Akbaş, B., Akdeniz, N., Aksay, A., Altun, İ., Balcı, V., Bilginer, E., Bilgiç, T., Duru, M., Ercan, T., Gedik, İ., Günay, Y., Güven, İ.H., Hakyemez, H. Y., Konak, N., Papak, İ., Pehlivan, Ş., Sevin, M., Şenel, M., Tarhan, N.,Turhan, N., Türkecan, A.,
ANON, 1976. Engineering geological maps, a guide to their preparation, UNESCO Publishing House, Paris, 79.
ASTM (American Society for Testing and Materials), 1980. Annual Book of ASTM Standarts, Natural Building Stones, Soil and Rock, Part 19, ASTM Publication, 634.
Barton, N., Lien, R., Lunde, J., 1974. Engineering classification of rock masses for the design of tunnel support. Rock Mechanics, 6, 189-239.
Barton, N., Grimstad, E., 1994. The Q-System following twenty years of application in NTM Support Sellection, Felsbau, 428-436.
Barton, N., 1995. The Influence of joint properties in modelling jointed rock masses, Keynote Lecture, Proceedings 8th ISRM Congress, Tokyo, 3, Balkema, Rotterdam, 10231032.
Barton, N., 2002. Some New Q-Value correlations to assist in site characterization and tunnel design. International Journal Rock Mechanics Mining Science, 39, 185 216.
Bieniawski, Z. T., 1989. Engineering rock mass classifications. Wiley, New York, 238.
Bulut, F., 1989. Çambaşı (Çaykara-Trabzon) Barajı ve Hidroelektrik Santral yerlerinin mühendislik jeolojisi açısından incelenmesi. Doktora Tezi, KTÜ, Fen Bilimleri Enstitüsü, Trabzon.
Celada, B., Tardaguila, I., Varona, P., Rodriguez A., Bieniawski, Z.T., 2014. Innovating tunnel design by an improved experience-based RMR system. World Tunnel Congress 2014, Iguassu Falls Brazil.
Dearman W. R., 1981. Engineering geology of carbonate rocks, Symposium on Engineering Geological Problems of Construction on Soluble Rocks, Generel Report, Session 1, United Kingdom, 24, 3-17.
Deere, D.U., 1964. Technical description of rock cores for engineering purposed, Rock Mechanics Rock Engineering, 1, 17-22.
Grimstad, E., Barton, N., 2002. Updating the Q-System for NMT. Proceedings International Symposium on Sprayed Concrete-Modern Use of Wet Mix Sprayed Concrete for Underground Support, Oslo, Norwegian Concrete Association, 44-66.
Güven, İ. H., 1993, Doğu Pontidlerin 1/25 000 Ölçekli Jeolojisi ve Komplikasyonu, MTA, (Ankara) Yayınlanmamış.
Hoek, E., Carter, T.G., Diederichs, M.S., 2013. Quantification of the Geological Strength Index Chart, USA.
ISRM (International Society for Rock Mechanics), 1976. Engineering geological maps. The UNESCO Press, 15, 78.
ISRM (International Society for Rock Mechanics), 1981. ISRM Suggested Methods, Rock Characterization, Testing and Monitoring, E. T. Brown (Ed), Pergamon Press London, 211.
ISRM (International Society for Rock Mechanics), 2007. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring, eds: Ulusay R., J.A. Hudson, Kazan Offset Pres, Ankara, 628 s.
Kanık, M., 2015. Maçka (Trabzon) Tüneli destek sistemlerinin görgül ve sayısal analizi. Doktora Tezi, Fırat Üniversitesi, Fen Bilimleri Enstitüsü, Elazığ.
Kaya, A., 2008. Konakönü (Araklı-Trabzon) Tüneli sol tüp giriş portalının jeoteknik açıdan incelenmesi. Yüksek Lisans Tezi, KTÜ, Fen Bilimleri Enstitüsü, Trabzon.
Kaya, A., 2012. Cankurtaran (Hopa-Artvin) tünel güzergahının ve çevresinin jeoteknik açıdan incelenmesi. Doktora Tezi, KTÜ, Fen Bilimleri Enstitüsü, Trabzon.
Kumar, N., Samadhiya, N.K., Anbalagan, R., 2004. Application of rock mass classification system for tunneling in Himalaya, India. International Journal of Rock Mechanics Mining Science, 41 (3), 531. SINOROCK2004 Symposium, Paper 3B 14.
Lawson, A., Bieniawski, Z.T. 2013. Critical assessment of RMR-based tunnel design Practices: A practical Engineers Approach. In: Proceedings. RETC 2013. Washington, DC: Society of Mining Engineers, p. 180-198.
NACS (North American Commission On Stratigraphy), 1983. The American Association of Petroleum Geologists Bulletin, 67(5), 841- 875.
Palmström, A., 1996. RMI-A System for rock mass strength for use in rock engineering. Journal of Rock Mechanics and Tunneling, Technique, India, L-2, 69-108.
Palmström, A., 2005. Measurements of and correlations between block size and rock quality designation (RQD). Tunnels and Underground Space Technology, 20, 326-377.
Şans, G., 2005. Karadeniz Sahilyolu Projesi Hapan Tünel güzergahının mühendislik jeolojisi ve jeomekanik değerlendirmesi. Yüksek Lisans Tezi, İTÜ, Fen Bilimleri Enstitüsü, İstanbul.
TSE, 2009. TS 699, Doğal Yapı Taşları İnceleme ve Laboratuvar Deney Yöntemleri, Türk Standartları Enstitüsü, Ankara.
TSE, 2013. TS EN 1926, Doğal Taşlar - Deney Yöntemleri - tek eksenli basınç dayanımı tayini, Türk Standartları Enstitüsü, Ankara.
Yılmaz, Z., 2017. Boztepe Tüneli (Ordu Çevre Yolu Projesi) kazı çalışmaları sırasında meydana gelen aşırı sökülmelere süreksizlik düzlemlerinin etkisi. Yüksek Lisans Tezi, YYÜ, Fen Bilimleri Enstitüsü, Van.
Youash, Y. Y., 1970. Dynamic physical properties of rock, Proceedings 2nd Congress International Society, Rock, Mechanics, Belgrade, Part -1, Theory and Procedure, 171 -183.
Furat, B , Bulut, F . (2020). Güneyce Karayolu Tüneli Sağ Tüp Giriş ve Çıkış Bölümlerinin Jeoteknik ve Destek Sistemi Açısından İncelenmesi . Jeoloji Mühendisliği Dergisi , 44 (1) , 1-18 . DOI: 10.24232/jmd.740503
Furat, B , Bulut, F . Güneyce Karayolu Tüneli Sağ Tüp Giriş ve Çıkış Bölümlerinin Jeoteknik ve Destek Sistemi Açısından İncelenmesi. Jeoloji Mühendisliği Dergisi 44 (2020 ): 1-18
ABSTRACT:In order to reduce the damages caused by the landslides, it is very important to predict the landslide occurrences
and to determine the landslide susceptibility areas by the current methods in the literature. In this respect, it is aimed
to produce landslide susceptibility maps of Ulus district of Bartın where landslides develop in the same lithology.
The important point of the study is that Chebyshev theorem is tested for selected study area in this study and the
susceptibility map produced by this method is compared with the landslide susceptibility map produced by using data A total of 195 landslides were mapped in the study area and two different sampling strategies, Chebyshevs theorem
and landslide mass were used in the determination of landslide and non-landslide areas. In this study, landslide
susceptibility analysis has been done for the study area by using topographic elevation, aspect, curvature and NDVI
parameters. In the susceptibility analysis using both sampling strategies, Frequency Ratio (FO) method, which is
frequently used in literature, was used and two different susceptibility maps were produced. The performance of the
susceptibility maps was evaluated according to Area Under Curve method (ROC-AUC) and the AUC values were
determined as 0.78 for Chebyshev theorem and 0.72 for the sampling technique according to the number of pixels in
the entire landslide mass, respectively. According to these values, both susceptibility maps were acceptable and the
performance of the susceptibility map produced by sampling with the Chebyshev theorem is relatively higher than
the other sampling method. This result shows that Chebyshev method used in the study is an alternative method that
can be used effectively in landslide susceptibility mapping studies and that the susceptibility map produced by this
method has a successful prediction capacity.
Area Under Curve (AUC)
Chebyshev Theorem
Frequency Ratio (FR)
Landslide Susceptibility
Sampling Technique
Aditian, A., Kubota, T., Shinohara, Y., 2018. Comparison of GIS-based landslide susceptibility models using frequency ratio, logistic regression, and artificial neural network in a tertiary region of Ambon, Indonesia. Geomorphology, 318, 101-111.
Akgün, A., Dağ, S., Bulut, F., 2008. Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood frequency ratio and weighted linear combination models. Environmental Geology, 54, 11271143.
Akgün, A., Türk, N., 2010. İki ve çok değişkenli istatistik ve sezgisel tabanlı heyelan duyarlılık modellerinin karşılaştırılması: Ayvalık (Balıkesir, Kuzeybatı Türkiye) örneği. Jeoloji Mühendisliği Dergisi, 34(2), 85-112.
Akgün, A, Sezer, E.A., Nefeslioglu, H.A., Gökçeoğlu, C., Pradhan, B., 2011. An easy-to-use MATLAB program (MamLand) for the assessment of landslide susceptibility using a Mamdani fuzzy algorithm. Computers Geosciences, 38(1), 23-34.
Akgün, A., 2012. A comparison of landslide susceptibility maps produced by logistic regression, multicriteria decision and likelihood ratio methods: case study at Izmir, Turkey. Landslides, 9(1), 93-106.
Akgün, A., Erkan, O., 2016. Landslide susceptibility mapping by geographical information systembased multivariate statistical and deterministic models: in an artificial reservoir area at Northern Turkey. Arabian Journal of Geosciences, 9, 165, doi: 1
Akgün, A., 2018. Bulanık Uyarlanabilir Rezonans Teorisi (FuzzyART) Yöntemi Kullanılarak Heyelan Duyarlılık Analizi: Tonya (Trabzon) Örneği. GÜFBED/GUSTIJ 8(1), 135-146. doi: 10.17714/gumusfenbil.346532.
Akyol, Z., Arpat, E., Erdoğan, B., Göğer, E., Güner, Y., Şaroğlu, F., Şentürk, İ., Tütüncü, K. ve Uysal, Ş., 1974. 1/50.000 ölçekli Türkiye Jeoloji Haritası Serisi, Zonguldak E29 a, E29 b, E29 c, E29 d, Kastamonu E30 a, E30 d. MTA Yayınları, Ankara.
Aleotti, P., Chowdhury, R., 1999. Landslide hazard assessment: summary review and new perspectives. Bulletin of Engineering Geology and Environment, 58, 21-44.
Althuwaynee, O.F., Pradhan, B., Park, H.J., 2014. A novel ensemble bivariate statistical evidential belief function with knowledge-based analytical hierarchy process and multivariate statistical logistic regression for landslide susceptibility mappin
Ayalew, L., Yamagishi, H., 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology, 65, 15-31.
Beguería, S., 2006. Validation and evaluation of predictive models in hazard assessment and risk management. Natural Hazards, 37(3), 315329.
Can, A., Dagdelenler, G., Ercanoglu, M., Sonmez, H., 2019. Landslide susceptibility mapping at Ovacık-Karabük (Turkey) using different artificial neural network models: comparison of training algorithms. Bulletin of Engineering Geological Environment
Cevik, E., Topal, T., 2003. GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environmental Geology, 44, 949-962.
Chen, W., Li, W., Chai, H., Hou, E., Li, X., Ding, X., 2016. GIS-based landslide susceptibility mapping using analytical hierarchy process (AHP) and certainty factor (CF) models for the Baozhong region of Baoji City, China. Environmental Earth Scienc
Chen, W., Pourghasemi, H.R., Panahi, M., Kornejady, A., Wanh, J., Xie, X., Cao, S., 2017. Spatial prediction of landslide susceptibility using an adaptive neuro-fuzzy inference system combined with frequency ratio, generalized additive model, and sup
Choi, J., Oh, H.-J., Lee, C., Lee, S., 2012. Combining landslide susceptibility maps obtained from frequency ratio, logistic regression and artificial neural network models using ASTER images and GIS, Engineering Geology, 124, 12-23.
Clerici, A., Perego, S., Tellini, C., Vescovi, P., 2006. A GIS-Based automated procedure for landslide susceptibility mapping by the conditional analysis method: The Baganza valley case study (Italian Northern Apennines). Environmental Geology, 50, 9
Conforti, M., Pascale, S., Robustelli, G., Sdao, F., 2014. Evaluation of prediction capability of the artificial neural networks for mapping landslide susceptibility in the Turbolo River catchment (Northern Calabria, Italy). Catena, 113, 236-2
Dağ, S., Bulut, F., Alemdağ, S., Kaya, A., 2011. heyelan duyarlılık haritalarının üretilmesinde kullanılan yöntem ve parametrelere ilişkin genel bir değerlendirme. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi,1(2), 151-176.
Dağdelenler, G., 2013. Heyelan Duyarlılık Haritalarının Üretilmesinde Örneklem ve Doğrulama Stratejilerinin Değerlendirilmesi (Gelibolu Yarımadasının Doğu Kesimi). Doktora Tezi, Hacettepe Üniversitesi, Ankara.
Dağdelenler, G., Nefeslioğlu, H.A., Gökçeoğlu, C., 2016. Modification of seed cell sampling strategy for landslide susceptibility mapping: an application from the Eastern part of the Gallipoli Peninsula (Canakkale, Turkey). Bulletin of Engineering Ge
Dağdelenler, G., Ercanoğlu, M., Sönmez, H., Özsayın, E., Güleç, F., 2017. Topoğrafik haritalardan yararlanarak heyelan envanter haritalamasının coğrafi bilgi sistemleri (CBS) ortamında otomatik olarak elde edilmesine yönelik bir çalışma: Ulus (Bartın
Dirican, A., 1991. ROC eğrisi çözümlenmesi ile tanı testlerinin değerlendirilmesi ve bilgisayar uygulaması. Doktora tezi, İstanbul Üniversitesi Sağlık Bilimleri Enstitüsü, İstanbul.
Duman, T.Y., Can, T., Gokceoglu, C., 2006. Application of logistic regression for landslide susceptibility zoning of Cekmece Area Istanbul Turkey. Environmental Geology, 51(2), 241-256.
EMDAT, 2016. The International Disaster Database. http://www.emdat.be.
Ercanoğlu, M., 2005. Landslide susceptibility assessment of SE Bartin (West Black Sea region, Turkey) by artificial neural networks. Natural Hazards and Earth System Sciences, 5, 979992.
Ercanoğlu, M., Kasmer, O., Temiz, N., 2008. Adaptation and comparison of expert opinion to analytical hierarchy process for landslide susceptibility mapping. Bulletin of Engineering Geology and Environment, 67, 565-578.
Ercanoğlu, M., Temiz, F.A., 2011. Application of logistic regression and fuzzy operators to landslide susceptibility assessment in Azdavay (Kastamonu, Turkey). Environmental Earth Sciences, 64, 949-964.
Ercanoğlu, M., Dağdelenler, G., Özsayın, E., Alkevli, T., Sönmez, H., Özyurt, N.N., Kahraman, B., Uçar, İ., Çetinkaya, S., 2016. Application of Chebyshev theorem to data preparation in landslide susceptibility mapping studies: an example from Yenice
Erener, A., Düzgün, H.S.B., 2010. Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of more and romsdal (Norway). Landslides, 7(1), 55-68.
Erener, A., Düzgün, H.S.B., 2012. Landslide susceptibility assessment: what are the effects of mapping unit and mapping method? Environmental Earth Science, 66, 859877. DOI 10.1007/s12665-011-1297-0.
Ersoy, Ş., Nurlu, M., Gökçe, O., Özmen, B., 2017. 2016 Yılında Dünyada ve Türkiyede Meydana Gelen Doğa Kaynaklı Afet Kayıplarının İstatistiksel Değerlendirmesi. Mavi Gezegen, Sayı:22, 13-27 s.
Faraggi, D., Reiser, B., 2002. Estimation of the area under the ROC curve. Stat Med. 21, 3093-3106.
Fawcett,T., 2006. An introduction to ROC analysis. Pattern Recognition Letters, 27, 861- 874.
Fell, R., Corominas, J., Bonnard, C., Cascini, L., Leroi, E., Savage, W.Z., 2008. On behalf of the itc-1 joint technical committee on landslides and engineered slopes: guidelines for landslide susceptibility, hazard and risk zoning for land use plann
Fernandez, T., Irigaray, C., El Hamdouni, R., Chacon, J., 2003. methodology for landslide susceptibility mapping by means of a GIS application to the contravies area (Granada, Spain). Natural Hazards, 30(3), 297-308.
Gorum, T., Gonencgil, B., Gokceoglu, C., Nefeslioglu, H.A., 2008. Implementation of reconstructed geomorphologic units in landslide susceptibility mapping: The Melen Gorge (NW Turkey). Natural Hazards, 46(3), 323351.
Guzzetti, F., Carrara, A., Cardinali, M., Reichenbach, P., 1999. Landslide hazard evolution: a review of current techniques and their applicaton in a multi-scale study, Central Italy. Geomorphology, 31, 181-216.
Guzzetti, F., Reichenbach, P., Cardinali, M., Galli, M., Ardizzone, F., 2005. Probabilistic landslide hazard assessment at the basin scale. Geomorphology, 72, 272299.
Guzzetti, F., Reichenbach, P., Ardizzone, F., Cardinali, M., Galli, M., 2006. Landslide hazard assessment in the Collazzone area, Umbria, Central Italy. Natural Hazards and Earth System Sciences, 6, 115131.
Kanungu, D.P., Arora, M.K., Sarkar, S., Gupta, R.P., 2009. A fuzzy set based approach for integration of thematic maps for landslide susceptibility zonation. Georisk, Vol. 3, Issue 1, 30-43.
Kawabata, D., Bandibas, J., 2009. Landslide susceptibility mapping using geological data, a DEM from ASTER images and an Artificial Neural Network (ANN). Geomorphology, 113, 97-109.
Komac, M., 2006. A landslide susceptibility model using the Analytical Hierarchy Process method and multivariate statistics in perialpine Slovenia. Geomorphology, 74 (1-4), 17-28.
Kundu, S., Saha, A.K., Sharma, D.C., 2013. Remote sensing and gis based landslide susceptibility assessment using binary logistic regression model: a case study in the ganeshganga watershed himalayas. Journal of the Indian Society of Remote Sensing,
Lee, S., Min, K., 2001. Statistical analysis of landslide susceptibility at Yongin, Korea. Environmental Geology, 40, 1095-1113.
Melchiorre, C., Matteucci, M., Azzoni, A., Zanchi, A., 2008. Artificial neural networks and cluster analysis in landslide susceptibility zonation. Geomorphology, 94, 379-400.
Nandi, A., Shakoor, A., 2009. A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Engineering Geology, 110(1-2), 11-20. doi: 10.1016/j.enggeo. 2009.10.001.
Nefeslioglu, H., Gokceoglu, C., Sonmez, H., 2008. An assessment on the use of logistic regression and artificial neural networks with different sampling strategies for the preparation of landslide susceptibility maps. Engineering Geology, 97(3/4),171
Nefeslioğlu, H.A., Gökçeoğlu, C., Sönmez, H., Görüm, T., 2011. Medium-scale hazard mapping for shallow landslide initiation: the Buyukkoy catchment area (Cayeli, Rize, Turkey). Landslides, 8(4), 459-483.
Obuchowski, N.A., 2005. ROC analysis. American Journal of Roentgenology, 184, 364-372.
Ozdemir, A., Altural, T., 2013. A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180-197.
Pradhan, B., Lee, S., 2010. Landslide susceptibility assessment and factor effect analysis: back propagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling. Environmental Modelling and
Pradhan, B., 2013. A comparative study on the predictive ability of the decision tree support vector machine and neuro-fuzzy models in landslide susceptibility mapping using GIS. Computers & Geosciences, 51, 350-365. doi: 10.1016/j.cageo. 2012.08.023
Romer, C., Ferentinou, M., 2016. Shallow landslide susceptibility assessment in a semiarid environment-A Quarternary catchment of KwaZulu-Natal, South Africa. Engineering Geology, 201, 29-44.
San, B.T., 2014. An evaluation of SVM using polygon-based random sampling in landslide susceptibility mapping: The Candir catchment area (western Antalya Turkey). International Journal of Applied Earth Observation and Geoinformation, 26, 399-412. doi
Suzen, M.L., Doyuran, V., 2004. Data driven bivariate landslide susceptibility assessment using geographical information systems: A method and application to Asarsuyu catchment, Turkey. Engineering Geology, 71, 303-321.
Tien Bui, D., Tuan, T., Klempe, H., Pradhan, B., Revhaug, I., 2016. Spatial prediction models for shallow landslide hazards: a comparative assessment of the efficacy of support vector machines, artificial neural networks, kernel logistic regression,
Tunusluoglu, M.C., Gökçeoğlu, C., Nefeslioğlu, H.A. ve Sönmez, H., 2008. Extraction of potential debris source areas by logistic regression technique: A case study from Barla. Besparmak and Kapi Mountains (NW Taurids. Turkey). Environmental Geology,
Ozdemir, A., Altural, T., 2013. A comparative study of frequence ratio weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180-197.
Umar, Z., Pradhan, B., Ahmad, A., Jebur, M.N. ve Tehrany, M.S., 2014. Earthquake induced landslide susceptibility mapping using an integrated ensemble frequency ratio and logistic regression models in West Sumatera Province. Indonesia, CATENA, 118, 1
Van Westen, C.J., Castellanos, E., Kuriakose, S.L., 2008. Spatial data for landslide susceptibility, hazard and vulnerability assessment: An overview. Engineering Geology, 102, 112-131.
Varnes, D.J., 1978. Slope Movement Types and Processes. In: Schuster, R.L. and Krizek, R.J., Eds., Landslides: analysis and control, National Research Council, Washington DC, Transportation Research Board, Special Report 176, National Academy Press,
Wang, L.J., Sawada, K., Moriguchi, S., 2013. Landslide susceptibility analysis with logistic regression model based on FCM sampling strategy. Computers and Geosciences, 57, 81-92.
Wang, L.J., Guo, M., Sawada, K., Lin, J., Zhang, J., 2015. Landslide susceptibility mapping in Mizunami City, Japan: a comparison between logistic regression, bivariate statistical analysis and multivariate adaptive regression spline models. Catena,
Yalçın, A., Bulut, F., 2007. Landslide susceptibility mapping using GIS and digital photogrammetric techniques: A case study from Adresen (NETurkey). Natural Hazards, 41, 201-226.
Yalçın, A., 2008. GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Adresen (Turkey): Comparisons of results and confirmations. Catena, 72, 1-12.
Yalçın, A., Reis, S., Aydınoğlu, A.C., Yomralıoğlu, T., 2011. A GIS-based comparative study of frequency ratio, analytical hierarchy process. bivariate statistics and logistics regression methods for landslide susceptibility mapping in Trabzon, Ne Tu
Yao, X., Tham, L.G., Dai, F.C., 2008. Landslide susceptibility mapping based on support vector machine: a case study on natural slopes of Hong Kong, China. Geomorphology, 101, 572582.
Yesilnacar, E., Topal, T., 2005. Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study Hendek region (Turkey). Engineering Geology, 79(3-4), 251-266. doi:10.1016/j. enggeo. 2005.02.0
Yılmaz, I., 2009. Landslide susceptibility mapping using frequency ratio logistic regression artificial neural networks and their comparison: A case study from Kat landslides (Tokat-Turkey). Computers & Geosciences, 35(6), 1125-1138. doi: 10.1016/j.c
Yılmaz, I., 2010. The effect of the sampling strategies on the landslide susceptibility mapping by conditional probability and artificial neural networks. Environmental Earth Sciences, 60(3), 505-519. doi: 10.1007/s12665-009-0191-5.
Dağdelenler, G . (2020). İki Farklı Örneklem Tekniği Kullanılarak Oluşturulan Heyelan Duyarlılık Haritalarının Frekans Oranı (FO) Yöntemi ile Karşılaştırılması . Jeoloji Mühendisliği Dergisi , 44 (1) , 19-38 . DOI: 10.24232/jmd.740509
Dağdelenler, G . İki Farklı Örneklem Tekniği Kullanılarak Oluşturulan Heyelan Duyarlılık Haritalarının Frekans Oranı (FO) Yöntemi ile Karşılaştırılması. Jeoloji Mühendisliği Dergisi 44 (2020 ): 19-38
Saffet Deniz Karagöz
Cem Kincal
Mehmet Yalçin Koca
View as PDF
ABSTRACT: A large-scale landslide in an open pit mine located in weathered gneiss unit in Menderes Massif occurred on
19.12.2018. The open pit mine failure occurred on a fairly shallow failure surface (maximum depth: 17 m), running
almost parallel to the slope face. At that time, the overall slope height was 80 meters (elevations: 490 m 410 m) and
overall slope angle 25°. The failure involved around 700 × 103 m3 of rock. Significant displacements in rock slopes
in the pit occurred before the failure surfaces had fully developed. This study aims to investigate the causes of the
landslide and to monitor slope movements in the landslide area before the failure. While monitoring the movement
(between 2017 and 2018, 750 days), amount of rainfall per day and per hour was also measured and recorded.
The amount of rainfall has been evaluated in conjunction with the time-dependent slope movement data (timedependent
surface displacement measurements) by using the software GeoMoS to determine the relationship
between the geological structure and the landslide mechanism. Some small scale instabilities have been observed in
the hanging wall beforehand. The large scale failure of the hanging wall, however, has progressed during the periods
of heavy rainfall, suggesting that the variations in groundwater pressures triggered larger displacements along the
developed failure surface. During dry weather, the slope moved at a rate of about 3.5 mm/day. Slope movement
slightly accelerated in open pit due to the work of third overburden removal at the date of 04.12.2018. Until the
uncontrolled overburden removal at the slope toe (14.12.2018), the amount of the total resultant displacement of
the slope increased up to 100 cm and the rate of slope movement was calculated as 10 cm/day. Finally, from the
uncontrolled excavation of the slope toe (14.12.2018) to 19.12.2018 (when the landslide occurred) the movement
accompanied by the intense rainfall, occurred as 160 cm/day. Total resulting displacement of the slope at the end
of this measurement campaign was at the amount of 10.5 m. In addition, some indicators before the failure were
determined to define the different stages of the landslide. It was also determined that the most important indicators
are the displacements, heaves, and shear-strain accumulation at an elevation near the slope toe.
Landslide
Open pit
Slope movements
Rainfall
Monitoring
Afeni, T.B., Cawood, F.T., 2013. Slope monitoring using total station: What are the challenges and how should these be mitigated? South African Journal of Geomatics, Vol. 2, No. 1, 41 53.
Allasia, P., Manconi, A., Giordan, D. Baldo, M. Lollino, G., 2009. ADVICE: A new pproach for near-real-time monitoring of surface displacements in landslide hazard scenarios. Sensors, 3, 82858302.
Bell, R., Glade, T., 2004. Natural hazards and earth system sciences quantitative risk analysis for landslides Examples from B´ıldudalur, NW Iceland. Natural Hazards and Earth System Sciences, 4, 117131.
Call, R.D., 1982. Monitoring pit slope behavior, In Proc. 3rd Int. Conf. on Stability in Surface Mining (Vancouver, June 1 3, pp. 229 248. New York: Society of Mining Engineers, A. I. M. E.
Call, R.D., Savely, J.P., 1991. Open pit rock mechanics. In SME Mine Engineering Handbook. New York; AIME, pp. 860 882.
Call, R.D., Cicchini, P.F., Ryan, T.M., Barkley, R.C., 2000. Managing and analyzing overall pit slopes. In Slope Stability in Surface Mining/Edited by William A. Hustrulid, Michael K. McCarter, Dirk, J. A. Van Zyl, Published by the Society for Mining
Franklin, J.A., 1977. The monitoring of structures in rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 14, 163 192.
NetCad GIS 7, 2015. NetCad GIS yazılım kullanma kılavuzu.
karagöz, S.D., Koca, M.Y., 2016. Alipaşa açık ocak albit madeninde meydana gelen heyelanın GPS kullanılarak izlenmesi ve oluşum nedenleri. Jeoloji Mühendisliği Dergisi, 40 (1), s. 2752.
Kadakçı, K.T., Koca, M.Y., 2014. Açık ocak albit işletmesindeki kaya şevlerinin sonlu elemanlar yöntemi kullanılarak duraylık değerlendirmesi. Jeoloji Mühendisliği Dergisi, 38(1), 1 19.
Koca, M.Y., Kahraman, B., Karakuş, D., Özdoğan, M.V., 2010. General assessment of the stability of overall slope of the Alipaşa albite mine. Dokuz Eylül Üniversitesi, 156 s. (unpublished).
Koca, M.Y., Kahraman, B., Kıncal, C., 2012. Report of overall slope stability assessment of the Alipaşa open pit mine. Dokuz Eylül University, 80 s. (unpublished).
Leica Geosystems AG, 2013. Amberg Technologies AG. Ankara. www.sistemas.com.tr. Total Station GRS tm50 Geotechnical E. 541 7394/7306/.
MapInfo Professional 8.0, 2000. Software manual.
Martin, D.C., 1993. Time dependent deformation of rock slopes. University of London, PhD Thesis, London.
Palozzo, D., Friedmann, R., Nadal, C., Santos-Filho, M., Veiga, L., Faggion, P., 2006. Dynamic monitoring of structures using a Robotic Total Station. XXIII FIG Congress, Munich, Germany, Oct. 8-13, 10pp.
Sjöberg, J., 1999. Analysis of large-scale rock slopes. Doctoral thesis 1999: 01, Division of Rock Mechanics, Lule University of Technology.
Simon, L., Valentin, G., Jeffrey, M.Keller, Signer, A., 2012. Monitoring of potentially catastrophic rockslides. CRC Press, London, 101 116.
Tanyaş, H., Ulusay, R., 2013. Assessment of structurally-controlled slope failure mechanisms and remedial design considerations at a feldspar open pit mine, Western Turkey. Engineering Geology, 155, 54 68.
Wang J., Gao J., Liu Ch., Wang J., 2010. High precision slope deformation monitoring model based on the GPS/Pseudolites technology in open-pit mine. Mining Science and Technology 20, 01260132.
Karagöz, S , Kıncal, C , Koca, M . (2020). Menderes Masifi′nde Açılmış Açık Ocak Albit Madenindeki Bir Duraysızlığın Nedenlerinin Araştırılması ve Robotic Total Station Cihazı Kullanılarak Yenilme Öncesinde Şev Hareketlerinin İzlenmesi . Jeoloj
Karagöz, S , Kıncal, C , Koca, M . Menderes Masifi′nde Açılmış Açık Ocak Albit Madenindeki Bir Duraysızlığın Nedenlerinin Araştırılması ve Robotic Total Station Cihazı Kullanılarak Yenilme Öncesinde Şev Hareketlerinin İzlenmesi. Jeoloji Mühendi
AFAD, 2018. Türkiye deprem tehlike haritası, interaktif web uygulaması. (https://tdth.afad.gov. tr/TDTH/main.xhtml. Ziyaret tarihi: 12.09.2019)
Altundağ, E., 2013. İzmir ili, Karabağlar ilçesi, 540 hektarlık alanın 1/1.000 ölçekli imar planına esas jeolojik-jeoteknik etüd raporu, 241 s.
ASTM D6528-17, 2017. Standard test method for consolidated undrained direct shear testing of fine grained soils. ASTM International, West Conshohocken, PA.
Bishop, A. W., 1955. The use of slip circle in the stability analysis of earth slopes. Geotechnique, 5(1), 7-17.
Corps of Engineers, 1982. Slope stability manual EM- 1110-2-1902. Washington DC, Department of the Army, Office of the Chief of Engineers.
Cruden, D.M., 1991. A simple definition of a landslide. Bulletin International Assocication Engineering Geology, 43, 27-30.
Cruden, D.M., Fell, R., 1997. Workshop on landslide assessment. Proc. Int. Workshop on Landslide Risk Assessment, Hawaii, USA, 371p.
Emre, Ö., Özalp, S., Doğan, A., Özaksoy, V., Yıldırım, C., Göktaş, F., 2005. İzmir yakın çevresinin diri fayları ve deprem potansiyelleri. MTA Raporu, 10754, 86 s.
Erdoğan, B., 1990. İzmirAnkara Zonunun İzmir ile Seferihisar arasindaki bölgede stratigrafik özellikleri ve tektonik evrimi. TPJD Bülteni, 2, 20 s.
Fellenius, W., 1927. Erdstatische Berechnungen mit Reibung und Kohäsion (Adhäsion) und unter Annahme kreiszylindrischer GleitflächenErnst & Sohn, Berlin.
Genç, S.C., Altunkaynak, S., Karacik, Z., Yazman, M., Yılmaz, Y., 2001. The Çubukludag graben, south of Izmir: tectonic significance in the Neogene geological evolution of the Western Anatolia. Geodinamica Acta, 14, 1-12.
Hungr, O., Leroueli, S., Picarelli, L., 2014. The Varnes classification of landslide types, an update. Landslides, 11, 167-194.
Hynes-Griffin M.E., Franklin A.G., 1984. Rationalizing the seismic coefficient method. U.S. Army Corps of Engineers Waterways Experiment Station, Vicksburg, Mississippi, GL- 84-13, 21 p.
IAEG Commission on Landslides, 1990. Suggested nomenclature for landslides. Bulletin of International Association of Engineering Geology, 41, 13-16.
Janbu, N., 1968. Slope stability computations. Soil Mechanics and Foundation Engineering, Technical University of Norway
Jibson, R.W., 2011. Methods for assessing the stability of slopes during earthquakes, a retrospective. Engineering Geology, 122, 43-50.
Kılıç, R., 2013. İzmir İli, Karabağlar Bölgesindeki heyelanların ve duraylılığının incelenmesine ait jeoteknik rapor, 40 s.
Kıncal, C., Akgün, A., Koca, M.Y., 2009. Landslide susceptibility assessment in the İzmir (West Anatolia,Turkey) city center and its near vicinity by the logistic regression method. Environmental Earth Sciences, 59, 745-756.
Kramer S.L.,1996. Geotechnical earthquake engineering. Prentice-Hall, Inc., Upper Saddle River, NJ, 653 p.
Lowe, J., Karafiath, L., 1960. Stability of earth dams upon drawdown. 1st Pan American Conference on Soil Mechanics and Foundation Engineering, Mexico City, 2, 537-552.
Marcuson W.F, Franklin A.G, 1983. Seismic design, analysis and remedial measures to improve the stability of existing earth dams - Corps of Engineers approach. Seismic Design of Embankments and Caverns, T.R. Howard, Ed., NY, ASCE.
Melo, C. and Sharma, S., 2004. Seismic coefficients for pseudostatic analysis. 13th World Conference on Earthquake Engineering. Paper no: 369, Vancouver, Canada, 15 p.
Morgenstern, N.R., Price, V.E., 1965. The analysis of the stability of general slip surfaces. Geotechnique, 15(1), 77-93..
Onions, C. T., William Little, H. W. Fowler, and J. S. Coulson, 1933. The Shorter Oxford English Dictionary. London: Oxford University Press. 2nd ed.
Sarma, S. K., 1973. Stability analysis of embankment and slopes. Geotechnique, 23(3), 423-433.
Schuster, R.L., 1996. Socio-economic significance of landslides. In: Turner, Schuster (eds.) Landslides: investigation and mitigation. TRB National Research Council Special report 247, 129-177 p.
Seed, H.B., 1979. Considerations in the earthquakeresistant design of earth and rock fill dams. Géotechnique, 29(3), 215-263.
Şengör, A.M.C., Satir, M., Akkök, R., 1984. Timing of tectonic events in the Menderes Massif, Western Turkey: implications for tectonic evolution and evidence for Pan African basement in Turkey. Tectonics, 3, 693-707.
Spencer, E.A., 1967. Method of analysis of the stability of embankments, assuming parallel interslice forces. Geotechnique, 17, 11-2
Tarcan, G., Koca, M.Y., 2000. Hydrogeologial and geotechnical assessment of the Kadifekale landslide area, İzmir, Turkey. Environmental Geology, 40 (3), 289-299 p.
Terzaghi, K., 1950. Mechanisms of landslides. Engineering Geology (Berkeley) Volume, Geological Society of America.
TS 1900-1, 2006. İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri- Bölüm 1: Fiziksel Özelliklerin Tayini. Ankara, 99 s.
U.S. Army Corps of Engineers, 1970. Engineering and design-stability of earth and rockfill dams. Engineer Manual EM1110-2-1902. Department of the Army, Corps of Engineers, Washington D.C.
Uzel, B., Sözbilir, H., 2008. A first record of a strikeslip basin in western Anatloia and its tectonic implication: The Cumaovası Basin. Turkish Journal of Earth Sciences, 17, 559-591.
Varnes, D.J., 1978. Slope movement types and processes. In: Schuster RL, Krizek RJ, editors. Landslides: Analysis and Control. TRB Special Report, 11-33 p.
Varnes D.J, 1984. Landslide hazard zonation-areview of principles and practice, UNESCO Press, Paris, 63 p.
WP/WLI (Working Party on world landslide inventory), 1993. A suggested method for describing the activity of a landslide. Bulletin International Association Engineering Geology, 47, 53-57.
Yılmaz, Y., Genç, S.C., Gürer, F., Bozcu, M., Yılmaz, K., Karacık, Z., Altunkaynak S., Elmas, A., 2000. When did the western Anatolian grabens begin to develop? In: Bozkurt E., Winchester J.A., Piper J.D.A. (Eds.). Tectonics and magmatism in Turkey a
Ulamış, K , Kılıç, R . (2020). Karabağlar (İzmir) Bölgesindeki Heyelanların Olası Yenilme Koşulları . Jeoloji Mühendisliği Dergisi , 44 (1) , 67-78 . DOI: 10.24232/jmd.740530
Ulamış, K , Kılıç, R . Karabağlar (İzmir) Bölgesindeki Heyelanların Olası Yenilme Koşulları. Jeoloji Mühendisliği Dergisi 44 (2020 ): 67-78
ABSTRACT: In this study, surface waters and groundwater interactions were investigated at the Attepe-Elmadağ-Menteş-
Karaçat iron fields. The study area takes place in the Menteş upper watershed and the nearby surroundings, which
is located in the Seyhan River main basin. The study area is composed of the metamorphic metacarbonates and
metaclastics, which were subjected to low grade metamorphism in the Precambrian-Ordovician age range. Miocene
conglomerates and current alluviums overlie them with angular unconformity. In the region where the basin is
located, the metacarbonates (recrystallized limestone and dolomites) which are highly fractured, cracked and in
some places have dominantly karstic structure, have been identified as the main aquifer. The Menteş Stream forms
the natural groundwater discharge route and the erosion level of karstification of the aquifer. The faults prevent
the continuity of the karstic aquifer by determining the lateral and vertical positions of other impermeable units. It has been shown that groundwater, recharged with diffuse infiltration by precipitation and a large amount of point
infiltration from the Menteş creek, is shallow circulated young water with a short residence time of 5-10 years. It is
determined that a large part of the Menteş Creek (150-1000 L/s at dry and wet seasons, respectively) disappeared and
added to the Karaçat aquifer. The average flow rate of the Menteş stream was calculated as 474 L/s at the eastern
lower basin exit. The Karaçat aquifer, which also includes Karaçat underground mine quarry, is recharged from
the Menteş Creek rather than neighboring basins. Hydrogeological investigations and isotope data confirmed the
previous work result that there is no flow relation between Attepe lake and Karaçat aquifer.
Arda, N., Tiringa, D., Ateşçi, B., Akça, A. ve Tufan, E., 2008. Yahyalı (Kayseri)- Mansurlu (Feke- Adana) yöresi demir sahaları maden jeolojisi ara raporu. MTA Rap. No: 11093, 75 s., Ankara (yayınlanmamış).
Arıkan, Y., 1968. Mansurlu (Feke-Yahyalı) demir zuhurları. MTA Derleme No:3992.
Ayhan, A., İplikçi, E., 1978. Adana iline bağlı Kozan Feke Saimbeyli civarının jeolojik etüdü. MTA Derleme No: 6737, Ankara (yayınlanmamış).
Ayhan, A., 1988. 1:100.000 ölçekli açınsama nitelikli Türkiye jeoloji haritaları serisi.
Burgan, H. I., Aksoy, H., 2018. Annual flow duration curve model for ungauged basins. Hydrology Research 49 (5), 1684-1695.
Blumenthall, M. M., 1941. Niğde ve Adana vilayetleri dahilindeki Torosların jeolojisine umumi bir bakış. MTA Derleme No: 6.
Dayan, S., 2007. Adana-Mansurlu Attepe civarındaki demir yataklarının jeolojik, petrografik ve yapısal özelliklerinin incelenmesi. A.Ü. Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi 125 s. (yayınlanmamış).
Demiroğlu M., Örgün Y., 2016. Menteş Havzası Yeraltısularının Hidrojeokimyasal Özellikleri (Yahyalı- Kayseri). Türkiye Jeoloji Bülteni, 59(3), 275-297.
Eken, E., 2012. Mağarabeli (Mansurlu Feke havzası, adana) demir yatağının maden jeolojisi. Ankara Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, 139 s. Ankara(yayınlanmamış).
Gürkan, A., 1966. Mansurlu-Feke demir zuhurları ön raporu. MTA Maden Etüt Arşiv No:861.
https://gdex.cr.usgs.gov/gdex USGS LP DAACThe Land Processes Distributed Active Archive Center (LP DAAC), Earth Observing System Data and Information System.
Küpeli, Ş., 1991. Attepe (Mansurlu-Feke) Yöresi Demir Yataklarının Jeolojik, Petrografik ve Jenetik İncelemesi. Selçuk Üniv. Fen Bil. Enst., Doktora Tezi, 227 s., Konya (yayınlanmamış).
Küpeli, Ş., 1998. Attepe (Mansurlu-Feke-Adana) yöresi demir yataklarının jeolojisi ve kökeni. C. Ü. Müh. Fak. Derg., Seri A-Yerbilimleri, 15 (1), 101-118.
Lucias, M., 1927. Antitoros silsilesinde, Zamantı Suyu ile Göksu arasında Faraşa demir madeni zuhurunda yapılan jeolojik taharriyat hakkında rapor. MTA Derleme No: 421, 84s.
Özgül, N., 1971. Orta Torosların kuzey kesiminin yapısal gelişiminde blok hareketlerin önemi. TJK Bülteni, Cilt: 14, 75-87.
Özgül, N., 1976. Torosların bazı temel jeolojik özellikleri. TJK Bülteni, 16, 39-52.
Özgül, N., Kozlu, H., 2002. Kozan-Feke (Doğu Toroslar) yöresinin stratigrafisi ve yapısal konumu ile ilgili bulgular. TPJD Bülteni, 14(1), 1-36.
Rondot, J., 1956. 1/100000lik jeoloji 94/1.2.3. paftaları. MTA Derleme No:2519.
Schwertmann, U., 1991. Solubility and dissolution of iron oxides. Plant and Soil 130, 1-25.
Şahin, M., Bakırdağ, L., Adıgüzel, O., 1984. Adana- Feke-Mansurlu-Mağarabeli demir madeni jeoloji ve rezerv raporu. MTA Derleme No:7506.
Şahin, M., Bakırdağ, L., 1985. Kayseri-Adana- Yahyalı, Delialiuşağı, Karakızoluğugediği, Mağarabeli (güney bölüm) Hanyeri demir madeni jeoloji ve rezerv raporu. MTA Derleme No: 7635.
Tiringa, D., 2009. Kayseri-Yahyalı-Karaköy, Karaçat demir yatağının maden jeolojisi. Ankara Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, 139 s., Ankara(yayınlanmamış).
Tiringa, D., Ünlü, T., Sayılı, İ. S., 2009. Kayseri- Yahyalı-Karaköy, Karaçat demir yatağının maden jeolojisi. Jeoloji Mühendisliği Dergisi, 33 (1), 1-43.
Demiroğlu, M , Örgün, Y . (2020). Attepe - Elmadağ-MenteşKaraçat Demir Sahalarında Yüzey Suyu-Yeraltı Suyu İlişkisinin Araştırılması . Jeoloji Mühendisliği Dergisi , 44 (1) , 79-98 . DOI: 10.24232/jmd.740540
Demiroğlu, M , Örgün, Y . Attepe - Elmadağ-MenteşKaraçat Demir Sahalarında Yüzey Suyu-Yeraltı Suyu İlişkisinin Araştırılması. Jeoloji Mühendisliği Dergisi 44 (2020 ): 79-98
peridotite Nappes) units are impermeable units-2; and Babadağ formation, Aksu formation, Çamova member and
Gebeciler formation are semi-permeable units. It is determined that the groundwater flow is towards the north-east direction in the plain. In order to determine the hydrogeochemical properties of the groundwater in the study area,
water samples were taken and chemical analyzes were performed. Groundwater in the region are Ca-Mg-HCO3
types. Groundwater is not suitable for human consumption due to limit exceeding As/Mn/Fe/NO3 concentrations.
This is due to the water-rock interactions and/or agricultural activities in the region. It has been determined that
groundwater in the study area can be used as irrigation water.
Tavas plain
Hydrogeology
Hydrogeochemistry
Groundwater
Akın, M. ve Akın, G., 2007. Suyun önemi, Türkiyede su potansiyeli, su havzaları ve su kirliliği, Ankara Üniversitesi Dil ve Tarih-Coğrafya Fakültesi Dergisi 47, 2, 105-118.
Atalık, A., 2006. Küresel ısınmanın su kaynakları ve tarım üzerine etkileri, Bilim ve Ütopya, 139, 18-21.
Baba A,, Sözbilir H., 2012. Source of arsenic based on geological and hydrogeochemical properties of Geothermal Systems in Western Turkey, Chemical Geology 334, 364-377.
Dağlı, H., 2005. İçmesuyu kalitesi ve insan sağlığına etkileri, Bizim İller, İller Bankası Aylık Yayın Organı, Sayı 3, 16-21.
Dogan, M., Dogan, A.U., 2007. Arsenic mineralization, source, distribution, and abundance in the Kutahya region of the western Anatolia, Turkey. Environmental Geochemistry and Health, 29, 119129.
Doneen, L.D., 1964. Notes on water quality in agriculture. Published as a water science and engineering paper 4001, Department of Water Science and Engineering, University of California.
Gibbs, R.J., 1970. Mechanisms controlling world water chemistry. Science 17, 10881090.
Havıland, W.A., 2002. Kültürel Antropoloji (Çev: Hüsamettin İnaç, Seda Çiftçi). No: 143. Sosyoloji Serisi: 3. İstanbul: Kaktüs Yayınları.
İTAS, 2005. İnsani Tüketim Amaçlı Sular Hakkında Yönetmelik. Resmi Gazete No: 25730.
Piper. A. M.. 1944. A graphic procedure in the geochemical interpretation of water analyses. Transactions of the American Geophysical Union, 25, 914-923.
Smedley P. L., Kinniburgh D. G., 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry 17(5), 517-568.
Şenel, M., Öztürk, E. M., Özdemir, T., Kadınkız, G., Metin, Y., Serdaroğlu, M., Örçen, S., 1994. Fethiye (Muğla), Kalkan (Antalya) ve Kuzeyinin Jeolojisi, MTA Raporu, Ankara.
WHO, 1989. Health guidelines for the use of wastewater in agriculture and aquaculture. In: Report of a WHO scientific group: technical report series 778, WHO, Geneva, p 74.
WHO, 2011. World Health Organisation Guidelines for Drinking-water Quality, Third Edition Incorporating The First and Second Addenda, WHO Publication, Geneva, 668 p. 2008.
Şener, Ş , Canpolat, G . (2020). Tavas (Denizli) Ovası ve Çevresinin Hidrojeokimyasal İncelemesi . Jeoloji Mühendisliği Dergisi , 44 (1) , 99-116 . DOI: 10.24232/jmd.740534
Şener, Ş , Canpolat, G . Tavas (Denizli) Ovası ve Çevresinin Hidrojeokimyasal İncelemesi. Jeoloji Mühendisliği Dergisi 44 (2020 ): 99-116