavations and Tunneling in Soft Ground. 7th International Conference on Soil Mechanics and Foundation Engineering, 7(3).

  • Rankin, W. J., 1998. Ground Movements Resulting from Urban Tunneling: Prediction and Effects. Engineering Geology of Underground Movements, Eds (F G Ball ve Ark.) Geological Society Publication, No.5.

  • Schmidt, B., 1969. Settlements and ground movements associated with tunnelling in soil. PhD Thesis.

  • Topal, C., Mahmutoğlu, Y., 2021. Assessment of surface settlement induced by tunnel excavations for the Esenler–Başakşehir (Istanbul, Turkey) Subway Line. Environmental Earth Sciences, 80(5), 1–16, 021-09509-6.

  • Topal, C., 2021. Prediction of the Surface Deformations Induced By Shallow and Multiple Underground Excavations (Istanbul Subway) In Weak Geological Environments. Phd Thesis (in Turkish), Istanbul Technical University, Graduate School, Istanbul, Turkey

  • Wang, Z., Yao, W., Cai, Y., Xu, B., Fu, Y., Wei, G., 2018. Analysis of ground surface settlement induced by the construction of a large diameter shallow-buried twin-tunnel in soft ground Tunnelling and Underground Space Technology.

  • Topal, C. & Mahmutoglu, Y. (2022). İstanbul’da Zayıf Jeolojik Ortamlarda Metro Tüneli Kazılarının Neden Olduğu Oturma Teknesindeki Değişimler . Jeoloji Mühendisliği Dergisi , 46 (1) , 1-16 . Retrieved from

  • Topal, C. , Mahmutoglu, Y. `İstanbul’da Zayıf Jeolojik Ortamlarda Metro Tüneli Kazılarının Neden Olduğu Oturma Teknesindeki Değişimler` . Jeoloji Mühendisliği Dergisi 46 (2022 ): 1-16

  • Investigation of Çevreli Village (Mersin) Landslide Affecting the Energy Transmission Line and Evaluation of Stabilization Methods
    Ahmet Orhan
    PDF Olarak Görüntüle

    Abstract: The aim of the study is to examine the landslide affecting the electricity pole of Kadıncık II HEPP located inÇevreli Village of Tarsus District of Mersin Province ,and to perform a comparative analysis of different stabilizationmethods. While the Güvenç formation with claystone, claystone-siltstone ,and marl intercalations is observed in thestudy area, mudstone-claystone intercalated conglomerate, pebbly sandstone ,and coarse-grained sandstone levelsare observed in the Kuzgun formation at the upper elevations. The instability problem in the mentioned location hasthe potential to expand in a large landslide that encompasses the energy transmission line over time. Within thescope of this study, the existing landslide was examined, ,and its failure mechanism was revealed, ,and alternativestabilization methods were developed to prevent possible instabilities that would affect the electricity pole. In thiscontext, drilling studies for engineering geology were carried out in the vicinity of the electricity pole in the studyarea ,and disturbed ,and undisturbed samples were taken for laboratory analysis. On the other hand, shear strengthparameters of the failed material were determined by means of back-analyses. Thus, the current situation ,and the  performance of the stabilization suggestions under saturated ,and/ dynamic conditions were evaluated. In order toprevent possible failures, alternatives of backfill ,and bored pile application were investigated by limit equilibriumanalysis. As a result of the analyses, it has been revealed that the stabilization methods evaluated can providestability in different conditions ,and that the high-cost electricity pole # 2 will not be at risk. 

  • Back-Analysis

  • Landslide

  • Stabilization Suggestions

  • Claystone

  • Tarsus

  • AFAD, 2018. Türkiye Deprem Tehlike Haritası.

  • AİGM-DADB, 1996. Türkiye Deprem Bölgeleri Haritası. Bayındırlık ve İskan Bakanlığı, Afet İşleri Genel Müdürlüğü, Deprem Araştırma Dairesi Başkanlığı, Ankara.

  • ASTM D2434-68, 2006. Standard Test Method for Permeability of Granular Soils (Constant Head) (Withdrawn 2015). ASTM International, West Conshohocken, PA.

  • ASTM D5731-16, 2016. Standard Test Method for Determination of the Point Load Strength Index of Rock and Application to Rock Strength Classifications. ASTM International, West Conshohocken, PA.

  • ASTM D5856-15, 2015. Standard Test Method for Measurement of Hydraulic Conductivity of Porous Material Using a Rigid-Wall, Compaction-Mold Permeameter. ASTM International, West Conshohocken, PA.

  • Barkın, N., 2004. Mersin-Tarsus Otoyolu Güney Şevlerinde Meydana Gelen Duraysızlıkların İncelenmesi. Y.L. Tezi, Mersin Üniversitesi, Mersin, (yayınlanmamış).

  • Bishop, A. W., 1955. The use of the slip circle in the stability analysis of slopes. Geotechnique, 5 (1), 7-17.

  • Craig, R. F., 1992. Soil Mechanics. Chapman and Hall, 5th edition, London.

  • Durgunoğlu, H.T., Kulaç F., Karadayılar T., Baştürk G., 1990. Yüksek plastisiteli Taban Zemini Killerin Projelendirme Kriteri. ZMTM Türk Milli Komitesi Bülteni, Zemin Mühendisliği, Cilt:1 Sy: 55-66.

  • Finlay, P.J., Fell, R., Maguire, P.K., 1997. The relationship between the probability of landslide occurrence and rainfall. Canadian Geotechnical Journal, 34, 811-824.

  • Grefsheim, F.D., 1988. Laboratory Testing for Slope Stability Desing Parameters in Overconsolidated Clay. Proceedings of Landslide Conference, 1, p: 123-130.

  • Hynes-Griffin ME, Franklin AG., 1984. Rationalizing the seismic coefficient method. U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi, Miscellaneous Paper GL-84-13, 21 pp.

  • ISRM (International Society for Rock Mechanıcs), 2007. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006. Suggested Methods R. Ulusay and J.A. Hudson (editors), Prepared by the Commission on Testing Methods, International Society for Rock Mechanics, Compilation Arranged by the ISRM Turkish National Group, Ankara, Turkey, 628 p.

  • Kramer S.L., 1996. Geotechnical Earthquake Engineering. Prentice-Hall, Inc., Upper Saddle River, New Jersey 07458, pp. 434-437.

  • Marcuson W.F., Franklin A.G., 1983. Seismic Design, Analysis, and Remedial Measures to Improve the Stability of Existing Earth Dams. Corps of Engineers Approach`, in Seismic Design of Embankments and Caverns, T.R. Howard, Ed., New York, ASCE.

  • Noble, H.L., 1973. Residual Strength and landslides in clay and shale. JSMFED, ASCE Vol: 99 No: SM9. Paper 10023, Semptember, p: 705-719.

  • Polemio, M., Sdao, F., 1999. The role of rainfall in the landslide hazard: the case of the Avigliano urban area (Southern Apennines, Italy). Engineering Geology, 53(3-4), 297-309.

  • Rocscience, 2010. Slide v5.0-2D limit equilibrium analysis. Rockscience Inc., Toronto, Cadana.

  • Rocscience, 2014. RocProb v5.0-Rock Properties Database. Rockscience Inc., Toronto, Cadana.

  • Schmidt, G. C., 1961. Stratigraphic nomenclature for the Adana Region. Petroleum District 7. Petroleum Administration Bulletin, 6, 47-63.

  • Sevimli, U.İ., 2003. Demirhisar (Mersin KD’su) Civarının Jeolojisi ve Sedimantolojik Özellikleri. Ç.Ü. Fen Bilimleri Enstitüsü, Jeoloji Mühendisliği Anabilim Dalı Yüksek Lisans Tezi, 49 s., Adana (yayımlanmamış).

  • Skempton, A.W., 1964. Long term stability of clay slope. Geotechnique, 14, 77-101.

  • Taga, H., Turkmen, S., Kacka, N., 2015. Assessment of stability problems at southern engineered slopes along Mersin-Tarsus Motorway in Turkey. Bulletin Engineering Geological Environment, 74, 379-391.

  • TS 1500, 2000. İnşaat Mühendisliğinde Zeminlerin Sınıflandırılması. TSE, 16 s., Ankara

  • TS 1900-1, 2006. İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri- Bölüm 1: Fiziksel Özelliklerin Tayini. TSE, 99 s., Ankara

  • TS 1900-2, 2006. İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri- Bölüm 2: Mekanik Özelliklerin Tayini. TSE, 68 s., Ankara

  • TS EN ISO 17892-1, 2014. Geotechnical investigation and testing- Laboratory testing of soil - Part 1: Determination of water content (ISO 17892-1: 2014). Türk Standardları Enstitüsü, ANKARA

  • Ünlügenç, U. C., 1986. Kızıldağ Yayla (Adana) Dolayının Jeolojik İncelemesi. Ç. Ü. Fen Bilimleri Ens. Yüksek Lisans Tezi, 77s., Adana.

  • Orhan, A. (2022). Enerji Nakil Hattını Etkileyen Çevreli Köyü (Mersin) Heyelanının İncelenmesi ve İyileştirme Yöntemlerinin Değerlendirilmesi . Jeoloji Mühendisliği Dergisi , 46 (1) , 17-40 . Retrieved from

  • Orhan, A. Enerji Nakil Hattını Etkileyen Çevreli Köyü (Mersin) Heyelanının İncelenmesi ve İyileştirme Yöntemlerinin Değerlendirilmesi`. Jeoloji Mühendisliği Dergisi 46 (2022 ): 17-40

  • Shallow Crustal Structure of Lake Van and Its Surroundings with WGM2012 Bouguer Gravity Data
    Mustafa Ali Elmas
    PDF Olarak Görüntüle

    Abstract: Using the Bouguer gravity data obtained from the World Gravity Map (WGM2012), the shallow crustalstructure of Van Lake and its vicinity has been studied in this study. In this context, it is aimed to investigate thelateral boundaries of the geological units of the region by applying total horizontal derivative and tilt angle methodsto the vertical derivative values of the gravity data. The maximum amplitude values of the total horizontal derivativeand zero amplitude values of the tilt angle were used to reveal the horizontal boundaries. In addition to the similaritybetween the results of this study and the results of previous studies, new discontinuity boundaries were determined.In addition, the average depths of the soft/hard sediments, basement and Conrad topographies were calculated withthe amplitude spectrum in the study area. In addition, with the inverse solution, the basement topography of theregion was calculated and mapped. As a result of the amplitude spectrum calculation, the average depths of soft/hardsediment, basement and Conrad interfaces were determined as 3.1 km, 6.2 km and 14.4 km, respectively. In additionto the determination of the mass boundaries that present a density difference, it has been calculated that the depthvalues of the basement topography vary between 5.6 and 6.7 km with the inverse solution.

  • Total Horizontal Derivative

  • Tilt Angle

  • Van Lake

  • First Vertical Derivative

  • Structural Discontinuity

  • Acarlar, M., Bilgin, E., Elibol, E., Erkal., T., Gedik, İ., 1991. Van gölü doğu ve kuzeyinin jeolojisi. MTA Genel Müdürlüğü, Arşiv No: 1061, Ankara.

  • Altınoğlu, F.F., Sarı, M., Aydın, A., 2015. Detection of lineaments in Denizli Basin of Western Anatolia Region using Bouguer gravity data. Pure and Applied Geophysics, 172, 415–425.

  • Arısoy, M. Ö., Dikmen, Ü., 2011. Potensoft: MATLAB-based Software for potential field data processing, modelling and mapping. Computer and Geosciences, 37, 935–942.

  • Bhattacharyya, B.K., 1967. Some general properties of potential fields in space and frequency domain: a review. Geoexploration, 5 (3), 127–143.

  • Bonvalot, S., Balmino, G., Briais, A., M. Kuhn, Peyrefitte, A., Vales N., Biancale, R., Gabalda, G., Reinquin, F., Sarrailh, M., 2012. World Gravity Map. Commission for the Geological Map of the World. Eds. BGI-CGMW-CNESIRD, Paris.

  • Cooper, G. R. J., Cowan, D. R., 2006. Enhancing potential field data using filters based on the local phase. Computers and Geosciences, 32 (10), 1585-1591.

  • Cordell, L., and Grauch, V.J.S., 1985. Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico, (Ed. Hinze, W.J.) The utility of regional gravity and magnetic anomaly maps, Society of Exploration Geophysicists, 181–197.

  • Degens, E. T., Wong, H. K., Kempe, S., Kurtman, F., 1984. A geological study of Lake Van, eastern Turkey. Geologische Rundschau, 73-2, 701–734.

  • Doğan B., 2018. Active tectonics of Erçek Lake Basin and lithostratigraphy of basin deposits (Van, Turkey). Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 20(1), 398-411.

  • Elmas, A., 2018. Kıbrıs adasındaki yapısal süreksizliklerin EGM08 gravite verileri kullanılarak belirlenmesi, Jeoloji Mühendisliği Dergisi, 42, 17-32 (DOI: 10.24232/jmd.434135).

  • Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, Ş., Şaroğlu, F., 2013. Açıklamalı 1/1.250.000 Ölçekli Türkiye Diri Fay Haritası, Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayın Serisi-30. Ankara- Türkiye.

  • Genç, S., 1984. Bitlis Masifi kuzey kenarının kıvrımlı ve faylı yapısı, Küçüksu-Reşadiye (Tatvan, Bitlis) yöresi, Güneydoğu Türkiye. Karadeniz Üniversitesi Dergisi, 3 (1-2), 17-27.

  • Gomez-Ortiz, D., Agarwal, B. N. P., 2005. 3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3-D horizontal density interface by Parker–Oldenburg’s algorithm. Computer Geosciences, 31, 513–520.

  • Kocyiğit, A., 2013. New field and seismic data about the intraplate strike-slip deformation in Van region, East Anatolian plateau, E. Turkey. Journal of Asian Earth Sciences, 62, 586-605.

  • Kocyiğit, A., Yılmaz, A., Adamia, S., Kuloshvili, S., 2001. Neotectonic of East Anatolian Plateau (Turkey) and Lesser Caucasus: implication for transition from thrusting to strike-slip faulting. Geodinamica Acta, 14, 177-195.

  • Kuzucuoğlu, C., Chrıstol, A., Mouralıs, D., Doğu, A. F., Akköprü, E., Fort, M., et al., 2010. Formation of the Upper Pleistocene terraces of Lake Van (Turkey). Journal of Quaternary Sciences, 25 (7), 1124-1137.

  • Miller, H. G., Singh, V., 1994. Potential field tilt -a new concept for location of potential field sources. Journal of Applied Geophysics, 32, 213–217.

  • Nabighian, M. N., 1972. The Analytic Signal of two dimensional magnetic bodies with polygonal cross section: Its properties and use for automated anomaly interpretation. Geophysics, 37, 507–517.

  • Oldenburg, D. W., 1974. The inversion and interpretation of gravity anomalies. Geophysics, 39, 526–536.

  • Oruç, B., 2010. Edge detection and depth estimation using a tilt angle map from gravity gradient data of the Kozaklı-Central Anatolia Region, Turkey. Pure and Applied Geophysics, DOI: 10.1007/ s00024-010-0211-0.

  • Özvan, A., Şengül, M.A., Tapan, M., 2008. Van Gölü havzası neojen çökellerinin jeoteknik özelliklerine bir bakış: Erciş Yerleşkesi, Çukurova Üniversitesi Yerbilimleri Dergisi (Geosound), 52, 297-310.

  • Pamukçu, O. A., Akçığ Z., Demirbaş Ş., Zor, E., 2007. Investigation of crustal thickness in Eastern Anatolia using gravity, magnetic and topographic data. Pure and Applied Geophysics, 164(11), 2345-2358.

  • Pamukçu, O., Gönenç, T., Çırmık, A.Y., Demirbaş Ş., Tosun S., 2015. Vertical and horizantal analysis of crustal structure in eastern Anatolia region. Bulletin of the Mineral Research and Exploration, 151(151), 217-229.

  • Parker, R. L., 1973. The rapid calculation of potential anomalies. Geophysical Journal International, 31, 447–455.

  • Şaroğlu, F., Yılmaz, Y., 1986. Doğu Anadolu’da neotektonik dönemdeki jeolojik evrim ve havza modelleri. MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi, Ankara.

  • Şenel, M., 2008. Scaled Geological Maps of Turkey (Van – K50 Quadrangle). 1:100.000. Publication of General Directorate of Mineral Research, Ankara (Turkey).

  • Toker, M., Şengör, A.M.C., 2011. Van Gölü havzasının temel yapısal unsurları, tektonik ve sedimanter evrimi, doğu Türkiye. İstanbul Teknik Üniversitesi Dergisi/d mühendislik, 10 (4), 119-130.

  • Uner, S., Yeşilova, C., Yakupoğlu, T., Uner, T., 2010. Pekişmemiş sedimanlarda depremlerle oluşan deformasyon yapıları (sismitler): Van Gölü Havzası, Doğu Anadolu. Yerbilimleri, 31 (1), 53-66.

  • U.S. Geological Survey, Digital Elevation Models GTOPO30, Virginia, 1998. http://webmap.ornl. gov/wcsdown/wcsdown.jsp?dg_id=10003_1, (Ziyaret tarihi: 11 Şubat 2020).

  • Wong, H.K., Finckh, P., 1978. Shallow structures in Lake Van. in: The Geology of Lake Van, E.T. Degens and F. Kurtman (eds.), The Mineral Research and Exploration Institute of Turkey (MTA) Publication, No.169, pp. 20-28.

  • Elmas, A. (2022). Van Gölü ve civarının sığ kabuk yapısının WGM2012 Bouguer gravite verileriyle incelenmesi . Jeoloji Mühendisliği Dergisi , 46 (1) , 41-50 . Retrieved from

  • Elmas, A. `Van Gölü ve civarının sığ kabuk yapısının WGM2012 Bouguer gravite verileriyle incelenmesi` . Jeoloji Mühendisliği Dergisi 46 (2022 ): 41-50

  • The Potential of Badlands in Turkey as Geosites
    Yildiz Güney
    PDF Olarak Görüntüle

    Abstract: Badlands are areas that cannot be used for agricultural and animal husbandry purposes. It is even impossibleto walk on some parts of them. However, they can be used for tourism and educational purposes. In the world,there are badlands used for tourism and educational purposes and visited by thousands of people every year. Itis also possible to see badlands, which cover a large area, almost in any region of Turkey. Turkey has badlandsthat can compete with other badlands in the world in terms of geosite potential. Indeed, certain badlands suchas Rhododendron Ridge, Küpyar Badland, Nallıhan Badland, Devil City Badland, Rainbow Hills (Erzurum) andRainbow Hills (Iğdır) have succeeded in attracting people’s attention with their interesting features. However, noholistic assessment has been carried out regarding the geosite potential of the badlands in Turkey. The main purposeof this research is to determine the educational and touristic value of certain badlands in Turkey as a geosite and tocompare these areas with their examples in the world. Accordingly, quantitative geosite assessment methods wereused in the research. The results of the assessment revealed that Nallıhan Badland, which is one of the badlandssubjected to assessment in the research, is the badland that has the highest geosite potential of Turkey with its main (educational and scientific) and additional (touristic and functional) values. Also, this area has high geotouristicvalue among other examples in the world. It was concluded that Turkey, which has important badlands in terms ofgeosite potential, does not evaluate these badlands for tourism and especially educational purposes. 

  • Anatolia

  • Geoheritage

  • Geosite

  • Geotourism

  • Badlands

  • Akar Şahingöz, S., Kızılelli, M., Çetin, K., 2019. Exploring the tourism potential of Nallıhan district in Ankara and proposals for rural development. in: Ç. Akkuş, G. Akkuş, G. (Eds.), Selected Studies on Rural Tourism and Development. Cambridge Scholars Publishing, UK, p 101-114.

  • Akbulut, G., 2004. Divriği ilçesinin coğrafyası. Atatürk Üniversitesi Sosyal Bilimler Enstitüsü, Erzurum, Doktora Tezi, 472 s (yayımlanmamış).

  • Anadolu Ajansı, 2018. Doğu`nun `gökkuşağı tepeleri` turizme kazandırılacak, tr/vg/video-galeri/dogunun-gokkusagi-tepeleriturizme-kazandirilacak/149, 10 Ocak 2021.

  • Ankara Kakınma Ajansı, 2011. Nallıhan turizm gelişim stratejisi-2023. Nallıhan Kırsal Turizm Potansiyelinin Değerlendirilmesi Projesi, https://, 15 Temmuz 2021.

  • Armutak, Ş.M., 2015. Muharabe alanı yer isimleri: Şahin Sırtı, https://canakkalemuharebeleri1915. com/genel/muharebe-alani-yer-isimleri/ ariburnu/165-sahin-sirti, 06 Aralık 2019.

  • Armutak, Ş.M., 2019. Muharabe alanı yer isimleri: Sniper’s nest, https:// muharebe-alani-yer-isimleri/ariburnu/510-sniper-s-nest-uzman-ni-sanci-yuvasi, 06 Aralık 2019.

  • Avcıoğlu, A., Görüm, T., Akbaş, A., Moreno de las Heras, M., Yetemen, O., 2021. The climatic, topographic and litho-tectonic characteristics of badlands in Turkey. EGU General Assembly Conference, Vien, 7788.

  • Avdan, U., Görüm, T., Cömert, R., Nefeslioğlu, H., 2015. Sensitivity analyses for the DTMs derived from Unmanned Aerial Vehicle (UAV) in gully erosion mapping: Nallihan badland area (Ankara, Turkey). EGU General Assembly Conference, Vien, 14058.

  • Bahadır, M., Işık, F., 2021. Şavşat peribacalarının (Artvin) jeomorfolojisi ve jeoturizm potansiyeli. Kesit Akademi Dergisi, 7 (26), 145-160.

  • Brilha, J., 2016. Inventory and quantitative assessment of geosites and geodiversity sites: a review. Geoheritage, 8, 11-134.

  • Bryan, R., Yair, A., 1982. Perspectives on studies of badland geomorphology. In: Bryan, R., Yair, A. (Eds.), Badland Geomorphology and Piping, Geo Books, pp. 1-12, Norwich.

  • Canik, B., 1972. Jeoloji mostralarına saygı. TJK Yıllık Bülteni.

  • Ceylan, M.A., 2000. Güney Çağlayanı’nın rekreasyonel önemi. Doğu Coğrafya Dergisi, 6 (3), 61-76.

  • Çalık, A.Ö., Sürücü, Ö., Arslantürk, Y., 2013. Sürdürülebilir kalkınmada turizm odaklı çalısan ilçe: Nallıhan. 8. Uluslararası Türk Kültürü Kongresi, Eskişehir, 757-776.

  • Çalışkan, V., Tosunoğlu, M., 2010. Assessment of Çardak lagoon for ecotourism in Northwest Turkey. Journal of Balkan Ecology, 13 (4), 341- 354.

  • Çiftçi, Y., Güngör, Y., 2016. Jeopark projeleri kapsamındaki doğal ve kültürel miras unsurları için standart gösterim önerileri. MTA Dergisi, 153, 223-238.

  • Doğan, U., 2001. Mucur obruğunun jeomorfolojisi ve turizme kazandırılması. Türkiye Coğrafyası Araştırma ve Uygulama Dergisi, 8, 89-107.

  • Doğan, U., Şenkul, Ç., Yeşilyurt, S., 2018. First paleofairy chimney findings in the Cappadocia region, Turkey: a possible geomorphosite. Geoheritage, 11 (2), 653-664.

  • Doğaner, S., 1995. Peribacalarının turizm bakımından önemi. Türk Coğrafya Dergisi, 30, 25-40.

  • Doğaner, S., 1997. A heritage of Anatolia: Pamukkale. Review, 4, 99-116.

  • Doğu, A.F., Çiçek, İ., Gürgen, G., Tunçel, H., Somuncu, M., 1994. Periliin Mağarası. Ankara Üniversitesi Türkiye Coğrafya Araştırma ve Uygulama Merkezi Dergisi, 3, 193-219.

  • Ekinci, D., Doğaner, S., 2012. Simav (Yeniköy) fairy chimneys terms of geomorphotourism. III. Ulusal Jeomorfoloji Sempozyumu, Hatay, 395- 410.

  • Ekinci, D., Doğaner, S., 2016. Unique spit: Kızkumu (Marmaris/Turkey). EPRA International Journal of Multidisciplinary Research, 2 (6), 35-49.

  • Elmacı, S., Sever, R., 2006. Doğal bir anıt: Akçalı Travertenleri (Van/Başkale). Doğu Coğrafya Dergisi, 11 (15), 137-153.

  • Erinç, S., 1955. Orta Ege Bölgesinin jeomorfolojisi. MTA Rapor No. 2217, Ankara (yayımlanmamış).

  • Garipağaoğlu Farımaz, N., 1996. Doğal bir anıt olarak Yukarı Narman Havzası kuestası. Türk Coğrafya Dergisi, 31, 291-304.

  • Gedik, A., 1977. Korunması gerekli doğal anıtlarımızdan Akyatan gölü (lagün). Yeryuvarı ve İnsan, 2 (3), 38-44.

  • Geofabrik, 2019. 30 Ekim 2019.

  • Görüm, T., Avdan, U., Çömert, R., Nefeslioğlu, H.A., 2017. Erosional processes in the Nallıhan (Ankara) badland area based on ultra-high resolution unmanned aerial vehicle (UAV) DTMS. International Symposium on GIS Applications in Geography Geosciences, Çanakkale.

  • Güldalı, N., Şaroğlu, F., 1983. Konya yöresi obrukları. Yeryuvarı ve İnsan, 7 (4), 14-18.

  • Güney, Y., Yasak, Ü., 2018. Geotourism potential of the Yellimera canyon in Manisa. In: Efe, R., Koleva, I., Öztürk, M. & Arabacı, R. (Eds) Recent Advances in Social Sciences. Cambridge Scholars Publishing, UK, pp. 335-346.

  • Güney, Y., 2020. The Geomorphosite potential of the badlands around Küpyar, Manisa, Turkey. Geoheritage, 12 (1), 1-19.

  • Howard, A.D., 2009. Badlands and gullying. in: Parsons, A.J., Abrahams, A.D. (Eds) Geomorphology of Desert Environments, Springer (Second Edition), pp 189-232.

  • Kavuşan, G., 2020. Saha jeolojisi: Ayaş, Beypazarı, Çayırhan, Nallıhan yöreleri jeolojisi. http://, 02 Ocak 2020.

  • Kayan, İ., 1992. Demirköprü baraj gölü batı kıyısında Çakallar volkanizması ve fosil insan ayak izleri. Ege Coğrafya Dergisi, 6, 1-32.

  • Kazancı, N., 2010. Jeolojik Koruma Kavram ve Terimler. JEMİRKO, Ankara, 60.

  • Kazancı, N., Şaroğlu, F., Suludere, Y., 2015. Jeolojik miras ve Türkiye jeositleri çatı listesi. MTA Dergisi, 151, 263-272.

  • Ketin, İ., 1970. Türkiye’de önemli jeolojik aflörmanların korunması. TJK Bülteni, 13 (2), 90-93.

  • Koçman, A., 1985. İzmir-Bozdağlar yöresinin yapısal jeomorfolojisi ve evrimi. Ege Coğrafya Dergisi, 3, 63-86.

  • Koçman, A., 1989. Uygulamalı Fiziki Coğrafya Çalışmaları ve İzmir Bozdağlar Yöresi Üzerine Araştırmalar. Ege Üniversitesi Edebiyat Fakültesi Yayınları, İzmir, 184 s.

  • Koçman, A., 2004. Yanık ülkenin doğal anıtları: Kula yöresi volkanik oluşumları. Ege Coğrafya Dergisi, 13, 5-15.

  • Koday, S., Çelikoğlu, Ş., 2009. Ekoturizm açısından bir inceleme: Aksu çayı şelaleleri (Bartın). Atatürk Üniversitesi Edebiyat Fakültesi Sosyal Bilimler Dergisi, 9 (43), 131-146.

  • Koral, H., Behzad, B., İşbil, D., Karaağaç, S., 2019. Çayırhan (Ankara) neojen havzasının stratigrafisi ve neotektonik özellikleri. İstanbul Yerbilimleri Dergisi, 29 (2), 1-14.

  • Kopar, İ., Toroğlu, E., 2014. Aladağlarda (Orta Toroslar) kaynak konumlu bir mağara: Derebağ mağarası (Yahyalı-Kayseri). Türk Coğrafya Dergisi, 62, 9-19.

  • Kurt, S., 2015. The coasts of Kapıdağ peninsula in terms of geomorphotourism. Geojournal of Tourism and Geosites, 1(15), 44-58.

  • Martínez-Murillo, J.F., Nadal-Romero, E., 2018. Perspectives on badland studies in the context of global change. In: Badlands Dynamics in a Context of Global Change. Nadal-Romero, E., Martínez-Murillo, J.F., Kuhn, N.J. (Eds) Badland Dynamics in the Context of Global Change. Elsevier, Amsterdam, pp 1-25.

  • Moreno-de las Heras, M., Gallart, F., 2018. The origin of badlands. In: Badlands Dynamics in a Context of Global Change Nadal-Romero, E., Martínez-Murillo, J.F., Kuhn, N.J. (Eds) Badland Dynamics in the Context of Global Change. Elsevier, Amsterdam, pp 27-59.

  • MTA Yerbilimleri Harita Görüntüleyici ve Çizim Editörü, 2022. anasayfa.aspx, 08 Mayıs 2022.

  • Nadal-Romero, E., García-Ruiz, J.M., 2018. Rethinking spatial and temporal variability of erosion in badlands. In: Badlands Dynamics in a Context of Global Change. In: Nadal-Romero, E., Martínez-Murillo, J.F., Kuhn, N.J. (Eds) Badland Dynamics in the Context of Global Change. Elsevier, Amsterdam, pp 217-253.

  • Ozaner, S.F., 1988. Kula ve Selendi yörelerinin jeomorfolojisi. İstanbul Üniversitesi Deniz Bilimleri ve Coğrafya Enstitüsü, İstanbul, Doktora Tezi (yayımlanmamış).

  • Öngür, T., 1976. Doğal anıtların korunmasında yasal dayanaklar. Yeryuvarı ve İnsan, 1 (4), 35-38.

  • Özdemir, M.A., 2019. Afyonkarahisar (Seydiler) peribacaları jeomorfositi ve turizm potansiyeli. Uluslararası Sosyal Araştırmalar Dergisi, 12 (64), 249-262.

  • Özşahin, E., 2013. Yunushanı köyünün (AltınözüHatay) kuzey ve kuzeybatısındaki peribacası görünümlü sivri doruklu lapya kompleksleri. Turkish Studies 8 (6), 551-566.

  • Öztürk, B., 2018. Jeolojik miras ve jeoturizm açısından Türkiye kıyılarındaki yalıtaşları. 71. Türkiye Jeoloji Kurultayı, Ankara, 515.

  • Panizza, M., 2001. Geomorphosites: concepts, methods and examples of geomorphological survey. Chinese Science Bulletin (Suppl. 46), 4–6.

  • Pereira, P., Pereira, D., 2010. Methodological guidelines for geomorphosite assessment. Géomorphologie: Relief, Processus, Environnement, 16 (2), 215-222.

  • Pralong, J.P., 2005. A method for assessing tourist potential and use of geomorphological sites. Geomorphologie: Relief, Processes, Environment, 3, 189–196.

  • Somuncu, M., İnaner, H., Çiçek, İ., 2004. An example of geological and geomorphological heritage to be protected: Gölcük caldera (Isparta-Southwestern Turkey). Proceedings of the 5th International Symposium on Eastern Meditterranean Geology, Thessaloniki, 427-429.

  • Şengün, M.T., Tonbul, S., 2005. Ölbe Kanyonu ile Deve Mağarası’nın (Harput-Elazığ) jeomorfolojik özellikleri, oluşumu ve turistik potansiyeli. Doğu Anadolu Bölgesi Araştırmaları Dergisi, 4 (2), 10-16.

  • Tepeci, M., Günlü, E., İnci, S., Karaköse, E., Zurnacı, N., Onağ, A.O., Kaygalak, S., Dama, B., Kavak, Y., 2015. IPARD programı ile Manisa’da kırsal turizmin geliştirilmesi stratejileri projesi. Tarım ve Kırsal Kalkınmayı Destekleme Kurumu Manisa İl Koordinatörlüğü, Manisa.

  • Turoğlu, H., 2008. Coğrafi Bilgi Sistemlerinin Temel Esasları, Çantay Yayınları, İstanbul, 161 s.

  • Türkeş, M., 2013. İklim Verileri Kullanılarak Türkiye’nin Çölleşme Haritası Dokümanı Hazırlanması Raporu. Orman ve Su İşleri Bakanlığı, Ankara.

  • Türkiye Cumhuriyeti Tarım ve Orman Bakanlığı, 2020. Iğdır ili erozyon kontrol çalışmaları. toz/sdswa/2016/Day3_99_ttazegun.pdf, son erişim: 2 Ocak 2020

  • Türkiye Çevre Vakfı, 2012. Nallıhan Doğa Yürüyüş Parkurları. Önder Matbaa, Ankara, 47 s.

  • Ürkek, M., Kozak, A., Akıncı, C.E., 2015. Küpyar. 4006 TUBITAK Bilim Fuarları Destek Programı. 04-05 Temmuz 2015. Manisa.

  • Vujičić, M.D, Vasiljević, D.A., Marković, S.B., Hose, T.A., Lukić, T., Hadžić, O., Janićević, S., 2011. Preliminary geosite assessment model (GAM) and its application on Fruska Gora Mountain, potential geotourism destination of Serbia. Acta Geograhica Slovenica, 51(2), 361–377.

  • Warowna, J., Zgłobicki, W., Kołodyńska-Gawrysiak, R., Gajek, G., Gawrysiak, L., Telecka, M., 2016. Geotourist values of loess geoheritage within the planned geopark Małopolska Vistula River Gap, E Poland. Quaternary International, 399, 46–57.

  • Yeşilova, P.G., Yeşilova, Ç., 2019. Tuz madenlerinin (kaya tuzu) sağlık sektöründe ve turizm amaçlı kullanımı; sürkit tuz işletmesi (Tuzluca, Iğdır) ve dünyadan örnekler. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24 (1), 56-63.

  • Yıldırım, T., Koçan, N., 2008. Nevşehir Acıgöl kalderası Kalecitepe ve Acıgöl maarlarının jeoturizm kapsamında değerlendirilmesi. Ege Üniversitesi Ziraat Fakültesi Dergisi 45 (2), 135- 143.

  • Yıldırım, A., Karadoğan, S., 2010. Derik (Mardin) güneyinde korunması gereken jeolojikjeomorfolojik bir doğal miras: Kuşçu krateri. Dicle Üniversitesi Ziya Gökalp Eğitim Fakültesi Dergisi, 14, 119-133.

  • Yılmaz, H., Yılmaz, A., 2004. Divriği (Sivas) yöresinin jeolojisi ve yapısal evrimi. Türkiye Jeoloji Bülteni, 47 (1), 13-45.

  • Yılmaz, H., Yılmaz, A., 2016. Oltu-Balkaya havzanın (KD Türkiye) tektonik konumu ve Geç Kretase sonrası jeolojik evrimi. Türkiye Jeoloji Bülteni, 59 (1), 1-25.

  • Yılmaz, O., 2007. Kağızman (Kars)-Tuzluca (Iğdır) tuz yataklarının jeolojisi, minerolojisi ve petrografisi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir, Yüksek Lisans Tezi, 65 s (yayımlanmamış).

  • Zgłobicki, W., Poesen, J., Daniels, M., Del Monte, M., Guerra, A.J.T., Joshi, V., Paterson, G., Shellberg, J., Solé-Benet, A., Su, Z., 2018. Geotouristic Value of Badlands. In: Nadal-Romero, E., Martínez-Murillo, J.F., Kuhn, N.J. (Eds) Badland Dynamics in the Context of Global Change, Elsevier, pp 277-213, Amsterdam.

  • Zgłobicki, W., Poesen, J., Cohen, M., Del Monte, M., García-Ruiz, J.M., Ionita, I., Niacsu, L., Machová, Z., Martín-Duque, J.F., Nadal-Romero, E., Pica, A., Rey, F., Solé-Benet, A., Stankoviansky, M., Stolz, C., Torri, D., Soms, J., Vergari, F., 2019. The potential of permanent gullies in Europe as geomorphosites. Geoheritage, 11, 217-239.

  • Güney, Y. (2022). Türkiye’deki Kırgıbayırların Jeosit Potansiyeli . Jeoloji Mühendisliği Dergisi , 46 (1) , 51-79 . Retrieved from

  • Güney, Y. `Türkiye’deki Kırgıbayırların Jeosit Potansiyeli` . Jeoloji Mühendisliği Dergisi 46 (2022 ): 51-79

    PDF Olarak Görüntüle