Jeoloji Münendisliği Dergisi
Jeoloji Mühendisliği Dergisi

Jeoloji Mühendisliği Dergisi

2019 ARALIK Cilt 43 Sayı 2
COVER
View as PDF
COPYRİHT PAGE
View as PDF
CONTENTS
View as PDF
Determination of the Deformability, Modulus Ratios and Anisotrophic Behavior of the Micaschists; A Case Study From Burgaz Dam Site, İzmir-Turkey
Serkan Uslu Mehmet Yalçin Koca
View as PDF

ABSTRACT: Base rock of the Burgaz dam in the eastern part of the city of İzmir consists of micaschists

having different physical and mechanical properties due to weathering and fracturing. The first

aim is to compute the amount of settlement and ultimate bearing capacity value of micaschist

both in and beneath the cutoff zone by using the results of pressuremeter tests. In addition, data

from in-situ and some laboratory tests, which were used in the establishment of the relations

between elastic modulus of the micaschist rock mass (EM) and uniaxial compressive strength (σc),

EM/Eintact ratios and RQD values. Comparison of in-situ and estimated rock mass deformation moduli by

considering the RQD values was also performed. Pressuremeter tests indicate that for a dam with 115 m

height and a base width of 58 m, the settlement will vary between 2.13 and 2.26 mm. The second aim of

this work is to measure compression and shear wave velocities in order to obtain both the ratio of dynamic

elastic modulus to Poisson′s ratio (E/v)dynamic and to compare (E/v)dynamic to (E/v)static. Test results reveal a

positive linear relation of (E/v)dynamic =(E/v)static0.968. The sonic wave velocity of the micaschist is highly

related to the testing direction. This study not only discusses the relationships between Estatic and sonic

wave velocity (Vp) and Edynamic, but also the anisotropy effect arisen due to the schistosity planes with

different orientations.

  • Dam Structure

  • Micaschist

  • Pressuremeter Test

  • Settlement

  • Rock Material Classification

  • Anisotropy.

  • Al-Shayea, N.A., 2004. Effects of testing methods and conditions on the elastic properties of limestone rock. Engineering Geology, 74, 139-156.

  • Anon, 1979. Classification of rocks and soils for engineering geological mapping, Part 1 – Rock and soil materials. Bull. Int. Ass. Engineering Geology, 19, 364 – 371.

  • Brotons, V., Tomas R., Ivorra S., Grediaga A., Martinez T.M., 2016. Improved correlation between the static and dynamic elastic modulus of different types of rocks. Material and Structures, 49, 3021 – 3027.

  • Christaras, B., Auger, F., Mosse, E., 1994. Determination of the moduli of elasticity of rocks. Comparison of the ultrasonic velocity and mechanical resonance frequency methods with direct static methods. Materials and Structures, 27, 222–228.

  • Chang, C.D., Zoback, M.D., Khaksar, A., 2006. Empirical relations between rock strength and physical properties in sedimentary rocks. Journal of Petroleum Science and Engineering, 51 (3-4), 223-237.

  • Clarke, B.G., 1995. Pressuremeters in geotechnical design. Blackie Academic and Professional, Chapman and Hall, London.

  • Coon, R.F., Merritt, A.H., 1970. Predicting in-situ modulus of deformation using rock quality indices. Determination of Rock, ASTM STP, 477, 154 – 175.

  • Deere, D.U., Miller, R.P., 1966. Engineering classification and index properties for intact rock, Report AFML-TR-65-116. Air Force Weapons Laboratory (WLDC) Kirtland Air Force Base, New Mexico, 87117.

  • Eissa, E.A., Kazi, A., 1988. Relation between static and dynamic Young′s Moduli of rocks. International Journal of Rock Mechanics and Mining Science Geomechanics Abstracts, 25, (6), 479–482.

  • Elçi, H., 2003. Engineering Geology of Selçuk Town, Izmir, Master of degree science, Ms Thesis, Dokuz Eylul University, İzmir-Turkey, p. 208.

  • Entwisle, D.C., Hobbs, P.R.N., Jones, L.D., Guuss, D., Raines, M.G., 2005. The relation between effective porosity, uniaxial compressive strength and sonic velocity of intact Borrowdale Volcanic Group core samples from Sellafield. Geotech. Geol. Eng.

  • Gardner, W.S., 1987. Design of drilled piers in the Atlantic Piedmont. Smith R. E. editor. Design”, M. Te′eni, Ed., Wiley-Interscience, New York (1971), Part 2, p. 1379-1404.

  • Gupta, A.S., Seshagiri, R.K., 1998. Index properties of weathered rocks: inter-relationships and applicability. Bull. Eng. Geol. Env., 57, 161 – 172.

  • Heap, M.J., Lavalice, Y., Petrakova, L., Baud, P., Reuschle, T., Varley, N.R., Dingwell, D.B., 2014. Microstructural controls on the physical and mechanical properties of edifice-forming andesites at Volcan de Colima. Mex. J. Geophys Res. Solid Earth

  • Horsrud, P., 2001. Estimating mechanical properties of shale from empirical correlations. SPE Drilling&Completion, 16 (2), 68-73.

  • Hughes, J., 2002. Use of pressuremeter in weak rocks of the lower Nanaimo Series. Proceedings of 16th Annual Vancouver Geotech. Soc. Symp. on Foundation Eng., 29 – 30.

  • Işık, N.S., Ulusay, R., Doyuran, V., 2008. Deformation modulus of heavily jointed-sheared and block greywackes by pressuremeter tests: Numerical, experimental and empirical assessments. Eng. Geo., 101, 269 – 282.

  • Kadakçı Koca, T., Koca, M.Y., 2018. Classification of weathered andesitic rock materials from the Izmir Subway line on the basis of strength and deformation. Bull. of Eng. Geol. and the Environ., doi.org/10.1007/s10064-018-1346-y.

  • Kayabasi, A., Gokceoglu, C., Ercanoglu, M., 2003. Estimating the deformation modulus of rock masses: a comparative study. International Journal of Rock Mechanics and Mining Science40, 55 – 63.

  • Kıncal, C., Koca, M.Y., 2019. Correlations of in-situ modulus of deformation with elastic modulus of intact core specimens and RMR values of andesitic rocks: a case study of the İzmir subway line, Bull. Eng. Geol. and the Environ., doi. org/10.1007/s

  • King, M.S., 1983. Static and dynamic elastic properties of rocks from the Canadian shield. International Journal of Rock Mechanics and Mining Science, 20, 237–241.

  • Lama, R.D., Vutukuri, V.S., 1978. Handbook on Mechanical Properties of Rocks-Testing Techniques and Results, 11, p. 481. Trans. Tech. Publications, Clauthal, Germany

  • Mc Cann, D.M., Culshaw, M.G., Northmore, K., 1990. Rock mass assessment from seismic measurements, In Field Testing in Engineering Geology, F. G. Bell, M. G. Culshaw, J. C. Cripps and J. B. Coffey (eds.) Engineering Special Publication, No. 6, Geolog

  • Menard, L., 1975. Interpretation and application of pressuremeter tests results to foundations design (D60). Sols Soils No. 26, Paris.

  • Menard, L., Rousseau, J., 1962. L’evaluation des tassements. Tendances nouvelles. Sols Soils No. 1, pp. 13-20, Paris.

  • Milton, J.S., McTeer, P.M., Corbet, J.J., 1997. Introduction to Statistics, McGraw and Hill Company.

  • Najibi, A.R., Ghafoori, M., Lashkaripour, G.R., 2015. Empirical relations between strength and static and dynamic elastic properties of Asmari and Sarvak limestones, two main oil reservoirs in Iran. J. Pet. Sci. Eng., 126, 78 – 82.

  • Nasseri, M.H.B., Rao, K.S., Ramamurthy, T., 2003. Anisotropic strength and deformational behavior of Himalayan schists. International Journal of Rock Mechanics and Mining Science, 40 (1), 3–23.

  • Sharma, P.K., Singh, T.N., 2008. A correlation between P-wave velocity, impact strength index, slake durability index and uniaxial compressive strength. Bull. Eng. Geol. Environ., 67, 17-22.

  • Singh, V.K., Singh, D., Singh, T.N., 2001. Prediction of strength properties of some schistosity rocks from petrographic properties using artificial neural networks. International Journal of Rock Mechanics and Mining Science, 38 (2), 269 – 284.

  • Tarnawski, M., 2004. The Perfect Menard pressuremeter Curve. Archives of Hydro-Eng. and Environmental Mechanics, 15 (4), 387–402.

  • Türk, N., Dearman, W.R., 1983. A practical classification of rocks for engineering purposes. Bull. Int. Assoc. of Eng. Geo., 28, 162-167.

  • Tuğrul, A., Zarif, I.H., 1999. Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Engineering Geology, 51, 303-317.

  • Uslu, S., 2017. Engineering Geology of a Rock Slope Located in Right Bank of the Burgaz Dam Site, İzmir, Master of degree science, Ms Thesis, Dokuz Eylul University, İzmir, p. 104.

  • Vanheerden, W.L., 1987. General relations between static and dynamic moduli of rocks. International Journal of Rock Mechanics and Mining Science, 24, 381–385.

  • Zhang, L., Einstein, H.H., 2004. Using RQD to estimate the deformation modulus of rock masses.International Journal of Rock Mechanics and Mining Science, 41, 337–341.

  • Zhang, X.P., Wong, L.N.Y., Wang, S.J., Han, G.Y., 2011. Engineering properties of quartz mica schist. Engineering Geology 121, 135–149.



  • Uslu, S , Koca, M . (2019). Determination of the Deformability, Modulus Ratios and Anisotrophic Behavior of the Micaschists; A Case Study From Burgaz Dam Site, Izmir-Turkey . Jeoloji Mühendisliği Dergisi , 43 (2) , 155-185 . DOI: 10.24232/jmd.654888

  • Uslu, S , Koca, M . Determination of the Deformability, Modulus Ratios and Anisotrophic Behavior of the Micaschists; A Case Study From Burgaz Dam Site, Izmir-Turkey. Jeoloji Mühendisliği Dergisi 43 (2019 ): 155-185

  • Evaluation of Rockfall Susceptibility of Kargabedir Tepe (Ankara-Eskişehir Highway) Region by Cone Propagation Approach Using Unmanned Aerial Vehicle (UAV) Images
    Aycan Kalender Harun Sönmez
    View as PDF

    ABSTRACT: Rockfall is defined by Varnes (1978) as a type of instability in which rock blocks released from rock masses

    on steep slopes and move at high speed down along the slope. The rock block releases from the source point moves

    downward along a trajectory until its energy is extinguished. In deterministic approaches, a large number of physical

    and mechanical parameters of both slope surface and block, are used as inputs, and therefore the results are closely

    related to accuracy of this number of input parameters. As a reflection of this, empirical approaches, which have

    a very high practical value, are preferred especially in the preparation of rockfall maps on regional scale. The

    cone propagation approach proposed by Jabodeyoff and Labiouse (2011) is a practical method for regional scale

    and stands out among other empirical approaches due to uses only source area map and digital elevation model

    (DEM) as input parameters. In this study, in order to test this method various field studies were carried out in

    Kargabedir rockfall area based on the principle of determination of possible propagation zone on DEM. In the

    field studies carried out at Kargabedir Hill, high resolution aerial photos of the region were taken using a Dron

    (unmanned aerial vehicle-UAV) to obtain a high resolution DEM. Thus, a high-resolution (40 cm/pixel) DEM and

    a very high resolution (5 cm/pixel) orthorectified aerial image were generated for the area. Propagation zone maps

    of Kargabedir rockfall area were prepared for different energy line angle values using high-resolution DEM with

    cone propagation approach. In addition, the positions and dimensions (height/length/width) of the fallen blocks were

    measured in the region. The dimensions and positions of the fallen blocks were also determined from the orthophoto

    and their compatibility with the site measurements was examined. It has been observed that width-length-height

    measurements of the fallen blocks acquired from the field and orthophoto are compatible.

  • Rockfall

  • Cone Propagation Approach

  • Unmanned Aerial Vehicle (UAV)

  • Digital Elevation Model (DEM)

  • Orthorectified Aerial Image

  • Azzoni, A., de Freitas, M. H., 1995. Experimentally gained parameters, decisive for rock fall analysis. Rock Mechanics and Rock Engineering, 28, 2, 111–124.

  • Artuç, E. F., 2014. Susuz Köyü (Çubuk -Ankara) ve Yakın Çevresinin Kaya Düşme Potansiyelinin Araştırılması, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Yüksek Mühendislik Tezi, 92 s (yayımlanmamış).

  • Broili, L., 1973. In situ tests for the study of rockfall. Geol. Appl. idrogeol., 8, 105–111.

  • Bozzolo, D., Pamini, R., 1986. Modello matematico per lostudio della caduta dei massi. Laboratorio di FisicaTerrestre ICTS. Dipartimento Pubblica Educazione, Lugano-Trevano

  • Copons, R., Vilaplana, J. M., Linares, R., 2009. Rockfall travel distance analysis by using empirical models (Solà d’Andorra la Vella, Central Pyrenees). Natural Hazards and Earth System Science, 9, 6, 2107–2118

  • Corominas, J., 1996. The angle of reach as a mobility index for small and large landslides. Canadian Geotechnical Journal, 33, 260–271

  • Chau, K.T., Wong, R.H.C., Lee, C. F., 1996. Rockfall Problems in Hong Kong and some new experimental results for coefficients of Restitution. International Journal of Rock Mechanics and Mining Sciences, 35, 4–5, 662– 663

  • Derron, M.H., Stalsberg, K., Sletten, K., 2016. Method for the Susceptibility Mapping of Rock Falls in Norway. Technical Report, Trondheim, Norway.

  • Evans, S. G., Hungr, O., 1993. The assessment of rockfall hazard at the base of talus slopes. Canadian Geotechnical Journal, vol. 30, no. 4. pp. 620–636.

  • Gerber, W., 1994. Beurteilung des Prozesses Steinschlag. Birmensdorf: Herbstkurs Poschiavo, Kursunterlagen.

  • Heim, A., 1932. Der Bergsturz und Menschenleben. Fretz und Wasmuth Verlag, Zürich, 218 p

  • Jaboyedoff, M., Labiouse, V., 2003. Preliminary assessment of rockfall hazard based on GIS data. Rock Mechanics, 575–578

  • Jaboyedoff, M., Labiouse, V., 2011. Technical note: Preliminary estimation of rockfall runout zones. Natural Hazards and Earth Systems Science, 11, 3, 819–828.

  • Kalender, A., 2017. Konik yayılım yaklaşımıyla kaya düşmesi potansiyelinin değerlendirilmesine yönelik bir yöntem önerisi. Hacettepe Üniversitesi, Fen Bilimleri Enstitüsü, Ankara, Doktora tezi, 172 s (yayımlanmamış).

  • Larcher, V., Simoni, S., Pasquazzo, R., Strada, C., Zampedri, G., Berger, F., 2012. WP6 guidelines Rockfall and Forecast systems, Italy.

  • Ritchie, A. M., 1963. Evaluation of Rockfall and its Control. Stability of Rock Slope Vol 17, Highway Research Board, National Academy of SciencesNational Research Council, Washington, DC, 13–28

  • Troisi, C., Berger, F., Dorren, L., 2008. Protection de la viabilité alpine, PROVIALP project report

  • Ulusoy, İ., Şen, E., Tuncer, A., Sönmez, H., Bayhan, H., 2017. 3D Multi-view Stereo Modelling of an Open Mine Pit Using a Lightweight UAV. Geology Bulletin of Turkey, 60, 223–241.

  • Varnes, D. J., 1978. Slope movements: types and processes. Transportation Research Board, Washington, DC: Special Report No. 176.

  • Volkwein, A., Schellenberg, K., Labiouse, V., Agliardi, F., Berger, F., Bourrier, F., Dorren, L. K. A., Gerber, W., Jaboyedoff, M., 2011. Rockfall characterisation and structural protection - A review, Natural Hazards and Earth Systems Sciences, 11,

  • Zhao, T., Crosta, G. B., Utili, S., De Blasio, F. V., 2017. Investigation of rock fragmentation during rockfalls and rock avalanches via 3-D discrete element analyses. J. Geophysical Res. Earth Surf., 122, 678– 695.



  • Kalender, A , Sönmez, H . (2019). Kargabedir Tepe (Ankara-Eskişehir Karayolu) Bölgesinin Kaya Düşmesi Duyarlılığının İnsansız Hava Aracı (İHA) Görüntüleri Kullanılarak Konik Yayılım Yaklaşımıyla Değerlendirilmesi . Jeoloji Mühendisliği Dergisi , 43 (

  • Kalender, A , Sönmez, H . Kargabedir Tepe (Ankara-Eskişehir Karayolu) Bölgesinin Kaya Düşmesi Duyarlılığının İnsansız Hava Aracı (İHA) Görüntüleri Kullanılarak Konik Yayılım Yaklaşımıyla Değerlendirilmesi. Jeoloji Mühendisliği Dergisi 43 (2019 ): 187

  • Evaluation of the Performance of a Rockfall Ditch by 3-Dimensional Rockfall Analyses: Akköy (Ürgüp) Case
    Mutluhan Akin İsmail Dinçer Ahmet Orhan Ali Özgün Ok Müge Akin Tamer Topal
    View as PDF

    ABSTRACT: Rockfall ditches or areas can be constructed in order to protect against rockfalls in settlements that are indanger of rockfalls when the population density is not high. Nevertheless, in the design of such protection structures,essential site-specific engineering studies and analyzes are often not carried out appropriately. Therefore, rockfall ditches are occasionally not capable of preventing rockfalls. Within the scope of this study, the performance of a 2m-deep and 1 km-long rockfall ditch excavated at the upper elevation of touristic Akköy (Ürgüp) settlement in 2012in order to prevent the entrance of falling rocks to the residential area was evaluated on the basis of 3-dimensionalrockfall analyses. According to the rockfall risk classification, the settlement is under moderate rockfall risk. Thedigital surface model used in 3-dimensional rockfall analyses was generated by point cloud data obtained fromphotogrammetric images taken by unmanned aerial vehicle. During field observations, it was determined that thedimension of the previously fallen ignimbrite blocks could reach up to 2 m. On the other hand, the high persistencyof discontinuities in the source zone indicates that the dimensions of the potential rockfall blocks may be large. As aresult of the 3-dimensional rockfall analyses carried out in RocPro3D software, it was defined that the falling blocksare generally caught by the ditch excavated between the source zone and the settlement, but in some sections of theditch those blocks may continue to roll over the rockfall ditch. Eventually, Akköy settlement is still partially underthe danger of rockfalls. If the rockfall ditch is not periodically cleaned in the course of time, the extent of danger willenlarge with the decrease in the capacity of the trench.

  • Rockfall

  • ditch

  • 3-dimension

  • performance

  • Ürgüp

  • Atabey, E., 1989. MTA Genel Müdürlüğü, 1/100.000 Ölçekli Türkiye Jeoloji Haritaları, Kayseri H19 (K33) Paftası, 18 syf

  • Barton, N., Bandis, S. C., 1990. Review of predictive capabilities of JRC-JCS model in engineering practice. Proceedings of the International Symposium on Rock Joints, Loen, Norway, 603- 610.

  • Dinçer, İ., Orhan, A., Frattini, P., Crosta, G.B., 2016. Rockfall at the heritage site of the Tatlarin Underground City (Cappadocia, Turkey). Natural Hazards, 82 (2), 1075-1098.

  • Fanos, A.M., Pradhan, B., 2019. A novel rockfall hazard assessment using laser scanning data and 3D modelling in GIS, Catena, 172, 135-150.

  • FHWA, 1989. Rock Slopes: Design, Excavation and Stabilization. Publication FHWA-TS-89-045. Turner-Fairbank Highway Research Center, McLean.

  • Gökçe, O., Özden, S., Demir, A., 2008. Türkiye’de afetlerin mekansal ve istatistiksel dağılımı afet bilgileri envanteri. Bayındırlık ve İskan Bakanlığı Afet İşleri Genel Müdürlüğü Afet Etüt ve Hasar Tespit Dairesi Başkanlığı, Ankara, 112 sf.

  • Kayabaşı, A., 2018. The assessment of rockfall analysis near a railroad: a case study at the Kızılinler village of Eskişehir, Turkey. Arabian Journal of Geosciences, 11: 800.

  • Pierson, L.A., Gullixson, C.F., Chassie, R.G., 2001. Rockfall Catchment Area Design Guide. Final Report SPR-3(032) Oregon Department of Transportation, Salem

  • Ritchie, A.M., 1963. Evaluation of rockfall and its control. Highw Res Board Rec 17, 13–27.

  • RocPro3D, 2014. RocPro3D software. http://www. rocpro3d.com/rocpro3d_en.php.

  • Rocscience Inc., 2019. https://www.rocscience.com/ help/dips/ Erişim tarihi: 08.04.2019.

  • Saroglou, H., Marinos, V., Marinos, P., Tsiambaos, G., 2012. Rockfall hazard and risk assessment: an example from a high promontory at the historical site of Monemvasia, Greece. Natural Hazards Earth System Sciences, 12, 1823-1836.

  • Sarro, R., Riquelme, A., García-Davalillo, J.C., Mateos, R.M., Tomás, R., Pastor, J.L., Cano, M., Herrera, G., 2018. Rockfall simulation based on UAV photogrammetry data obtained during an emergency declaration: application at a cultural heritage sit

  • Topal, T., Akin, M. K., Ozden, A.U., 2007. Assessment of rockfall hazard around Afyon Castle. Environmental Geology, 53(1):191–200.

  • Topal, T., Akın, M.K., Akın, M., 2012. Rockfall hazard analysis for an historical Castle in Kastamonu (Turkey). Natural Hazards, Vol. 62: 255–274.

  • Tunusluoğlu, M.C., Zorlu, K., 2009. Rockfall hazard assessment in a cultural and natural heritage (Ortahisar Castle, Cappadocia, Turkey). Environmental Geology, 56(5):963–972.

  • Turner, A.K., Schuster, R.L., 2012. Rockfall Characterization and Control, Transportation Research Board, National Academy of Sciences, Washington D.C., 658 p.

  • Varnes, D. J., 1978. Slope movement types and processes, In: R. L. Schuster and R. J. Krizek, Eds., Landslides, Analysis and Control, National Academy of Sciences, pp. 11-33.

  • Volkwein, A., Schellenberg, K., Labiouse, V., Agliardi, F., Berger, F., Bourrier, F., Dorren, L. K. A., Gerber, W., Jaboyedoff, M.,2011. Rockfall characterization and structural protection-a review. Natural Hazards and Earth System Sciences, 11, 2617

  • Wyllie, D.C., 2015. Rock Fall Engineering. CRC Press, Taylor & Francis Group. 270 pp.

  • Zorlu, K., Tunusluoglu, M.C., Gorum, T., Nefeslioglu, H.A., Yalcin, A., Turer, D., Gokceoglu, C., 2011. Landform effect on rockfall and hazard mapping in Cappadocia (Turkey). Environmental Earth Sciences. 62, 8, 1685-1693.



  • Akın, M , Dinçer, İ , Orhan, A , Ok, A , Akin, M , Topal, T . (2019). Kaya Tutma Hendek Performansının 3-Boyutlu Kaya Düşme Analizleriyle Değerlendirilmesi: Akköy (Ürgüp) Örneği . Jeoloji Mühendisliği Dergisi , 43 (2) , 211-232 . DOI: 10.24232/jmd.65

  • Akın, M , Dinçer, İ , Orhan, A , Ok, A , Akin, M , Topal, T . Kaya Tutma Hendek Performansının 3-Boyutlu Kaya Düşme Analizleriyle Değerlendirilmesi: Akköy (Ürgüp) Örneği. Jeoloji Mühendisliği Dergisi 43 (2019 ): 211-232

  • Differences Between Rock Modules: Case Studies From Deriner/Artvin and Ermenek/Karaman Dams
    Ali Kayabaşi
    View as PDF

    ABSTRACT: Elasticity modulus and deformation modulus are used an input parameter in arch and concrete dam projects. Inaddition, these modules are used for the classification of intact rock and rock masses. Although the deformation andelasticity modulus are different from each other, they are often confused in practice. These modules are determinedby in-situ tests, laboratory tests and geophysical methods. In this study, the deformation and elasticity modulusdetermined by dilatometer tests and plate loading tests at Deriner /Artvin and Ermenek /Karaman dam sites andmodules obtained by laboratory test results were correlated. The module correlations in literature were compiledas well. Rock mass elasticity modulus (ED) of dilatometer test, rock mass deformation modulus (DD) of dilatometertest, rock mass elasticity modulus (EH) of plate loading test, rock mass deformation modulus (DH) of plate loadingtest, intact rock static elasticity modulus (ELSD) of laboratory tests, intact rock dynamic elasticity modulus (ELD)of laboratory tests are correlated with regression analysis. Empirical equations obtained by regression analysisperformed between rock modulus revealed high determination coefficient. The empirical equations proposed inthis study are developed with a number of limited number of data and every rock mass has specific properties. Theequations determined in this study should not be used for other projects or a cross check should be performed.

  • Deformation Modulus

  • Elasticity Modulus

  • Deriner Dam

  • Ermenek Dam

  • In-situ Test

  • Al-Shayea, NA., 2004. Effects of testing methods and conditions on the elastic properties of limestone rock. Engineering Geology, 74:139–156

  • ASTM 477, 1970. Determination of in-situ Modulus of Deformation of rock

  • ASTM D4394, 2017. Standard Test Method for Determining In Situ Modulus of Deformation of Rock Mass Using Rigid Plate Loading Method, ASTM International, West Conshohocken, www. astm.org

  • ASTM D2845, 2008. Standard Test Method for Laboratory Determination of Pulse Velocities and Ultrasonic Elastic Constants of Rock (Withdrawn 2017), ASTM International, West Conshohocken, PA, www.astm.org.

  • Bieniawski, Z.T., 1978. Determining Rock Mass deformability. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.15, pp. 237-247. Pergamon Press. Printed in Great Britain.

  • Brotons,V., Tomás, R., Ivorra, S., Grediaga, A., 2014. Relationship between static and dynamic elastic modulus of calcarenite heated at different temperatures: the San Julian’s stone. Bulletin of Engineering Geology Environment, 73 (3), doi 10.1007/s

  • Christaras, B., Auger, F., Mosse, E., 1994. Determination of the moduliof elasticity of rocks. Comparison of the ultrasonic velocity and mechanical resonance frequency methods with direct staticmethods. Material Structure, 27:222–228.

  • Ciccotti, M., Mulargia, F., 2004. Differences between static and dynamic elastic moduli of a typical seismogenic rock. Geophys Journal Int., 157:474–477.

  • Gue´guen, Y., Palciauskas, V., 1994. Introduction to the physics of rocks. Princeton University Press, New Jersey, p 294.

  • Deere, D.U., Miller, R.P., 1966. “Engineering Classification And Index Properties For Intact Rock”, Tech.Rept. No AFWL-65-116, Air Force Base, New Mexico.

  • EİE-081, 1992. Ultrasonik yöntemle karot numunelerinin boyuna ve enine elastik dalga hızlarının ölçülmesi ve dinamik elastik parametrelerinin hesaplanması. Elektrik İşleri Etüt İdaresi Genel Müdürlüğü Mühendislik Hizmetleri Normları, Ankara

  • EİE-122, 1992. Plaka Yükleme Deneyi Normu. Elektrik İşleri Etüt İdaresi Genel Müdürlüğü Mühendislik Hizmetleri Normları, Ankara

  • EİE-124, 1992. Oyo 200 Dilatometre Deneyi Normu. Elektrik İşleri Etüt İdaresi Genel Müdürlüğü Mühendislik Hizmetleri Normları, Ankara.

  • Galera, M.J., Alvarez, M., Bieniawski, Z.T., 2005. Evaluation of the deformation modulus of rock masses: comparison of the pressuremeter and dilatometer tests with RMR prediction. ISP5- PRESSIO International Symposium.

  • Hoek, E., Diederichs, M.S., 2006. Empirical estimation of rock mass modulus. International Journal of Rock Mechanics & Mining Sciences, 43. 203-215.

  • Devlet Su İşleri Genel Müdürlüğü, http://www.dsi. gov.tr/projeler, (Ziyaret Tarihi 25 Mart 2019).

  • Goodman, R.E., 1989. Introduction to rock mechanics, 2nd ed., Wiley, New York, 562 p

  • ISRM, 1978. ISRM suggested methods for determining the uniaxial compressive strength and deformability of rock materials. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 16,135-140.

  • ISRM, 1981. ISRM Suggested Methods: Rock Characterization, Testing and Monitoring. E.T. Brown (ed.), Pergamon Press, London, 211 pp

  • ISRM, 1998. Suggested methods for seismic testing within and between boreholes. InternationalJournal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 25: 447–472.

  • Kaya, A., Kayabaşı A., 1992. Aşağı Çoruh Havzası Deriner Barajı Elastmeter 200 Deney Sonuç raporu. EİEİ Genel Müdürlüğü. Kaya ve Zemin Mekaniği Şubesi Müdürlüğü (Basılmamış).

  • Kaya, A., Kayabaşı A., 1998. Ermenek HES Santral Yeri Dilatometre Deney Sonuç raporu. Jeoloji ve Sondaj Dairesi Başkanlığı, Kaya ve Zemin Mekaniği Şubesi Müdürlüğü, EİEİ Genel Müdürlüğü, Ankara.

  • Kujundzíc, B., Grujíc, N., 1966. Correlation between static and dynamic investigations of rock mass “in situ”. Proceedings of 1st ISRM Congress, Lisbon. 1: 565–570. LNEC.

  • Kulhawy, F. H., Goodman, R., 1980. Design of foundations on discontinuous rock. Proc. Int. Conf. Struct. Found. Rock. Ed. Balkema, 209-220

  • Martinez-Martinez, J., Benavente, D., Garci´a-delCura, M.A., 2012. Comparison of the static and dynamic elastic modulus in carbonate rocks. Bulletin of Engineering Geology and the Environment, 71: 263-268.

  • Munır, K., 2006. Development of correlation between rock classification system and modulus of deformation. PhD Thesis-Civil-02, Department of Civil Engineering University of Engineering And Technology, Lahore-PAKISTAN.

  • Narin, O., Ceylan, O., Uysal, B., 1986. Aşşağı Çoruh Havzası Deriner Baraj Yeri Hidrolik Kriko Yükleme Deneyleri Elastisite Raporu. EİEİ Genel Müdürlüğü, Yayın No:86-65. Ankara.

  • Palmstrom, A., Singh, R., 2001. The deformation modulus of rock masses - comparisons between in situ tests and indirect estimates. Tunnelling and Underground Space Technology, Vol. 16, No. 3, pp. 115 – 131.

  • Wyllie, D. C., 1992. Foundations on Rock. Principal, Golder Associates, consulting Engineers Vancouver, Canada.



  • Kayabaşı, A . (2019). Kaya Modülleri Arasında Farklılıklar: Deriner/Artvin ve Ermenek/Karaman Barajlarından Örnek Çalışmalar . Jeoloji Mühendisliği Dergisi , 43 (2) , 233-258 . DOI: 10.24232/jmd.655049

  • Kayabaşı, A . Kaya Modülleri Arasında Farklılıklar: Deriner/Artvin ve Ermenek/Karaman Barajlarından Örnek Çalışmalar. Jeoloji Mühendisliği Dergisi 43 (2019 ): 233-258

  • The Effect of Composition and Textural Properties of Basaltic Rocks on Their Mechaıical Behaviour
    Sinem Aksoy Atiye Tuğrul Selman Er Murat Yilmaz
    View as PDF

    ABSTRACT: Basalts are common in our country and basalts are employed for different purposes. Basalts which have high durability and resistance are preferred in engineering projects. Chemical, mineralogical, petrographic and physicomechanical properties of basalts should be well- known to increase their usage areas. Studies have shown that there is a relationship between the structure and physico-mechanical properties of stones. The aim of this study is to investigate the effects of different chemical, mineralogical and petrographic properties on the physico-mechanical behavior of basaltic rocks. In general, basalt stones were collected from the Marmara Region and its surroundings. Then, chemical, mineralogical and petrographic properties of the samples were determined. In the next stage, physico-mechanical properties were determined as a result of laboratory studies. Basalts were divided in to two groups according to their matrix characteristics, mineralogical composition and phenocrystalline dimensions according to test results. The first group of basalts showed high strength with high olivine content. The second group of basalts are including high rate phenocrystalline minerals, not including olivine but including high volcanic glass. These basalts give lower strength than the first group

  • Basalt

  • Mineralog

  • Textural Properties

  • Pyhsico-Mechanic

  • Adelinet, M., Fortin, J., Schubnel, A., Guéguen, Y., 2013. Deformation modes in an Icelandic basalt: From brittle failure to localized deformation bands. Journal of Volcanology and Geothermal Research, 255, 15–25.

  • Anovitz, L.M., Cole, D.R., 2015. Characterization and analysis of porosity and pore structures. Rev Mineral Geochemistry, 80, 61–164

  • Eberhardt, E., Stimpson, B., Stead, D., 1999. Effects of grain size on the initiation and propagation thresholds of gerilims-induced brittle fractures. Rock Mechanics Rock Engineering, 32(2), 81- 99.

  • Heap, M.J., 2009. The evolution of elastic moduli with increasing crack damage during cyclic gerilimsing of a basalt from Mt. Etna volcano. Tectonophysics, 471 (1–2), 153–160.

  • ISRM, 2007. The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring, Springer, 628p

  • Korkanç, M., Solak, B., 2016. Estimation of engineering properties of selected tuffs by using grain/matrix ratio. Journal of African Earth Sciences, Volume 120, August 2016, pages 160- 172.

  • Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., 1986. A chemical classification of volcanic rocks based on total alkali-silica diagram. Journal of Petrology, 27, 745-750.

  • Palchik, V., Hatzor, Y. H., 2004. The influence of porosity on tensile and compressive strength of chalks, Rock Mechanics and Rock Engineering, 37(4), 331-341.

  • Palchik, V., 2013. Is there link between the type of the volumetric strain curve and elastic constants, porosity, stress and strain characteristics. Rock Mechanics and Rock Engineering, 46(2), 315- 326.

  • Tuğrul A., Gürpınar, O., 1997. Proposed Weathering Classification for Basalts and Their Engineering Properties. Bulletin of the International Association of Engineering Geology, 55, 61-71.

  • Tuğrul A., Gürpınar, O., 1997. Proposed Weathering Classification for Basalts and Their Engineering Properties. Bulletin of the International Association of Engineering Geology, 55, 61-71.

  • Ündül, Ö., Amann, F., Aysal, N., Plötze, M., 2015. Micro - textural effects on crack initiation and crack propagation of andesitic rocks. Engineering Geology, 1-9.



  • Erişiş, S , Tuğrul, A , Er, S , Yılmaz, M . (2019). Bazaltik Kayaların Bileşim ve Dokusal Özelliklerinin Mekanik Davranışlarına Etkisi . Jeoloji Mühendisliği Dergisi , 43 (2) , 259-278 . DOI: 10.24232/jmd.655348

  • Erişiş, S , Tuğrul, A , Er, S , Yılmaz, M . Bazaltik Kayaların Bileşim ve Dokusal Özelliklerinin Mekanik Davranışlarına Etkisi. Jeoloji Mühendisliği Dergisi 43 (2019 ): 259-278

  • Hydrogeochemistry and Application Characteristics of İscehisar (Afyonkarahisar) Thermal and Mineral Waters
    Can Başaran Ahmet Yildiz Merve Şenel
    View as PDF

    ABSTRACT: In this study, hydrogeochemical and application characteristics of one thermal water, one mineral water and 5cold water samples in Iscehisar (Afyonkarahisar) were investigated. The schists of the Paleozoic Afyon metamorphicsform the basement rock in the study area. Iscehisar marbles are the reservoir rock of the geothermal system. Theimpermeable levels of the Neogene units form the cover rock. Meteoric waters percolate to the reservoir rocks, theyare heated at depth by geothermic gradient and then ascend to the surface as thermal waters and/or ascend to thesurface as cold mineral waters due to heat lost causing longer flow paths. The permeable levels of the Neogene rocksare the aquifer rocks of the cold waters. According to the results of the analysis; the thermal water is Na-Ca-HCO3type, the mineral water is Na-HCO3 type and the cold water samples are Ca-Mg-HCO3 and Ca-Na-HCO3 types. Itis thought that the Mg and Na ions in the cold waters are caused by the metamorphic-volcanic rocks in which theyinteract. According to the silica geothermometers, the reservoir temperatures of thermal and mineral waters varybetween 69-119°C and 46-82°C, respectively. All the ion concentrations except those of As in the cold water samples are compatible with the human consumption limits of ITASHY (2013). The ions concentrations of mineral watersample, except that of Cr, are compatible with the natural mineral water limits of DMSY (2004)

  • Iscehisar

  • Afyonkarahisar

  • Geothermal

  • Mineral Water

  • Hydrogeochemistry

  • Arnorsson, S., Gunnlaugsson, E., Svavarsson, H., 1983. The chemistry of geothermal waters in Iceland-II. Mineral Equilibria and independent Variables Controling Water Compositions. Geochimica et Cosmochimica Acta, 47, 547- 566.

  • DMSY., 2004. Doğal Mineralli Sular Hakkında Yönetmelik (2004), Resmî Gazete Sayısı: 25657.

  • Ellis, A.J., Mahon, W.A.J., 1967. Natural hydrothermal systems and experimental hot water/rock interactions. Part II. Geochimica et Cosmochimica Acta, 31, 519-538.

  • Fournier, R.O., 1977. A review of chemical and isotopic geothermometers for geothermal systems, Proceedings of the symposium on geothermal energy, Cento Scientific Programme, 133-143.

  • Fournier, R.O., 1979. A revised equation for the Na-K geothermometer. Geothermal Resource Council Transections, 3, 221-224.

  • Fournier, R.O., 1990. The interpretation of Na-KMg relations in geothermal waters. Geothermal Resource Council Transections, 14, 1421-1425.

  • Fournier, R.O., Truesdell, A.H., 1973. An Empirical Na-K-Ca Geothermometer for Natural Waters. Geochimica et Cosmochimica Acta, 37, 1255-1275. https://doi.org/10.1016/0016-7037(73)90060-4.

  • Giggenbach, W. F., 1988. Geothermal Solute Equilibria. Derivation of Na-K-Mg-Ca Geoindicators. Geochimica et Cosmochimica Acta, 52, 2749-2765.

  • Giggenbach, W.F., Goguel, R.L., 1989. Collection and Analysis of Geothermal and Volcanic Water and Gas Discharges. Report No. CD 2401. Chemistry Division, DSIR, Petone, New Zealand.

  • Göncüoğlu, M.C., Turhan, N., Şentürk, K., Uysal, Ş., Özcan, A., Işık, A., 1996. Orta Sakarya’da Nallıhan-Sarıcakaya Arasındaki Yapısal Birliklerin Jeolojik Özellikleri, MTA Rap. No. 10094, (Yayınlanmamış).

  • Gürsoy, H., Piper, J.D.A., Tatar, O., 2003. Neotectonic deformation in the western sector of tectonic escape in Anatolia: palaeomagnetic study of the Afyon region, central Turkey. Tectonophysics, 374, 57-79.

  • Harder, H., 1970. Boron content of sediments as a tool in facies analysis. Sedimentary Geology, 4, l53- 175.

  • IAH., 1979. Map of mineral and thermal water of Europe. Scale 1:500.000, International Association of Hydrogeologists, United Kingdom.

  • İTASHY., 2013. İnsani tüketim amaçli sular hakkinda yönetmelikte değişiklik yapılmasına dair yönetmelik, Resmi Gazete, sayı: 28580.

  • Karingithi, C.W., 2009. Chemical Geothermometers for Geothermal Exploration, Short Course IV on Exploration for Geothermal Resources, 1-22.

  • Keren, R., Mezuman, V., 1987. Boron adsorption by clay minerals using a phenomenological equation, Clays and Clay Minerals, 29, 198–204

  • Ketin, İ., 1996. Anadolu’nun Tektonik Birlikleri, MTA Dergisi, 66, 20-34, Ankara.

  • Kibici, Y., Yıldız, A., Bağcı, M., 2001. Afyon kuzeyinin jeolojisi, mermer potansiyelinin araştırılması, Türkiye III. Mermer Sempozyumu, MERSEM 2001, 73-84, Afyonkarahisar.

  • Metin, S., Genç, Ş., Bulut, V., 1987. Afyon ve Yakın Dolayının Jeolojisi, MTA Yayınları, Ankara.

  • Mutlu, H., 1996. Afyon jeotermal alanındaki termal suların jeokimyasal değerlendirmesi ve jeotermometre uygulamaları, Doktora tezi, Orta Doğu Teknik Üniversitesi, 169s.

  • Nieva, D., Nieva, R., 1987. Development in Geothermal Energyi Mexico, Part 12-A Cationic Composition Geothermometer For Prospection of Geothermal Resources, Heat Recovery Systems and CHP, 7, 243-258.

  • Öcal, H., Turhan, N., Göktaş, F., 2011. Maden Tetkik ve Arama Genel Müdürlüğü, 1:100000 ölçekli jeoloji haritaları, Afyon K25 paftası.

  • Palmer, M. R., Spivack, A.J., Edmond, M., 1987. Temperature and pH controls over isotopic fractionation during adsorption of boron on marine clays. Geochimica et Cosmochimica Acta, 51, 2319–2323.

  • Piper, A.M., 1944. A Graphic Procedure in the Geochemical interpretation of Water Analysis, Transactions, American Geophysical Union, 25, 914-23.

  • Schoeller, H., 1955. Geochemie Des Eaux Souterraines, Revue De L’institute Francois Du Petrole, 10, 230-44.

  • Seyfried, W. E., Janecky, D.R., Mottl, M.J., 1984. Alteration of the oceanic crust: Implications for geochemical cycles of lithium and boron. Geochimica et Cosmochimica Acta, 48, 557- 569.

  • Tolluoğlu, Ü.A., Erkan, Y., Yavaş, F., 1997. Afyon metasedimenter grubunun Mesozoyik öncesi metamorfik evrimi. Türkiye Jeoloji Bülteni, 40- 2, 1-17.

  • Truesdell, A. H., 1976. Summary of Section III Geochemical Techniques in Exploration. In Proceedings, Second United Nations Symposium on the Development and Use of Geothermal Resources, San Francisco, CA, U. S. Government Printing Office, 1, 13-39, W



  • Başaran, C , Yıldız, A , Cigerci, M . (2019). İscehisar (Afyonkarahisar) Termal ve Mineralli Sularının Hidrojeokimyası ve Kullanım Özellikleri . Jeoloji Mühendisliği Dergisi , 43 (2) , 279-291 . DOI: 10.24232/jmd.655363

  • Başaran, C , Yıldız, A , Cigerci, M . İscehisar (Afyonkarahisar) Termal ve Mineralli Sularının Hidrojeokimyası ve Kullanım Özellikleri. Jeoloji Mühendisliği Dergisi 43 (2019 ): 279-291

  • ISSUE FULL FİLE
    View as PDF