Jeoloji Münendisliği Dergisi
Jeoloji Mühendisliği Dergisi

Jeoloji Mühendisliği Dergisi

2016 ARALIK Cilt 40 Sayı 2
COVER
View as PDF
COPYRİHT PAGE
View as PDF
CONTENTS
View as PDF
The Effects of Micro-Textural Properties on the Strength and Deformation Characteristics of Rocks with Andesite and Rhyodasite Compositions Exposed in Gökçeada
Ömer Ündül Namik Aysal
View as PDF

ABSTRACT: The onset of dilation and uniaxial compressive strength of rocks are known to be affected by mineralogical, petrographical and microstructural features. In this study, volcanic rock samples with different micro-textural characteristics from different locations in Gökçeada (Turkey) were evaluated considering the effect of mineralogical, petrographical and microstructural features on their physical and mechanical properties. Furthermore, detailed analyses were also used to understand the cracking processes under axial loads. The analyses of the cracking processes were evaluated by using thin sections obtained from the mechanically tested specimens. The results from the quantitative mineralogical and petrographical studies and observations from thin sections revealed that the mineral mass fractions have an effect on the specific gravity and loss-on-ignition (LOI) values. On the other hand, uniaxial compressive strength (UCS) and elastic properties are mostly affected by petrographic variables (e.g., mineral content). The UCS values tend to decrease with a relative increase in the groundmass with respect to the phenocryst content and vice versa. Biotite is the only mineral that influences the UCS individually. Geometric features (e.g., Feret’s diameter and perimeter) of opaque minerals and biotite are found to be important constituents influencing the Young’s modulus of the rocks. Under axial loads, crack propagation is strongly dependent on the proportional distribution of the phenocryst and groundmass. It is observed that increasing groundmass content leads to predominantly axial cracks. The cracks tend to bend or propagate as a boundary crack when they reach the boundary of an unaltered phenocryst. Thus, axial and shear cracks co-exist with increasing amounts of phenocrysts, which hinder the crack propagation. Occasionally, cracks can penetrate the altered or opaque phenocrysts, depending on the degrees of orientation (with respect to applied load) of the same minerals. Furthermore, the synthesis of the measurements obtained from UCS tests and thin section observations reveals that an increase in the amount of phenocrysts, which promote the formation of more shear cracks in addition to axial cracks, causes an increase in the radial strain and Poisson’s ratio. The other factors investigated have minor effects on the physical and mechanical properties of the studied rocks.

  • Crack Propagation

  • Elastic Properties

  • Physico-Mechanical Properties

  • Gökçeada

  • Volcanic Rocks

  • Akartuna, M., 1950. Imroz Adasinda bazi Jeolojik müşahadeler. Türkiye Jeoloji Kurumu Bülteni 2(2), 8–18.

  • Åkesson, U., Hansson, J., Stigh, J., 2004. Characterisation of microcracks in the Bohus granite, western Sweden, caused by uniaxial cyclic loading. Engineering Geology, 72, 131– 142.

  • Amann, F., Button, E. A., Evans, K. F., Gischig, V. S., Blümel, M., 2011. Experimental study of the brittle behavior of clay shale in shortterm unconfined compression. Rock Mechanics and Rock Engineering 44 (4), 415–430.

  • Amann, F., Ündül, Ö., Kaiser, P., 2014. Crack initiation and crack propagation in heterogeneous sulfate rich clay rocks. Rock Mechanics and Rock Engineering, 47 (5), 1849–1865.

  • ANON, 1995. The description and classification of weathered rocks for engineering purposes. Quaterly Journal of Engineering Geology, 28, 207-242.

  • Arıkan, F., Ulusay, R., Aydın, N., 2007. Characterization of weathered acidic volcanic rocks and a weathering classification based on a rating system. Bulletin of Engineering Geology and the Environment, 66, 415–430.

  • Barton, N., 2007. Rock Quality, Seismic Velocity, Attenuation and Anisotropy. Taylor and Francis, London, 729 p.

  • Baud, P., Wong, T. F., Zhu, W., 2014. Effects of porosity and crack density on the compressive strength of rocks. International Journal of Rock Mechanics & Mining Sciences, 67, 202–211.

  • Bieniawski, Z. T., 1967. Mechanism of brittle failure of rock part I—theory of fracture process. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 4 (4), 395–406.

  • Brace, W. F., 1964. Brittle fracture of rocks. In: Judd,W.R. (Ed.), State of Stress in the Earth›s Crust: Proc., International Conference, Santa Monica, Calif.American Elsevier Publishing Company, New York, 110–178 p.

  • Brace, W. F., Paulding, B. R., Scholz, C., 1966. Dilatancy in fracture of crystalline rocks. Journal of Geophysical Research, 71 (16), 3939–3953.

  • Brace, W. F., Silver, E., Hadley, K., Goetze, C., 1972. Cracks and pores: a closer look. Science 178 (4057), 162–164.

  • Chen, S., Yue, Z. Q., Tham, L. G., 2004. Digital image-based numerical modeling method for prediction of inhomogeneous rock failure. International Journal of Rock Mechanics and Mining Sciences, 41, 939–957.

  • Coggan, J. S., Stead, D., Howe, J. H., Faulks, C. I., 2013. Mineralogical controls on the engineering behavior of hydrothermally altered granites under uniaxial compression. Engineering Geology, 160, 89–102.

  • Eberhardt, E., Stimpson, B., Stead, D., 1999. Effect of grain size on the initiation and propagation threshold of stress-induced brittle fracture. Rock Mechanics and Rock Engineering, 32 (2), 81–99.

  • Gerçek, H., 2007. Poisson’s ratio values for rocks. International Journal of Rock Mechanics and Mining Sciences, 44, 1–13.

  • Griffith, A. A., 1924. Theory of rupture. Proceedings of the First International Congress of Applied Mechanics: Delft, 55–63 p.

  • Gupta, V., Sharma, R., 2012. Relationship between textural, petrophysical and mechanical properties of quartzites: a case study from northwestern Himalaya. Engineering Geology, 135–136, 1–9.

  • Hatzor, Y. H., Palchik, V., 1997. The influence of grain size and porosity on crack initiation stress and critical flaw length in dolomites. International Journal of Rock Mechanics and Mining Science, 34 (5), 805-816.

  • Howarth, D. F., Rowlands, J. C., 1986. Development of an index to quantify rock texture for qualitative assessment of intact rock properties. Geotechnical Testing Journal, 9 (4), 69–79.

  • Hudson, J. A., Cosgrove, J. W., Kemppainen, K., Johansson, E., 2011. Faults in crystalline rock and the estimation of their mechanical properties at the Olkiluoto site, western Finland. Engineering Geology, 117, 246-258.

  • ISRM, 2007. The complete ISRM suggested methods for rock characterization, testing and monitoring. Kozan, Ankara, 1974–2006 p.

  • Koral, H., Öztürk, H., Hanilçi, N., 2009. Tectonically induced coastal uplift mechanism of Gökçeada Island, Northern Aegean Sea,Turkey. Quaternary International, 197, 43–54.

  • Lajtai, E. Z., 1974. Brittle fracture in compression. International Journal of Fracture, 10 (4), 525– 536.

  • Lan, H., Martin, C. D., Hu, B., 2010. Effect of heterogeneity of brittle rock on micromechanical extensile behavior during compression loading. Journal of Geophysical Research, 115, 1-14.

  • Mahabadi, O. K., Randall, N. X., Zong, Z., Grasselli, G., 2012. A novel approach for microscale characterization and modeling of geomaterials incorporating actual material heterogeneity. Geophysical Research Letters, 39, 6 p.

  • Martin, C. D., Chandler, N. A., 1994. The progressive fracture of Lac du Bonnet granite. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts, 31 (6), 643–659.

  • Moradian, Z., Einstein, H. H., Ballivy, G., 2016. Detection of Cracking Levels in Brittle Rocks by Parametric Analysis of the Acoustic Emission Signals. Rock Mechanics and Rock Engineering, 49 (3), 785-800.

  • Nicksiar, M., Martin, C. D., 2012. Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks. Rock Mechanics and Rock Engineering, 45 (4), 607– 617.

  • Nicksiar, M., Martin, C. D., 2013a. Crack initiation stress in low porosity crystalline and sedimentary rocks. Engineering Geology, 154, 64–76.

  • Nicksiar, M., Martin, C. D., 2013b. Factors Affecting Crack Initiation in Low Porosity Crystalline Rocks. Rock Mechanics and Rock Engineering, 154, 64-76.

  • Onodera, T. F., Asoka, K. H. M., 1980. Relation between texture and mechanical properties of crystalline rocks. Bulletin of International Association for Enginerring Geology, 22, 173– 177.

  • Öztürk, C. A., Nasuf, E., Bilgin, N., 2004. The assessment of rock cutability, and physical and mechanical rock properties from a texture coefficient. Journal of the South African Institute of Mining and and Metallurgy, 104 (7), 397–402.

  • Přikryl, R., 2001. Some microstructural aspects of strength variation in rocks. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 38 (5), 671–682.

  • Přikryl, R., 2006. Assessment of rock geomechanical quality by quantitative rock fabric coefficients: Limitations and possible source of misinterpretations. Engineering Geology, 87, 149–162.

  • Prodaivoda, G. T., Maslov, B. P., Prodaivoda, T. G., 2004. Estimation of thermoelastic properties of rock-forming minerals. Russian Geology and Geophysics, 45 (3), 389-404.

  • Räisänen, M., 2004. Relationships between texture and mechanical properties of hybrid rocks from the Jaala–Iitti complex, southeastern Finland. Engineering Geology, 74, 197-211.

  • Rasband, W. S., 2012. ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. http://imagej.nih.gov/ij/, 1997-2012.

  • Schon, J. H., 1996. Physical Properties of Rocks: Fundamentals and Principles of Petrophysics. Elsevier, New York, 583 p.

  • Tandon, R. S., Gupta, V., 2013. The control of mineral constituents and textural characteristics on the petrophysical & mechanical (PM) properties of different rocks of the Himalaya. Engineering Geology, 153, 125–143.

  • Tapponnier, P., Brace, W. F., 1976. Development of stress-induced microcracks in Westerly granite. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 13, 103–112.

  • Temel, Ö., Çiftçi İ., 2002. Gelibolu Yarımadası, Gökçeada ve Bozcaada Tersiyer çökellerinin stratigrafisi ve ortamsal özellikleri. TPJD Bulletin 14 (2), 1740.

  • Tuğrul, A., Zarif, I. H., 1999. Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Engineering Geology, 51, 303–317.

  • Ulusay, R., Tureli, K., Ider, M. H., 1994. Prediction of engineering properties of a selected litharenite sandstone from its petrographic characteristics using correlation and multivariate statistical techniques. Engineering Geology, 38 (1–2), 135–15

  • Ündül Ö., Amann F., Aysal, N., Plötze, M., 2015. Micro-Textural effects on crack initiation and crack propagation of andesitic rocks. Engineering Geology, DOI: 10.1016/j.enggeo.2015.04.024.

  • Ündül, Ö., Tuğrul, A., 2012. The influence of weathering on the engineering properties of dunites. Rock Mechanics and Rock Engineering, 45 (2), 225-239.

  • Ündül, Ö., 2016. Assessment of mineralogical and petrographic factors affecting petro-physical properties, strength and cracking processes of volcanic rocks. Engineering Geology, 210, 10– 22.

  • Yeşiloğlu-Gültekin, N., Sezer, E. A., Gökçeoğlu, C., Bahyan, H., 2013. An application of adaptive neuro fuzzy inference system for estimating the uniaxial compressive strength of certain granitic rocks from their mineral contents. Expert Systems with

  • Yılmaz, N. G., Göktan, R.M., Kibici, Y., 2011. Relation between some quantitative petrographic characteristics and mechanical strength properties of granitic building stones. International Journal of Rock Mechanics and Mining Science, 48 (3), 506–513

  • Zorlu, K., Ulusay, R., Ocakoğlu, F., Gökçeoğlu, C., Sönmez, H., 2004. Predicting intact rock properties of selected sandstones using petrographic thin-section data. International Journal of Rock Mechanics and Mining Sciences, 41 (1), 93 – 98.



  • Ündül, Ö , Aysal, N . (2016). Gökçeada’da Yüzeylenen Andezit ve Riyodasit Bileşimli Kayaların İçyapı Özelliklerinin Dayanım ve Deformasyon Özelliklerine Etkileri . Jeoloji Mühendisliği Dergisi , 40 (2) , 123-148 . DOI: 10.24232/jeoloji-muhendisligi-d

  • Ündül, Ö , Aysal, N . Gökçeada’da Yüzeylenen Andezit ve Riyodasit Bileşimli Kayaların İçyapı Özelliklerinin Dayanım ve Deformasyon Özelliklerine Etkileri. Jeoloji Mühendisliği Dergisi 40 (2016 ): 123-148

  • The Role of Capillary Water Absorption Characteristics of Ignimbrites on the Deterioration of Ahlat Seljuk Tombstones
    Mutluhan Akin İsmail Dinçer Ali Özvan Vural Noyan Mücip Tapan
    View as PDF

    ABSTRACT: The Seljuk Tombs of the Seljuk Empire in the Ahlat region are included in UNESCO’s World Heritage Tentative List due to the fact that the tombstones are known to be the largest graveyards of Muslims with their historical significance. Tombstones were erected using ignimbrite type pyroclastic rocks which are widespread in the region, and several inscriptions and patterns were carved on them thanks to their softness and easy processing. However, these tombstones have been subjected to weathering effects for almost a duration of 800 years. The most striking point after the inspection of tombstones is that many of them were broken from the middle section. In this study, experimental studies were carried out on fresh ignimbrite specimens and particularly the effect of capillary water absorption on deterioration was investigated to reveal the factors leading to deterioration of Ahlat Seljuk tombstones. Accordingly, high porosity and capillary water absorption characteristics of the ignimbrites are found to be the major reasons for the deterioration of tombstones.

  • Ahlat Stone

  • Deterioration

  • Ignimbrite

  • Capillary Water Absorption

  • Seljuk

  • Akbaş, B., Akdeniz, N., Aksay, A., Altun, İ., Balcı, V., Bilginer, E., Bilgiç, T., Duru, M., Ercan, T., Gedik, İ., Günay, Y., Güven, İ.H., Hakyemez, H. Y., Konak, N., Papak, İ., Pehlivan, Ş., Sevin, M., Şenel, M., Tarhan, N.,Turhan, N., Türkecan, A.,

  • Akın, M., Özsan, A., 2011. Evaluation of the long-term durability of yellow travertine using accelerated weathering tests. Bulletin of Engineering Geology and the Environment, 70 (1), 101–114.

  • Arino, X., Ortega-Calvo, J. J., Gomez-Bolea, A., Saiz-Jimenez, C., 1995. Lichen colonization of the Roman pavement at Baelo Claudia (Cadiz, Spain): biodeterioration vs. bioprotection. Science of the Total Environment, 167, 353–363.

  • Aydar, E., Gourgaud, A., Ulusoy, I., Digonnet, F., Labazuy, P., Sen, E., Bayhan, H., Kurttas, T., Tolluoğlu, A. U., 2003. Morphological analysis of active Mount Nemrut stratovolcano, eastern Turkey: evidences and possible impact areas of future erupt

  • Benavente, D., García Del Cura, M. A., Bernabéu, A., Ordóñez, S., 2001. Quantification of salt weathering in porous stones using an experimental continuous partial immersion method. Engineering Geology, 59, 313-325.

  • Cardenes, V., Mateos, F. J., Fernandez-Lorenzo, S., 2014. Analysis of the correlations between freeze–thaw and salt crystallization tests. Environmental Earth Sciences, 71, 1123-1134.

  • Carter, N., Viles, H., 2005. Bioprotection explored: the story of a little known earth surface process. Geomorphology, 67, 273–281.

  • Cueto, N., Benavente, D., Martínez-Martínez, J., García-del-Cura, M. A., 2009. Rock fabric, pore geometry and mineralogy effects on water transport in fractured dolostones. Engineering Geology, 107, 1-15.

  • Deere, D. U., Miller, R. P., 1966. Engineering classification and index properties of intact rock. Technical Report No: AFNL-TR-65-116, Kirtland Air Force Base Weapons Laboratory, New Mexico.

  • Dent, B. B., 2002. The hydrogeological context of cementery operations and planning in Australia. PhD Thesis, vol. 1., The University of Technology, Sydney, 453 p.

  • Elmastaş, N., 2001. Ahlat yöresinin turizm potansiyeli. Marmara Coğrafya Dergisi, 3 (1), 153-182.

  • Garcia-Valles, M., Gimeno-Torrente, D., Martínez- Manent, S., Fernandez-Turiel, J. L., 2003. Medieval stained glass in a Mediterranean climate: typology, weathering and glass decay, and associated bio-mineralization processes and products. American M

  • Garty, J., 1992. The postfire recovery of rockinhabiting algae, microfungi and lichens. Canadian Journal of Botany, 70, 301–312.

  • ISRM, 2007. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006. In: Ulusay, R., Hudson, J. A., editors, 628 p.

  • Karamağaralı, B., 1992. Ahlat Mezar Taşları. Türkiye Cumhuriyeti Kültür ve Turizm Bakanlığı, Sanat Tarihi Yayınları.

  • Karaoğlu, Ö., Özdemir, Y., Tolluoğlu, A. Ü., Karabıyıkoğlu, M., Köse, O., Froger, J. L., 2005. Stratigraphy of the volcanic products around Nemrut Caldera: Implications for reconstruction of the caldera formation. Turkish Journal of Earth Science, 14

  • Keskin, M., 2007. Eastern Anatolia: A hot spot in a collision zone without a mantle plume. GSA Special Paper, 430, 695-722.

  • Korkanç, M., 2013. Deterioration of different stones used in historical buildings within Niğde province, Cappadocia. Construction and Building Materials, 48, 789-803.

  • Le Bas, M. J., Le Maitre, R. W., Streckeisen, A., Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali–silica diagram. Journal of Petrology, 27, 745–750.

  • Lisci, M., Monte, M., Pacini, E., 2003. Lichens and higher plants on stone: a review. International Biodeterioration and Biodegradation, 51, 1–17.

  • Mottershead, D., Gorbushina, A., Lucas, G., Wright, J., 2003. The influence of marine salts, aspect and microbes in the weathering of sandstone in two historic structures. Building and Environment, 38, 1193–1204.

  • NBG, 1985. Norwegian Rock Mechanics Group: Handbook in engineering geology – rock. Tapir, Trondheim, Norway.

  • Öner, F., Türkmen, S., Özbek, A., Karakaya, T., 2006. Engineering properties of Hınıs Ignimbrites (Erzurum, Turkey) and their usability as a building stone. Environmental Geology, 50, 275–284.

  • Özdemir, A., 2002. Capillary water absorption potentials of some building materials. Geological Engineering, 26, 19-32.

  • Özdemir, Y., Karaoğlu, Ö., Tolluoğlu, A. Ü., Güleç, N., 2006. Volcanostratigraphy and petrogenesis of the Nemrut stratovolcano (East Anatolia High Plateau): The most recent post-collisional volcanism in Turkey. Chemical Geology, 226, 189-211.

  • Özvan, A., Dinçer, İ., Akın, M., Oyan, V., Tapan, M., 2015. Experimental studies on ignimbrite and the effect of lichens and capillarity on the deterioration of Seljuk Gravestones. Engineering Geology, 185, 81–95.

  • Prikryl, R., Lokajicek, T., Svobodova, J., Weishauptova, Z., 2003. Experimental weathering of marlstone from Predni Kopanina (Czech Republic)—historical building stone of Prague. Building and Environment, 38 (9–10), 1163–1171.

  • Seaward, M., 2001. The role of lichens in the biodeterioration of ancient monuments with particular reference to central Italy. International Biodeterioration and Biodegradation, 48, 202– 208.

  • Siegesmund, S., Weiss, T., Vollbrecht, A., 2002. Natural Stone, Weathering Phenomena, Conservation Strategies and Case Studies. Special Publication, The Geology Society of London.

  • Snethlage, R., 2005. Leitfaden zur Steinkonservierung. Fraunhofer IRB Verlag, Stuttgart.

  • Topal, T., Doyuran, V., 1997. Engineering geological properties and durability assessment of the Cappadocia Tuff. Engineering Geology, 47(1-2), 175–187.

  • Topal, T., Sözmen, B., 2003. Deterioration mechanisms of tuffs in Midas monument. Engineering Geology, 68, 201–223.

  • Török, A., 2006. Hungarian travertine: weathering forms and durability. In: Fort R, Alvarez de Buego M, Gomez-Heras M, VazquezCalvo C (eds) Heritage weathering and conservation, vol I. Taylor & Francis/Balkema, London, 199–204.

  • TS 699, 2009. Doğal yapı taşları, muayene ve deney metotları. Türk Standartları Enstitüsü, Ankara.

  • Tuğrul, A., 2004. The effect of weathering on pore geometry and compressive strength of selected rock types from Turkey. Engineering Geology, 75, 215-227.

  • UNE-EN, 1925, 1999. Natural stone test method. Determination of water absorption coefficient by capillarity.

  • www.mgm.gov.tr, 2016. Meteoroloji Genel Müdürlüğü, Erişim tarihi: 27.05.2016

  • Yıldız, M., Özşahin, Y. E., Soğancı, A. S., 2010. Deteriorations on Historical Buildings due to capillarity; Aksaray Sultanhanı Caravansary Model BALWOIS. Ohrid, Republic of Macedonia.



  • Akın, M , Dinçer, İ , Özvan, A , Oyan, V , Tapan, M . (2016). İgnimbiritlerdeki Kılcal Su Emme Özelliğinin Ahlat Selçuklu Mezar Taşlarının Bozunmasındaki Rolü . Jeoloji Mühendisliği Dergisi , 40 (2) , 149-166 . DOI: 10.24232/jeoloji-muhendisligi-derg

  • Akın, M , Dinçer, İ , Özvan, A , Oyan, V , Tapan, M . İgnimbiritlerdeki Kılcal Su Emme Özelliğinin Ahlat Selçuklu Mezar Taşlarının Bozunmasındaki Rolü. Jeoloji Mühendisliği Dergisi 40 (2016 ): 149-166

  • The Effect of Volumetric Block Proportion and Grain Size on BIMRock Strength
    Murat Karahan Hakan Ersoy Muhammet Oğuz Sünnetci Özge Örgen
    View as PDF

    ABSTRACT: Heterogeneous rock mass consisting of rock blocks that is surrounded by a weak matrix is regarded asblock-in-matrix-rocks (Bimrock). Obtaining samples from this type of rock mass according to the standardsand preparing them to be used in laboratory studies are often difficult. For this reason, it is quite difficultto determine the shear strength parameters and the mechanical properties such as uniaxial compressivestrength in these sorts of rocks. There are just a few laboratory studies over bimrocks, and there isn’t awidely accepted empirical approach in the field of rock mechanics available due to the limitations of theexisting empirical methods. In scope of this work, synthetic Bimrocks samples were prepared with differentgrain sizes and different volumetric grain ratio. Uniaxial compressive strength tests were conducted onprepared samples. As a result of the experiments, the effect of grain size and volumetric grain proportionon the strength of artificial Bimrock samples were investigated. Artificial Bimrock samples with 20%, 30%and 40% volumetric grain proportions were prepared in the laboratory using gravel shaving diameters0.6 to 9.5 mm. Plaster and water were used to form matrix. The uniaxial compressive strengths of the testsamples decrease from 0.68 MPa to 0.45 MPa as the grain size decreases; and increase from 0.51 MPa to0.66 MPa as the volumetric grain proportion increase. The results indicate that the uniaxial compressivestrength of Bimrocks increases with increasing grain size and volumetric grain proportion.

  • Bimrock

  • Volumetric Grain Proportion

  • Grain size

  • Uniaxial Compressive Strength

  • Altınsoy, H., 2006. Matriks içinde blok içeren kayaların makaslama dayanımın belirlenmesi için fiziksel model esaslı bir araştırma. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Yüksek Lisans Tezi, 104 s (yayımlanmış).

  • Bedrossian, T. L., 1978. Geology and slope stability in the Geysers Geothermal: Resources area, California Geology, 31, 151-159.

  • Bedrossian, T. L., 1980. Geology and slope stability in selected parts of the Geysers Geothermal resources area, No.142 of special reports: Sacramento, California, California Division of Mines and Geology, 66 p.

  • Coşkun, A., 2010. BIMRock (Hamurda Kaya) ile eklemli kaya kütlelerinin sınır koşulundaki sorunlara yönelik ampirik bir yaklaşımın geliştirilmesi. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Yüksek Lisans Tezi, 75 s (yayımlanmış).

  • Gökçeoğlu, C., 2002. A fuzzy triangular chart to predict the uniaxial compressive strength of the Ankara agglomerates from their petrographic composition. Engineering Geology, 66, 39-51.

  • Kahraman, S., Alber, M., Fener, M., Gunaydın, O., 2008. Evaluating the geomechanical properties of Misis fault breccia (Turkey). International Journal of Rock Mechanics and Mining Science, 45, 1469-1479.

  • Lindquist, E. S., 1994. The strength and deformation properties of melange, Ph.D. Thesis, University of California, Berkeley, 288 p (published).

  • Lindquist, E. S., Goodman, R. E., 1994. The strength and deformation properties of a physical model melange, Proc. 1st North American Rock Mechanics Conference (NARMS), Austin, Texas, eds. Nelson, P.P. and Laubach, S.E., A.A. Balkema, Rotterdam, 843-

  • Medley, E. W., 1994. The engineering Characterization of melanges and similar block-in-matrix rocks (“BIMRock”s), Ph.D. Thesis, University of California, Berkeley, 338 p (published).

  • Medley, E. W., Lindquist, E. S., 1995. The engineering significance of the scale-independence of some Franciscan melanges in California, USA, Proc. 35th US Rock Mechanics Symp, eds. Deamen, J.K. ve Schultz, R.A., Rotterdam: A.A. Balkema, 907-914.

  • Medley, E. W., 2001. Orderly Characterization of Chaotic Franciscan Melanges, Felsbau. Journal of Engineering Geology, Geomechanics and Tunnelling, 19 (4) 20-33.

  • Medley, E.W., Rehermann, P.S., 2003. Increases in slope stability of rock/soil mixtures due to tortuosity of failure surface around rock and blocks. GSA Conference, Seattle WA, November 2, 2003.

  • Reidmüller, G., Brosch, F. J., Klima, K., Medley, E. W., 2001. Engineering Geological Characterization of Brittle Faults and Classification of Fault Rock. Felsbau, Journal for Engineering Geologly, Geomechanics and Tunnelling, 19 (4/2001), 13- 19.

  • Sönmez, H., Tuncay, E., Gökçeoğlu, C., 2004. Models to predict the uniaxial compressive strength and the modulus of elasticity for Ankara agglomerates. International Journal of Rock Mechanics and Mining Science, 41(5), 717-729.

  • Sönmez, H., Gökçeoğlu, C., Medley, E. W., Tuncay, E., Nefeslioğlu, H. A, 2006. Estimating the Uniaxial Compressive Strength of a Volcanic “BIMRock”, International Journal of Rock Mechanics & Mining Sciences, 43, 554–561.



  • Karahan, M , Ersoy, H , Sünnetçi, M , Örgen, Ö . (2016). Hacimsel Dane Oranının ve Dane Boyutunun Hamurda Kayaların (BIMRock) Dayanımı Üzerindeki Etkisi . Jeoloji Mühendisliği Dergisi , 40 (2) , 167-176 . DOI: 10.24232/jeoloji-muhendisligi-dergisi.29

  • Karahan, M , Ersoy, H , Sünnetçi, M , Örgen, Ö . Hacimsel Dane Oranının ve Dane Boyutunun Hamurda Kayaların (BIMRock) Dayanımı Üzerindeki Etkisi. Jeoloji Mühendisliği Dergisi 40 (2016 ): 167-176

  • Prediction of Sodium Absorption Ratio (SAR) in Groundwater with the Aid of Artificial Neural Networks: the East Aquifer of Ergene Basin
    Orhan Arkoç Tahir Çetin Akinci H.selçuk Nogay
    View as PDF

    ABSTRACT: Groundwater is used for drinking and irrigation purposes in many parts of the world. Irrigationpractices result in the deterioration of the quality of the groundwater over the time and this adversely affects the human health and plant growth. Monitoring of the vulnerable aquifers with cost-effectivemethods is important. In this study an artificial neural network model is proposed for the prediction ofsodium absorption ratio (SAR) in the unconfined aquifer, located in the east of Ergene basin. The samplestaken from 18 observation wells were analysed monthly for electrical conductivity, total dissolved solids,temperature, total hardness, chloride and pH. Levenberg–Marquardt (trainlm) was selected for backpropagation algorithm and 35 neurons were used in the model architecture. The model follows up theexperimental data very closely (R= 0,855). Application of the proposed model would make possible tomonitor the aquifers in a more cost-effective and easier way

  • Ergene Basin

  • Sodium Absorption Ratio

  • Artificial Neural Networks

  • Groundwater Quality

  • Adamowski, J., Fung Chan, H., Prasher, S. O., Ozga Zielinski, B., Sliusarieva, A., 2012. Comparison of multiple linear and nonlinear regression, autoregressive integrated moving average, artificial neural network, and wavelet artificial neural networ

  • Arkoç, O., 2005. Ergene Havzası Çorlu-Çerkezköy arasındaki kesiminin hidrojeolojisi. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Doktora Tezi, 144 s (yayımlanmamış).

  • Arkoç, O., 2011. Assessment of water quality of east part of the Ergene basin, Turkey. Journal of Environmental Protection and Ecology, 12 (4), 1644-1655.

  • Arkoç, O., Erdoğan, M., 2011. Ergene Havzası, Çorlu-Çerkezköy arasındaki kesiminin hidrojeokimyası. İTÜ Dergisi/d, 5 (2), 125-134.

  • Arkoç, O., 2014. Municipal solid waste landfill site selection using geographical information systems: a case study from Çorlu, Turkey. Arabian Journal of Geosciences, 7 (11), 4975- 4985.

  • Asadollahfardi, G., Hemati, A., Moradinejad, S., Asadollahfardi, R., 2013. Sodium adsorption ratio (SAR) prediction of the Chalghazi river using artificial neural network (ANN) Iran. Current World Environment, 8 (2), 169-178.

  • Bauder, T. A., Waskom, R. M., Davis, J. G., Sutherland, P. L., 2011. Colorado State University Extension, Report for Irrigation water quality criteria, no.0.506, 4s. Fort Collins, CO, USA.

  • Bedient, P. B., Rifai, H. S., Newell, C. J., 1994. Ground water contamination: transport and remediation. Prentice Hall, Englewood Cliffs, 540 p.

  • Cığızoğlu, H. K., 2004. Estimation and forecasting of daily suspended sediment data by multi layer perceptrons, Advances in Water Resources, 27, 185-195.

  • El-Din, A. G., Smith, D. W., 2002. A neural network model to predict the wastewater inflow incorporating rainfall events. Water Research, 36 (5),1115–1126.

  • Gontarski, C. A., Rodrigues, P. R., Mori, M., Prenem, L. F., 2000. Simulation of an industrial wastewater treatment plant using artificial neural networks. Computers & Chemical Engineering, 24 (2), 1719-1723.

  • Güneş, E. H., Güneş, Y., Talınıe, I., 2008. Toxicity evaluation of industrial and land base sources in a river basin. Desalination, 226 (1), 348-356.

  • Kaastra, I., Boyd, M., 1996. Designing a neural network for forecasting financial and economic time series. Neurocomputing, 10, 215-236.

  • Kalaycı, S., 2010. SPSS Uygulamalı Çok Değişkenli İstatistik Teknikleri. Asil Yayınları, Ankara, 426s. .

  • Karayiannis, N., Venetsanopoulos, A. N., 2013. Artificial Neural Networks: Learning Algorithms, Performance Evaluation, and Applications. Springer Science & Business Media, No: 209, 373 p.

  • Kaykıoğlu, G., Ekmekyapar, F., 2005. Ergene Havzası’nda endüstriyel işlem suyu olarak kullanılan yeraltı sularının özellikleri üzerine bir araştırma. Trakya University Journal of Natural Sciences, 6 (1), 85-91.

  • Lippmann, R. P., 1987. An introduction to computing with neural nets. ASSP Magazine, IEEE, 4 (2), 4-22.

  • Maier, H. R., Dandy, G. C., 1996. The use of artificial neural networks for the prediction of water quality parameters. Water Resources Research, 32 (4), 1013–1022.

  • Mjalli, F. S., Al-Asheh, S., Alfadala, H. E., 2007. Use of artificial neural network black-box modeling for the prediction of wastewater treatment plants performance. Journal of Environmental Management, 83 (3), 329–338

  • Nogay, H. S., Akinci, T. C., Eidukeviciute, M., 2012. Application of artificial neural networks for short term wind speed forecasting in Mardin, Turkey. Journal of Energy in Southern Africa, 23 (4), 3.

  • Onkal-Engin, G., Demir, I., Engin, S. N., 2005. Determination of the relationship between sewage odour and BOD by neural networks. Environmental Modelling Software 20 (7), 843– 850.

  • Özkan, E., Kubaş, A., 2008. Ergene havzasında kirliliğin sosyo ekonomik etkileri. Havza kirliliği konferansı, İzmir, 1, 15-21.

  • Peng, T. M., Hubele, N. F., Karady, G. G., 1992. Advancement in the application of neural networks for STLF. IEEE Transactions on Power Systems, 7 (1), 250-257.

  • Şengörür, B., Köklü, R., Ateş, A., 2015. Water quality assessment using artificial intelligence techniques: SOM and ANN—A case study of Melen River Turkey. Water Quality, Exposure and Health, 7 (4), 469-490.

  • Stern, H. S., 1996. Neural networks in applied statistics. Technometrics, 38 (3), 205-214.

  • Suarez, D. L., Wood, J. D., Lesch, S. M., 2006. Effect of SAR on water infiltration under a sequential rain–irrigation management system. Agricultural Water Management, 86 (1), 150-164.

  • Toth, E., Brath, A., Montanari, A., 2000. Comparison of short-term rainfall prediction models for realtime flood forecasting. Journal of Hydrology, 239 (1–4), 132–147.

  • WHO, 2006. A compendium of drinking-water quality standards in the eastern Mediterranean region. World Health Organization, Geneva, Document No. WHO-EM/CEH/143/E.

  • Yeşilnacar, M. I., Şahinkaya, E., 2012. Artificial neural network prediction of sulfate and SAR in an unconfined aquifer in southeastern Turkey. Environmental Earth Sciences, 67 (4), 1111- 1119.

  • Yeşilnacar, M. I., Şahinkaya, E., Naz, M., Özkaya, B., 2008. Neural network prediction of nitrate in groundwater of Harran Plain, Turkey. Environmental Geology, 56 (1), 19-25.



  • Arkoç, O , Akıncı, T , Noğay, H . (2016). Yapay Sinir Ağları Yardımı ile Yeraltı Suyunda Sodyum Absorbsiyon Oranı (SAR) Tahmini: Ergene Havzası Doğu Akiferi Örneği . Jeoloji Mühendisliği Dergisi , 40 (2) , 177-188 . DOI: 10.24232/jeoloji-muhendisligi

  • Arkoç, O , Akıncı, T , Noğay, H . Yapay Sinir Ağları Yardımı ile Yeraltı Suyunda Sodyum Absorbsiyon Oranı (SAR) Tahmini: Ergene Havzası Doğu Akiferi Örneği. Jeoloji Mühendisliği Dergisi 40 (2016 ): 177-188

  • Application of Water Quality Index with the Aid of Geographic Information System in Eastern Thrace to Assess Groundwater Quality
    Orhan Arkoç
    View as PDF

    ABSTRACT: Water quality assessment has always been a major part of environmental management plans. In thisstudy, the groundwater quality and spatial distribution in the eastern Thrace region was assessed andmapped for agricultural and drinking purposes. Groundwater samples (n = 18) were collected from deepwells in the study area and analyzed for hydrochemical properties for the water quality assessment. TheWater Quality Index (WQI) was calculated for the quantification of water quality for human consumption.The WQI values showed that 52 % of the groundwater samples fall in the “poor” and “very poor” categorydue to agricultural impact. Nevertheless, the majority of the groundwater were suitable for irrigationin terms of sodium absorption ratio (SAR), residual sodium carbonate (RSC), sodium ratio (Na%) andmagnesium hazard (MH).

  • Geographical Information System

  • Groundwater

  • Thrace

  • Water Quality Index

  • Abbasi, T., Abbasi, S. A., 2012. Water quality indices, Great Britain, Elsevier, 384 p.

  • Aller, L., Bennett, T., Lehr, J. H., Petty, R. J., Hackett, G., 1987. DRASTIC: A standardized system for evaluating groundwater pollution potential using hydrogeological settings. Prepared for the U.S. Environmental Protection Agency, Office of Resea

  • American Public Health Association (APHA), 1998. Standard methods for the examination of water and waste water; 18th ed., Washington, MWWA&WPCF.

  • Arkoc, O., 2011. Assessment of water quality of east part of the Ergene basin, Turkey. Journal of Environmental Protection and Ecology, 11 (4), 1644-1655.

  • Arkoç, O., 2013. Assessment of scaling properties of groundwater with elevated sulfate concentration: a case study from Ergene Basin, Turkey. Arabian Journal of Geosciences, 6 (11), 4377-4385.

  • Avvannavar, S. M., Shrihari, S., 2008. Evaluation of water quality index for drinking purposes for river Netravathi, Mangalore, South India. Environmental Monitoring and Assessment, 143, 279–290.

  • Ayers, R. S., Westcot, D. W., 1985. Water quality for agriculture; FAO Irrigation and Drainage Paper No. 29, Rev. 1, U. N. Food and Agriculture Organization, Rome.

  • Baba, A., Tayfur, G., 2011. Groundwater contamination and its effect on health in Turkey. Environmental Monitoring and Assessment, 183 (1-4), 77-94.

  • Bairu, A., Tadesse, N., Amare, S., 2013. Use of geographic information system and water quality index to assess suitability of groundwater quality for drinking purposes in Hewane areas, Tigray, Northern Ethiopia. Ethiopian Journal of Environmental St

  • Beltrán, J. M., 1999. Irrigation with saline water: benefits and environmental impact. Agricultural Water Management, 40 (2), 183-194.

  • Boyacioglu, H., 2010. Utilization of the water quality index method as a classification tool. Environmental Monitoring and Assessment, 167 (1-4), 115-124.

  • Caglayan, M. A, Yurtsever, A., 1998. Series of 1:100.000 scaled Geological map of Turkey, No: 20,21, 22, 23, General Directorate of Mineral Research and Exploration, Ankara (in Turkish).

  • DSİ, 2003. Hydrogeological report of Ergene Basin. The 11th District Directorate of State Hydraulic Works, Edirne (in Turkish).

  • Eaton, F. M., 1950. Significance of carbonate in irrigation water. Soil Science, 69 (2), 123–133.

  • Fytianos, K., Christophoridis, C., 2004. Nitrate, arsenic and chloride pollution of drinking water in Northern Greece. Elaboration by applying GIS. Environmental Monitoring and Assessment, 93 (1-3), 55-67.

  • Gazzaz, N. M., Yusoff, M. K., Aris, A. Z., Juahir, H., Ramli, M. F., 2012. Artificial neural network modeling of the water quality index for Kinta River (Malaysia) using water quality variables as predictors. Marine Pollution Bulletin, 64 (11), 2409-

  • Iticescu, C., Georgescu, L. P., Topa, C. M., 2013. Assessing the Danube water quality index in the city of Galati, Romania. Carpathian Journal of Earth and Environmental Sciences, 8 (4), 155- 164.

  • Gibrilla, A., Bam, E. K. P., Adomako, D. S., Ganyaglo, S., Osae, S., Akiti, T. T., Kebede, S., Achoribo, E., Ahialey, E., Ayanu, G., Agyeman, E. K., 2011. Application of water quality index (WQI) and multivariate analysis for groundwater quality asse

  • Gleeson, T., Wada, Y., Bierkens, M. F., Van Beek, L. P., 2012. Water balance of global aquifers revealed by groundwater footprint. Nature, 488 (7410), 197-200.

  • Gorai, A. K., Kumar, S., 2013. Spatial distribution analysis of groundwater quality index using GIS: A case study of Ranchi Municipal Corporation (RMC) area. Geoinformatics & Geostatistics: An Overview. doi:10.4172/2327-4581.1000105.

  • Gültekin, A. H., 1998. Geochemistry and origin of the Oligocene Binkılıç manganese deposits; Thrace basin, Turkey. Turkish Journal of Earth Sciences, 7, 11-24.

  • Horton, R. K., 1965. An index number system for rating water quality. Journal of Water Pollution Control Federation, 37 (3), 300–306

  • Jasmin, I., Mallikarjuna, P., 2014. Physicochemical quality evaluation of groundwater and development of drinking water quality index for Araniar River Basin, Tamil Nadu, India. Environmental Monitoring and Assessment, 186 (2), 935-948.

  • Khan, T. A., Abbasi, M. A., 2013, Synthesis of parameters used to check the suitability of water for irrigation purposes. International Journal of Environmental Sciences, 3 (6), 2131-2138.

  • Kumari, S., Singh, A. K., Verma, A. K., Yaduvanshi, N. P. S., 2014. Assessment and spatial distribution of groundwater quality in industrial areas of Ghaziabad, India. Environmental Monitoring and Assessment,186 (1), 501-514.

  • Lobato, T. C., Hauser-Davis, R. A., Oliveira, T. F., Silveira, A. M., Silva, H., Tavares, M. R. M., Saraiva, A. C. F., 2015. Construction of a novel water quality index and quality indicator for reservoir water quality evaluation: A case study in the

  • Lobo, E. A., Schuch, M., Heinrich, C. G., Da Costa, A. B., Dupont, A., Wetzel, C. E., Ector, L., 2015. Development of the Trophic Water Quality Index (TWQI) for subtropical temperate Brazilian Iotic systems. Environmental Monitoring and Assessment, 1

  • Massoud, M. A., 2012. Assessment of water quality along a recreational section of the Damour River in Lebanon using the water quality index. Environmental Monitoring and Assessment, 184 (7), 4151-4160.

  • Magesh, N. S., Chandrasekar, N., 2013. Evaluation of spatial variations in groundwater quality by WQI and GIS technique: a case study of Virudunagar District, Tamil Nadu, India. Arabian Journal of Geosciences, 6 (6), 1883-1898.

  • Ramesh, K., Elango, L., 2012. Groundwater quality and its suitability for domestic and agricultural use in Tondiar river basin, Tamil Nadu, India. Environmental Monitoring and Assessment, 184 (6), 3887-3899.

  • Sadat-Noori, S. M., Ebrahimi, K., Liaghat, A. M., 2014. Groundwater quality assessment using the Water Quality Index and GIS in Saveh-Nobaran aquifer, Iran. Environmental Earth Sciences, 71 (9), 3827-3843.

  • Saeedi, M., Abessi, O., Sharifi, F., Meraji, H., 2010. Development of groundwater quality index; Environmental Monitoring and Assessment, 163 (1-4), 327– 335.

  • Sahu, P., Sikdar, P. K., 2008. Hydrochemical framework of the aquifer in and around East Kolkata Wetlands, West Bengal, India. Environmental Geology, 55 (4), 823-835.

  • Selvam, S., Manimaran, G., Sivasubramanian, P., Balasubramanian, N., Seshunarayana, T., 2014. GIS-based evaluation of water quality index of groundwater resources around Tuticorin coastal city, south India. Environmental Earth Sciences, 71 (6), 2847-

  • Simsek, C., Gunduz, O., 2007. IWQ index: A GIS-integrated technique to assess irrigation water quality. Environmental Monitoring and Assessment, 128 (1-3), 277-300.

  • Shabbir, R., Ahmad, S. S., 2015. Use of geographic information system and water quality index to assess groundwater quality in Rawalpindi and Islamabad. Arabian Journal of Science and Engineering, 40 (7), 2033-2047.

  • Srinivasamoorthy, K., Chidambaram, M., Prasanna, M. V., Vasanthavigar, M., John, P. A., Anandhan, P., 2008. Identification of major sources controlling Groundwater Chemistry from a hard rock terrain—a case study from Mettur taluk, Salem district, Tam

  • Srivastava, P. K., Mukherjee, S., Gupta, M., Singh, S. K., 2011. Characterizing monsoonal variation on water quality index of River Mahi in India using geographical information system. Water Quality Exposure and Health, 2 (3-4),193-203.

  • Szabolcs, I., Darab, C., 1964. The influence of irrigation water of high sodium carbonate content on soils. Proceedings of 8th International Congress Soil Science Sodics Soils, ISSS Trans II, 802–812, Bucharest.

  • Todd, D. K., Mays, L.W., 2005. Groundwater hydrology, Third edition, Wiley, New Jersey,656p.

  • TS 266, 2005. Water intended for human consumption, ICS 13.060.20, Turkish Standards Institute, Ankara, Turkey.

  • TUIK (Turkish Statistical Institute), 2015. Turkish wheat and sunflower production. http://www. tuik.gov.tr/PreHaberBultenleri.do?id=16020, Accessed 1 November 2016.

  • Vasanthavigar, M., Srinivasamoorthy, K., Vijayaragavan, K., Ganthi, R. R., Chidambaram, S., Anandhan, P., Vasudevan, S., 2010. Application of water quality index for groundwater quality assessment: Thirumanimuttar sub-basin, Tamilnadu, India. Environ

  • WHO (World Health Organization), 2011. Guidelines for drinking-water quality. World Health Organization, Geneva, Switzerland.

  • Wilcox, L.V., 1955. Classification and use of the irrigation waters, U.S. Department of Agriculture Circular No. 969, Washington, District of Columbia, 21 p.

  • Zhou, X., Shen, Y., Zhang, H., Song, C., Li, J., Liu, Y., 2015. Hydrochemistry of the natural low pH groundwater in the coastal aquifers near Beihai, China. Journal of Ocean University of China, 14 (3), 475-483.



  • Arkoç, O . (2016). Doğu Trakya Bölgesi’nde Yeraltı Suyu Kalitesinin Araştırılması Amacıyla Coğrafi Bilgi Sistemi Yardımı ile Su Kalite İndeksi Uygulaması . Jeoloji Mühendisliği Dergisi , 40 (2) , 189-208 . DOI: 10.24232/jeoloji-muhendisligi-dergisi.2

  • Arkoç, O . Doğu Trakya Bölgesi’nde Yeraltı Suyu Kalitesinin Araştırılması Amacıyla Coğrafi Bilgi Sistemi Yardımı ile Su Kalite İndeksi Uygulaması. Jeoloji Mühendisliği Dergisi 40 (2016 ): 189-208

  • Organic Geochemistry and Paleoclimate Conditions of the Early-Middle Miocene Coals at the Ekizköy (Muğla-Milas)
    Fatma Hoş Çebi
    View as PDF

    ABSTRACT: In this study, organic geochemistry, depositional environments and paleo-climatic conditions ofEkizköy coals located southeast of Muğla (Milas) were investigated. The average values of total organic carbon content (TOC) of the coal (46.24 %), HI (152.88 mgHK/gTOC) and OI (76.63 mgCO2/gTOC) showthat the depositional environment of peat deposits is suboxic. According to HI-Tmax, S2-TOC classificationdiagrams, the organic matter is composed of Type II and Type III kerogen. In gas chromatographs,n-alkanes with high, mostly single-numbered carbons are dominated and they are associated with a slightalgal contribution. CPI22-30 is calculated as 2.8, and 2.4. CPI26-28 is calculated as 3.2, and 2.8. Terrigenous/aquatic ratio (TARHC) is very high, computed as 13 and 22. These values indicate a dominance of highcarbon numbered n-alkanes, meaning the presence of terrestrial organic matter. The CPI, TARHC, ACL,Qwood/grass, Qwood/plant ve Qgrass/plant values of the sample M-4 show that woody plants were the dominantvegetation in the peat mire and the climate was relatively wet and subtrophic. However, these values of thesample M-8 show warmer climate, higher water table and also contain further aquatic vegetation thanthe values of M-4 sample.  

  • GC

  • n-alkanes

  • Paleoclimate

  • Pyrolysis

  • Atalay, Z., 1980. Muğla ve Yatağan bölgeleri çevresindeki Neojen yaşlı kıtasal çökellerin stratigrafisi. Türkiye Jeoloji Bülteni 23/1, 93-99.

  • Bechtel, A., Sachsenhofer, R. F., Gratzer, R. Püttmann, W., 2001. Organic geochemical and stable carbon ısotopic ınvestigations of coals formed in low-lying and raised mires within the Eastern Alps (Austria). Organic Geochemistry, 32, 1289- 1310.

  • Bechtel, A., Sachsenhofer, R. F., Markic, M., Gratzer, R., Lücke, A., Püttmann, W., 2003. Palaeoenvironmental implication from biomarker and stable isotope investigations on the Pliocene Velenje lignite seam (Slovenia). Organic Gechemistry, 34, 1277-

  • Bingham, E. M., McClymont E. L., Väliranta M., Mauquoy D., Roberts Z., Chambers F. M., Pancost R. D., Evershed R. P., 2010. Conservative composition of n-alkane biomarkers in Sphagnum species: implications for palaeoclimate reconstruction in ombrotro

  • Bourbonniere, R. A., Meyers, P. A., 1996. Sedimentary geolipid records of historical changes in the watersheds and productivities of Lakes Ontario and Erie. Limnology and Oceanography, 41, 352-359.

  • Brown, T. C., Kenig, F., 2004. Water column structure during deposition of Middle Devonian-Lower Mississipian black and gren/gray shales of the Illinois basins: a biomarker approach. Paleogeography Paleoclimate Paleoecol, 215, 59-85.

  • Cranwell, P. A., Eglinton G., Robinson, N., 1987. Lipids of aquatic organisms as potential contributors to lacustrine sediments-2. Organic Geochemistry, 11, 513-527.

  • Eglinton, G., Hamilton, R. J., 1967. Leaf epicuticular waxes. Science, 156, 1322-1335.

  • Ficken, K. J., Li, B., Swain, D. L., Eglinton, G., 2000. An n-alkane proxy for the sedimentary input of submerged/floating freshwater aquatic macrophytes. Organic Geochemistry, 31, 745– 749.

  • Goossens, H., Duren, C., De Leeuw, J. W., Schenck, P. A., 1989. Lipids and their mode ofoccurrence in bacteria and sediments-2. Lipids in the sediment of a stratified, freshwater lake. Organic Geochemistry, 14, 27-41.

  • Gökmen, V., Memikoğlu, O., Dağlı, M., Öz, D., Tuncali, E., 1993. Türkiye Linyit Envanteri. MTA, 356 s.

  • Göktaş, F., 1982. Muğla ve çevresindeki Senozoik yaşlı çökelti kayalarının sedimantolojik ve paleontoloji araştırmalar. MTA, Arşiv No. 519, 84 s.

  • Görür, N., Şengör, A. M. C., Sakınç, M., Tüysüz, O., Akkök, R., Yiğitbaş, E., Oktay, F. Y., Barka, A., Sarıca, N., Ecevitoğlu, B., Demirbağ, E., Ersoy, S., Algan, O., Güneysu, C., Aykol, A., 1995. Rift formation in the Gökova region, southwest Anatol

  • Hoş-Çebi, F., Korkmaz, S., 2013. Organic geochemistry and depositional environments of Eocene coals in northern Anatolia, Turkey. Fuel, 113, 481-496.

  • Hoş-Çebi, F., Korkmaz S., 2015. Organic Geochemistry of Ağaçbaşı Yayla Peat Deposits, Köprübaşı/Trabzon, NE Turkey, International Journal of Coal Geology, 146, 155-165.

  • Hunt, J. M., 1995. Petroleum geochemistry and geology, New York: W.H. Freeman and Company; 743 p.

  • ICCP, 1998. The new vitrinite classification (ICCP System 1994). Fuel, 77, 349–358.

  • ISO 7404-5, 2009. Methods for the petrographic analysis of coals — Part 5: Method of determining microscopically the reflectance of vitrinite. Standards Australia, Level 10, The Exchange Centre 20 Bridge Street, GPO Box 476, AU-Sydney NSW 2001 (www.s

  • Kara-Gülbay, R., 2015. Organic geochemical and petrographical characteristics of coal bearing Oligo-Miocene sequence in the Oltu-Narman Basin (Erzurum), NE Turkey. İnternational Journal of Coal Geology, 149, 93-107.

  • Kayseri-Özer, M., 2013. Spatial distribution of climatic conditions from the Middle Eocene to Late Miocene based on palynoflora in Central, Eastern and Western Anatolia. Geodinamica Acta, 26, 1-2, 122-157.

  • Kayseri Özer, M., Akgün, F., Mayda, S., Kaya, T., 2014. Palynofloras and vertebrates from MuǧlaÖren region (SW Turkey) and palaeoclimate of the Middle Burdigalian-Langhian period in Turkey. Bulletin of Geosciences, 89, 1, 137-162 pp.

  • Korkmaz, S., Kara Gülbay, R., 2007. Organic geochemical characteristics and depositional environments of the Jurassic coals in the eastern Taurus of Southern Turkey. International Journal of Coal Geology, 70, 292–304.

  • Langford, F. F., Blanc-Valleron, M. M., 1990. Interpreting rock-eval pyrolysis data using graphs of pyrozilable hydrocarbons vs. total organic carbon. AAPG Bulletin, 74, 799-804.

  • Long, L., Fang. X. M., Miao Y. F., Bai Y., Wang, Y. L., 2011. Northern Tibetan Plateau cooling and aridification linked to Cenozoic global cooling: Evidence from n-alkane distributions of Paleogene sedimentary sequences in the Xining Basin. Chinese S

  • Markic, M., Sachsenhofer, R. F., 1997. Petrographic composition and depositional environments of the Pliocene Velenje Lignite Seam (Slovenia). International Journal of Coal Geology, 33, 229- 254.

  • Merrill, R.K., 1991. Source and Migration Processes and Evaluation Techniques (R.K. Merrill, ed.), Oklahama, 213 p.

  • Meyers, P. A., Ishıwatarı, R., 1993. Lacustrine organic geochemistry-an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry, 20, 867-900.

  • Mukhopadhyay, P. K., Wade, J. A., Kruge, M. A., 1995. Organic facies and maturation of Jurassic/ Cretaceous rocks, and possible oil-source rock corelation based on pyrolysis of asphaltenes, Scotian Basin, Canada, OrganicGeochemistry, 22, 1, 85-104.

  • Querol, X., Alastuey, A., Plana, F., Lopez-Soler, A., Tuncali, E., Toprak, S., Ocakoğlu. F., Koker, B., 1999. Coal geology and coal quality of the Miyosen Muğla basin, southwestern Anatolia, Turkey, International Journal of Coal Geology, 41, 311-332.

  • Peters, K. E., Moldowan J. M., 1993. The Biomarker Guide: Interpreting molecular fossils in petroleum and ancient sediments. Englewood Cliffs (N.J.): Prentice-Hall, 363 p.

  • Peters, K. E., Walters, C. C., Moldowan, J. M., 2005. The Biomarker Guide: Biomarkers and Isotopes in Petroleum Exploration and Earth History. Cambridge University Press, 1155 p.

  • Petersen, H. I., Andersen, C., Anh, P. H., Bojesen- Koefeld, J. A., Nielsen, L. H., Nytoft, H. P., Rosenberg, P., Thanh, L., 2001. Petroleum potential of Oligocene lacustine mudstones and coals Ot Dong Ho, Vietnam - an outcrop analogue to tterrestria

  • Robert, P., 1980. The Optical Evolution of Kerogen and Geothermal Histories Applied to Oil and Gas Exploration: In: Durand B., (Ed.) q.v., chapter 11, 340-414.

  • Sachsenhofer, R. F., Kogler, A., Polesny, H., Strauss, P., Wagreich, M., 2000a. The Neogene Fohnsdorf Basin: Basin formation and basin inversion during lateral extrusion in the Eastern Alps. International Journal of Earth Science, 89, 415- 430.

  • Sachsenhofer, R. F., Strauss, P., Wagreich, M., Abart, R., Decker, K., Goldbrunner, J. E., Gruber, W., Kriegl, C., Spötl, C., 2000b. Das Miozäne Fohnsdorfer Becken-Eine Übersicht. Mitt. Ges. Geol. Bergbaustud. Österr, 4, 173-190.

  • Stach, E., Mackowsky, M.-Th., Teichmüller, M., Taylor, G. H., Chandra, D., Teichmüller, R., 1982. Stach’s Textbook of Coal Petrology, Gebrüder Borntraeger, Berlin, 535 p.

  • Stout, S. A., 1992. Aliphatic ve aromatic triterpenoid hydrocarbons in a Tertiary angiospermous lignite. Organic Geochemistry, 18, 51-66.

  • Şengüler, İ., Akkiraz, M. S., 2014. Eskişehir havzasındaki Miyosen yaşlı tortulların palinolojisi ve paleoekolojisi. TPJD Bülteni, 26 (1), 7-17.

  • Tissot, B. P., Welte, D. H., 1984. Petroleum Formation and Occurence, Springer Verlag, Berlin, Heidelberg, New York Tokyo, 699 p.

  • Volkman, J. K., 1986. A review of sterolmarkers formarine and terrigenous organicmatter. Organic Geochemistry, 9, 83–99.

  • Walters, C. C., Cassa, M. R., 1985. Regional Organic Geochemistry of offshore Louisiana. Transactions Gulf Coast Association Geological Society, 35, 277-286.

  • Wang, T. G., Simoneit, B. R. T., 1990. Organic geochemistry and coal petrology of Tertiary brown coal in the Zhoujing Mine, Baise Basin, South China. Fuel, 69, 12-20.

  • Waples, D. W., 1985. Geochemistry in Petroleum Exploration: International Human Resources Development Corporation, Boston, 232 p.

  • Xie, S., Nott, C. J., Avsejs, L. A., Maddy, D., Chambers, F., Evershed, R. P., 2004. Molecular and isotopic stratigraphy in an ombrotrophic mire for palaeoclimate reconstruction. Geochimica et Cosmochimica Acta, 68, 2849-2862.

  • Yalçın Erik, N., Ay, F., 2010. Tersiyer yaşlı Artova ve Zile kömürlerinin (Tokat) organik jeokimyasal özellikleri ve hidrokarbon türetim potansiyelleri. Hacettepe Üniversitesi Yerbilimleri Uygulama ve Araştırma Merkezi Dergisi, 31 (3), 169-190.

  • Yalçın Erik, N., Sancar, S., 2010. Relationship between coal-quality and organic-geochemical parameters: a case study of the Hafik Coal Deposits (Sivas Basin, Turkey). International Journal Of Coal Geology, 83, 396-414.

  • Yalçın Erik, N., Ay, F., 2013. Organic geochemical characterization and hydrocarbon potential Of Tertiary coals Of The Tokat Province (Central Anatolia, Turkey). Energy Sources, Part A, 35, 991–999.

  • Yalçın Erik, N., 2016, Paleoenvironment characteristics and hydrocarbon potential of the Lower Miocene Bituminous shales in Sivas Basin (Central Anatolia, Turkey). Journal of Arabian Earth Science, 9,18.

  • Yamamoto, S., Kawamura, K., Seki, O., Meyers, P. A., Zheng, Y., Zhou, W., 2010. Environmental influences over the last 16 ka on compoundspecific d13C variations of leaf wax n-alkanes in the Hani peat deposit from northeast China. Chemical Geology, 27

  • Yiğitel, I., 1979. Güneybatı Anadolu’da yer alan sahaların genel görünümü, MTA raporu, No: 6180, Ankara, yayımlanmamış, 15 s.

  • Zhang, E., Hatcher, P. G., Davis, A., 1993. Chemical composition of pseudo-phlobaphinite precursors: İmplications for the presence of aliphatic biopolymers in vitrinite from coal. Organic Geochemistry, 20, 721-734.

  • Zheng, Y., Zhou, W., Meyers, P. A., Xie, S., 2007. Lipid biomarkers in the Zoigê-Hongyuan peat deposit: Indicators of Holocene climate changes in West China. Organic Geochemistry, 38, 1927– 1940.

  • Zhou, W., Xie, S., Meyers, P. A., Zheng, Y., 2005. Reconstruction of late glacial holocene climate evolution in southern China from geolipids and polen in the Dingnan peat sequence. Organic Geochemistry, 36, 1272-1284.

  • Zhou, W., Zheng, Y., Meyers, P. A., Jull, A. J. T., Xie, S., 2010. Postglacial climate-change record in biomarker lipid compositions of the Hani peat sequence, northeastern China. Earth and Planetary Science Letters, 294, 37–46.



  • Hoş Çebi, F . (2016). Ekizköy (Muğla-Milas) Erken-Orta Miyosen Kömürlerinin Organik Jeokimyası ve Paleoiklim Şartları . Jeoloji Mühendisliği Dergisi , 40 (2) , 209-226 . DOI: 10.24232/jeoloji-muhendisligi-dergisi.295451

  • Hoş Çebi, F . Ekizköy (Muğla-Milas) Erken-Orta Miyosen Kömürlerinin Organik Jeokimyası ve Paleoiklim Şartları

  • ISSUE FULL FİLE
    View as PDF