Jeoloji Münendisliği Dergisi
Jeoloji Mühendisliği Dergisi

Jeoloji Mühendisliği Dergisi

2023 HAZİRAN CİLT 47-1
COVER
View as PDF
COPYRIGHT PAGE
View as PDF
CONTENTS
View as PDF
Evaluation of Rockfalls with 3-Dimensional Probabilistic Analyses and Empirical Methods: The Case of the Kayseri – Soğanlı Settlement
Ogün Ozan Varol Mutluhan Akin Ahmet Orhan İsmail Dinçer
View as PDF

ABSTRACT:This study evaluated the potential rockfall hazards in the Kayseri-Soğanlı settlement using the energy angle method and 3-dimensional probabilistic rockfall modeling. The high-resolution digital surface model (DSM) was obtained with the help of unmanned aerial vehicles (UAV) and high-resolution orthophoto. 3-dimensional probabilistic rockfall simulations were conducted on the DSM using the CONEFALL software, and rockfall zones were determined according to the energy line angle method. The dimensions of previously fallen rock blocks were determined using fieldwork and orthophoto generated by UAV. As a result of 3-dimensional probabilistic analyses, the maximum kinetic energy values of 15,000 kJ and bounce height of 15 m were determined during the movement of 3-meter rock blocks along the slope. When the energy line angle method was considered, it was found that the previously fallen blocks were mostly concentrated in the 40ο energy line angle zone in the southern part of the slope. 

On the other hand, although the rolling lines obtained from probabilistic 3- dimensional rockfall analyses for 3 metre block size reach up to the maximum 30ο energy line angle zone, these rolling lines end in the 40ο energy line angle zone, especially in the southern part of the slope. Therefore, the empirical method, 3-dimensional probabilistic method, and the positions of measured blocks in the field show general consistency.

  • 3-Dimensional probabilistic analysis

  • CONEFALL

  • Energy line angle

  • Rockfall

  • Orthophoto

  • RocPro3D

  • Akın, M., Dinçer, I., Ok, A. Ö., Orhan, A., Akın, M. K., ve Topal, T. (2021). 3-Boyutlu Kaya Düşme Analizlerinde TLS ve İHA ile Oluşturulan Sayısal Yüzey Modellerinin Kullanımı. Ulusal Mühendislik Jeolojisi ve Jeoteknik Sempozyumu, 455-462.

  • Akın, M., Dinçer, İ., Orhan, A., Topal, T., İlgen, H. G., ve Demir, A. (2019). Kapadokya (Nevşehir) Bölgesindeki Kaya Düşmelerinin Arazi Lazer Taraması (TLS) Yardımıyla 3-Boyutlu (3-D) Analizi ve Kaya Düşme Tehlike Haritalarının Oluşturulması (1. bs, C. 1). AFAD.

  • Akin, M., Dinçer, I., Ok, A. Ö., Orhan, A., Akin, M. K., & Topal, T. (2021). Assessment of the effectiveness of a rockfall ditch through 3-D probabilistic rockfall simulations and automated image processing. Engineering Geology, 283, 106001. https://doi.org/10.1016/j. enggeo.2021.106001

  • Akin, M., Dinçer, İ., Orhan, A., Ok, A., ve Topal, T. (2019). Kaya Tutma Hendek Performansının 3-Boyutlu Kaya Düşme Analizleriyle Değerlendirilmesi: Akköy (Ürgüp) Örneği. Jeoloji Mühendisliği Dergisi, 43(2), 211-232. https://doi.org/10.24232/jmd.655005

  • Akin, M., Topal, T., & Akin, M. K. (2014). The Rockfall Potential of the Southwestern Part of Kastamonu Castle (Turkey) Based on 2-D and 3-D Analyses. Landslide Science for a Safer Geoenvironment: Volume 3: Targeted Landslides, 123-127. https:// doi.org/10.1007/978-3-319-04996-0_20

  • Atabey, E. (1989). MTA Genel Müdürlüğü, 1/100.000 Ölçekli Türkiye Jeoloji Haritaları, Kayseri H19 (K33) Paftası. MTA Genel Müdürlüğü.

  • Baltzer, A. (1875). On a recent rockfall on Rossberg with a few observations on these phenomena in the Alps (ss. 914-924). Neues Jahr-buch fur Mineralogie, Geologie und Palaeontologie.

  • Binal, A., & Ercanoğlu, M. (2010). Assessment of rockfall potential in the Kula (Manisa, Turkey) geopark region. Environmental Earth Sciences, 61(7), 1361-1373. https://doi.org/10.1007/ s12665-010-0454-1

  • Bozzolo, D., & Pamini, R. (1986). Simulation of rock falls down a valley side. Acta Mechanica, 63(1), 113-130.

  • Copons, R., Vilaplana, J. M., & Linares, R. (2009). Rockfall travel distance analysis by using empirical models (Solà d’Andorra la Vella, Central Pyrenees). Natural Hazards and Earth System Sciences, 9(6), 2107-2118. https://doi. org/10.5194/nhess-9-2107-200

  • Crosta, G. B., & Agliardi, F. (2004). Parametric evaluation of 3D dispersion of rockfall trajectories. Natural Hazards and Earth System Sciences, 4(4), 583-598. https://doi.org/10.5194/ nhess-4-583-2004

  • Dinçer, İ., Orhan, A., Frattini, P., & Crosta, G. B. (2016). Rockfall at the heritage site of the Tatlarin Underground City (Cappadocia, Turkey). Natural Hazards, 82(2), 1075-1098. https://doi. org/10.1007/s11069-016-2234-z

  • Dorren, L., Berger, F., Jonsson, M., Krautblatter, M., Mölk, M., Stoffel, M., & Wehrli, A. (2007). State of the art in rockfall–forest interactions. Schweizerische Zeitschrift fur Forstwesen, 158(6), 128-141. https://doi.org/10.3188/ szf.2007.0128

  • Fanos, A. M., & Pradhan, B. (2019). A novel rockfall hazard assessment using laser scanning data and 3D modelling in GIS. Catena, 172, 435-450. https://doi.org/10.1016/j.catena.2018.09.012

  • Ghani, M. F. A., Simon, N., Mohamed, T. R. T., & Roslee, R. (2022). 3D Modelling of Rockfall Hazard at Gunung Lang, Ipoh. IOP Conference Series: Earth and Environmental Science, 1103(1), 012028. https://doi.org/10.1088/1755- 1315/1103/1/012028

  • Gökçe, O., Özden, Ş., & Demir, A. (2008). Türkiye’de afetlerin mekansal ve istatistiksel dağılımı afet bilgileri envanteri. Bayındırlık ve İskan Bakanlığı Afet İşleri Genel Müdürlüğü.

  • Guzzetti, F., Crosta, G., Detti, R., & Agliardi, F. (2002). STONE: A computer program for the three-dimensional simulation of rock-falls. Computers & Geosciences, 28(9), 1079-1093. https://doi.org/10.1016/S0098-3004(02)00025-0

  • Heim, A. (1932). Bergsturz und menschenleben. Fretz & Wasmuth.

  • Hepdenı̇ z, K. (2019). Eğirdir İlçesi (Isparta) İçin Kaya Düşmesi Duyarlılık Bölgelerinin Haritalandırılması. Avrupa Bilim ve Teknoloji Dergisi, 15, Article 15. https://doi.org/10.31590/ ejosat.523612

  • ISRM, E. (1981). Rock characterization, testing and monitoring—ISRM suggested methods. Suggested methods for the quantitative description of discontinuities in rock masses (ss. 3-52). Pergamon Oxford.

  • Kalender, A., ve Sönmez, H. (2019). Kargabedir Tepe (Ankara-Eskişehir Karayolu) Bölgesinin Kaya Düşmesi Duyarlılığının İnsansız Hava Aracı (İHA) Görüntüleri Kullanılarak Konik Yayılım Yaklaşımıyla Değerlendirilmesi. Jeoloji Mühendisliği Dergisi, 43(2), Article 2. https:// doi.org/10.24232/jmd.654900

  • Kaya, Y., & Topal, T. (2015). Evaluation of rock slope stability for a touristic coastal area near Kusadasi, Aydin (Turkey). Environmental Earth Sciences, 74(5), 4187-4199. https://doi. org/10.1007/s12665-015-4473-9

  • Kreimer, A., & Arnold, M. (2000). Managing disaster risk in emerging economies (C. 2). World Bank Publications.

  • Larcher, V., Simoni, S., Pasquazzo, R., Strada, C., Zampedri, G., & Berger, F. (2012). WP6 guidelines Rockfall and Forecast systems. PARAmount & Alpine Space, Italy & Grance, 84.

  • Marija, L., Martin, Z., Jordan, A., & Matthew, P. (2022). Rockfall susceptibility and runout in the Valley of the Kings. Natural Hazards, 110(1), 451-485. https://doi.org/10.1007/s11069-021- 04954-9

  • Mutlu, S., Cı̇ ndı̇ oğlu, İ., ve Selçuk, A. S. (2022). Van İli Kaya Düşmesi Duyarlılık Haritasının Oluşturulması ve Afetsellik Açısından Değerlendirilmesi. Afet ve Risk Dergisi, 5(1), Article 1. https://doi.org/10.35341/afet.1068650

  • Polat, A. (2020). CBS Tabanlı 3B Kaya Düşmesi Analizi ve Veri Hazırlama Süreçleri: Kavak Köyü (Sivas-Türkiye) Örneği. Uludağ University Journal of The Faculty of Engineering, 25(3), 1205-1222. https://doi.org/10.17482/ uumfd.769109

  • Quanterra. (2003). Conefall (v.1.0). Quanterra. www. quanterra.org

  • Ritchie, A. M. (1963). Evaluation of rockfall and its control. Highway research record, 17.

  • RocPro3D. (2014). RocPro3D software. http://www. rocpro3d.com/rocpro3d_en.php.

  • Rocscience Inc. (2020). Graphical and statistical analysis of orientation data (v.8.009).

  • San, N. E., Topal, T., & Akin, M. K. (2020). Rockfall hazard assessment around Ankara Citadel (Turkey) using rockfall analyses and hazard rating system. Geotechnical and Geological Engineering, 38, 3831-3851. https://doi. org/10.1007/s10706-020-01261-1

  • Şener, E. (2019). İnsansız hava araçları kullanılarak olası kaya düşmelerinin coğrafi bilgi sistemleri tabanlı 3D modellenmesi: Kasımlar köyü (Isparta-Türkiye) Örneği. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(2), 419-426. https://doi.org/10.19113/ sdufenbed.501482

  • Topal, T., Akin, M. K., & Akin, M. (2012). Rockfall hazard analysis for an historical Castle in Kastamonu (Turkey). Natural hazards, 62, 255- 274. https://doi.org/10.1007/s11069-011-9995-1

  • Topal, T., Akin, M., & Ozden, A. U. (2006). Analysis and evaluation of rockfall hazard around Afyon Castle, Turkey. Proceedings of the 10th international congress IAEG.

  • Topal, T., Akin, M., & Ozden, U. A. (2007). Assessment of rockfall hazard around Afyon Castle, Turkey. Environmental Geology, 53(1), 191-200. https://doi.org/10.1007/s00254-006- 0633-2

  • Tunusluoglu, M. C., & Zorlu, K. (2009). Rockfall hazard assessment in a cultural and natural heritage (Ortahisar Castle, Cappadocia, Turkey). Environmental geology, 56(5), 963-972. https:// doi.org/10.1007/s00254-008-1198-z

  • Turner, & Schuster, R. L. (2012). Rockfall Characterization and Control, Transportation Research Board. Washington D.C.: National Academy of Sciences.

  • Ulusay, R., Gokceoglu, C., Topal, T., Sonmez, H., Tuncay, E., Erguler, Z. A., & Kasmer, O. (2006). Assessment of environmental and engineering geological problems for the possible re-use of an abandoned rock-hewn settlement in Urgüp (Cappadocia), Turkey. Environmental Geology, 50(4), 473-494. https://doi.org/10.1007/s00254- 006-0222-4

  • Ulusay, R., & Hudson, J. A. (2007). The complete ISRM suggested methods for rock characterization, testing and monitoring. ISRM Turkish National Group, Ankara, Turkey.

  • Ulusay, R., ve Sönmez, H. (2007). Kaya kütlelerinin mühendislik özellikleri. Jeoloji Mühendisleri Odası Yayını, Güncellenmiş ve Genişletilmiş.

  • Varnes, D. J. (1978). Slope movement types and processes. Special report, 176, 11-33.

  • Volkwein, A., Labiouse, V., & Schellenberg, K. (2011). Summary on the NHESS Special Issue” Rockfall protection–from hazard identification to mitigation measures”. Natural Hazards and Earth System Sciences, 11(10), 2727-2728. https://doi:10.5194/nhess-11-2727-2011

  • Wyllie, D. C. (2014). Rock fall engineering. CRC Press.


  • Varol, O. O. , Akın, M. , Orhan, A. & Dincer, İ. (2023). Kaya Düşmelerinin 3-Boyutlu Olasılıksal Analizlerle ve Ampirik Yöntemlerle Değerlendirilmesi: Kayseri – Soğanlı Yerleşim Yeri Örneği . Jeoloji Mühendisliği Dergisi , 47 (1) , 1-28 . DOI: 10.24232/jmd.1267107

  • The Preparation of Yazılıkaya Stream (Nallıhan Ankara) Flood Hazard Maps Using the HEC-RAS 2D Model and The Efficiency of Flood Control Structure
    Hüseyin Akkuş Engin Yildiz İsmail Bulut
    View as PDF

    ABSTRACT: Flooding is one of the natural disasters that occur with changes in meteorological conditions such as excessive precipitation and the rapid melting of snow. The major flooding formation factors are a region’s topography, geological structure, climatic conditions, any deterioration in the natural structures of rivers, and uncontrolled urbanization. To reduce the risk of flooding, this study conducted river rehabilitation work within the water collection basin of the Yazılıkaya River, located within the borders of the Nallıhan District of Ankara Province. Furthermore, a mortared check dam was designed and implemented in an area of 78.8 hectares (Ha). The study of the Yazılıkaya River in-stream rehabilitation project included a two-dimensional flood model, which was carried out with the help of HEC-RAS software (Hydrologic Engineering Centers River Analysis System) using obtained data (stream maps, flow rates and art structure cross-sections) and the DSI Synthetic method with Q10 and Q100 flow rates. To analyze the effects of a mortared check dam on the Yazılıkaya River, the flow rate values of Q10 and Q100 in both heavy and sudden rains were used; it was observed that while the speed of the water was 2-3.2 m/sec before the construction of the dam, it decreased to 0.5 – 0.75 m/sec after construction. After the completion of the mortared check dam, it was calculated that there were water reductions of 2 and 8 cm respectively in the water depth analysis in the settlements made according to the Q10 and Q100 flow rates. Generally, this study investigated the effect of upper basin flood control structures (mortared check dam) and the regulation of precipitation water flow regimes (water energy, speed, depth, etc.), on flood hazard in populated settlements and on the highway.

  • Flood Hazard

  • HEC-RAS Modelling

  • Flood-Control Structure

  • 2-Dimensional Analysis

  • Arcement, V.R., & Schneider, G. J., (1989). Guide for Selecting Manning’s Roughness Coefficients for Natural Channels and Flood Plains, U.S. Geological Survey Water Supply Paper 2339.

  • Aslan, B., (1997). “S.C.S. Sentetik Birim Hidrograf Yönteminin Türkiye Şartlarında Uygulanabilirliğinin Araştırılması”, İTÜ, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, İstanbul Teknik Üniversitesi.

  • Bharath, A., Shivapur, A.V., Hiremath, C.G., & Maddamsetty, R., (2021). Dam Break Analysis Using HEC-RAS And HEC-Georas: A Case Study of Hidkal Dam, Karnataka State, India.

  • Bharath, A., Kumar, K.K., Maddamsetty, R., Manjunatha, M., Tangadagi, R.B., & Preethi, S., (2021b). Drainage morphometry based sub-watershed prioritization of Kalinadi Basin using geospatial technology. Environ. Chall. 5, 100277. doi: 10.1016/j.envc.2021.100277.

  • Cowan, W. L., (1956). Estimating hydraulic roughness coefficients. Agricultural Engineering, 37(7), 473-475.

  • Dano, U.L., Alhefnawi, M.A., Al-Shihri, F., Said M.A., Mohamed, E.E., Hashem, A., Alsayed, A., & Arif, S., (2020). Assessing the Accuracy of Image Classification Algorithms Using During- Flood TerraSAR-X Imagery, Disaster Advances, Vol. 13 (8) 1–11.

  • Dereli, T., Eligüzel, N., & Çetinkaya, C., (2021). Content analyses of the international federation of red cross and red crescent societies (ifrc) based on machine learning techniques through Twitter, Natural Hazards, https://doi.org/10.1007/ s11069-021-04527-w.

  • Desalegn, H., & Mulu, A., (2021). Mapping Flood İnundation Areas Using GIS and HEC-RAS Model at Fetam River, Upper Abbay Basin, Ethiopia, Department of Hydraulic and water resources Engineering, Technology Institute, Debre Markos University, Ethiopia, https://doi. org/10.1016/j.sciaf.2021.e00834.

  • Dinçsoy Y., (2013). Yan Derelerde Erozyon ve Rusubat Kontrolü, Devlet Su İşleri Genel Müdürlüğü (DSİ), Ankara.

  • Erkan, M.A., Güser, Y., Odabaşı, E., Çamalan, G., Kılıç, G., Soydam, M., & Çetin, S., (2021). 2020 Yılı Meteorolojik Afetler Değerlendirmesi, T.C. Çevre, Şehircilik ve İklim Değişikliği Bakanlığı, Meteoroloji Genel Müdürlüğü, Araştırma Dairesi Başkanlığı, Meteorolojik Afetler Şube Müdürlüğü, Ankara.

  • Eroskay, S.O., (1965). Paşalar Boğazı-Gölpazarı sahasının jeolojisi, İ.Ü.F.F. Mecm. Ser. B, 3-4,135-159.

  • European Environment Agency (EEA), 2018. Corine Land Cover 2018 (CLC 2018), Copernicus Land Monitoring Service. https://land.copernicus.eu/ pan-european/corine-land-cover/clc2018. Erişim tarihi 1 Şubat 2023.

  • Görcelioğlu, E., (2005). Sel ve Çığ Kontrolü Yapıları, İ.Ü. Orman Fakültesi Yayınları, İ.Ü. Yayın No. 4555, O.F. Yayın No. 487, İstanbul.

  • Horritt M.S., & Bates P.D., (2002). Evaluation Of 1D And 2D Numerical Models for Predicting River Flood İnundation, Journal of Hydrology, 268, 87-99.

  • Kadıoğlu, M., (2008). Sel ve Heyelan Yönetimi, 5. Dünya Su Forumu Türkiye Bölgesel Hazırlık Toplantıları, Taşkın Heyelan ve Dere Yataklarının Korunması Konferansı Bildiri Kitabı, 101-130, Trabzon.

  • Karaağaç. S. (2019). Nallıhan (Ankara) Dolayının Sedimenter İstifi ve Tektonik Özellikleri, İstanbul Üniversitesi, Cerrahpaşa Lisans Üstü Eğitim Enstitüsü, Jeoloji Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi, İstanbul.

  • Nigusse, A.G., & Adhanom, O.G., (2019). Flood hazard and flood risk vulnerability mapping using geo-spatial and MCDA around Adigrat, Tigray region, Northern Ethiopia, Momona Ethiop, J. Sci. 11 (2019) 90–107.

  • Papaioannou, G., Efstratiadis, A., Vasiliades, L., Loukas, A., Papalexiou, S., Koukouvinos, A., Tsoukalas, I., & Kossieris, P., (2018). An Operational Method for Flood Directive Implementation in Ungauged Urban Areas, Hydrology, 5, 24, https://doi.org/10.3390/ hydrology5020024.

  • Şahin, C., & Sipahioğlu, Ş., (2003). Doğal Afetler ve Türkiye, Gündüz Eğitim ve yayıncılık, Ankara.

  • Timur, E., ve Aksay, A., 2002. 1:100000 Ölçekli Türkiye Jeoloji Haritaları No: 39 Adapazarı – H26 Paftası, Maden Teknik ve Arama Genel Müdürlüğü, Jeoloji Etütleri Dairesi, Ankara.

  • US Army Corps of Engineers, (2023). HEC-RAS User’s Manuel, Version 6.3.

  • Van Alphen, J., & Passchier, R., (2007). Atlas of Flood Maps – Examples from 19 European Countries, USA, and Japan. The Hague, Netherlands: Ministry of Transport, Public Works, and Water Management.


  • Akkuş, H. , Yıldız, E. & Bulut, İ. (2023). HEC-RAS 2B Modeli Kullanılarak Yazılıkaya Deresi (Nallıhan Ankara) Sel Tehlike Haritalarının Hazırlanması ve Sel Kontrol Yapısının Etkinliği . Jeoloji Mühendisliği Dergisi , 47 (1) , 29-46 . DOI: 10.24232/jmd.1268945

  • Characteristics of Building Stock in Cities Affected by the February 6, 2023 Kahramanmaraş Earthquakes
    Tuba Eroğlu Azak Bekir Özer Ay
    View as PDF

    ABSTRACT: On February 6, 2023, two distinct earthquakes occurred approximately 9 hours apart in the districts of Pazarcık and Elbistan in Kahramanmaraş. The first earthquake had a magnitude of Mw 7.7; and was followed by a second earthquake with a magnitude of Mw 7.6. These independent seismic events were felt over a wide area and caused significant damage in the epicentral region and surrounding provinces. Numerous buildings collapsed and according to official records, the earthquakes resulted in the loss of more than 50,000 lives. The most affected cities include Adana, Adıyaman, Diyarbakır, Gaziantep, Hatay, Kahramanmaraş, Kilis, Malatya, Osmaniye, and Şanlıurfa; most of the destruction and significant loss of life occurred here. This study has compiled the building stock in these provinces. The examined building stock has been gathered on a district basis, considering each building’s structural system, building use, number of floors, and seismic code time periods. Buildings that collapsed, suffered severe damage, or were condemned (to be demolished) after the earthquakes are no longer included in the compiled building stock.However, the recorded ground motion acceleration data obtained during the earthquakes from various strong-motion stations; and the damage level information regarding the buildings in the stock, constitute an important dataset for earthquake studies. In this context, conducting earthquake risk assessments for the pre-earthquake building stock, esting and calibrating fragility curves appropriate for the building types within the building stock, is possible. It is believed that the information presented in this study will make a significant contribution to the realistic calculation of earthquake vulnerability and thus assist in taking measures to mitigate earthquake risks. Furthermore, utilizing the compiled building stock, it is also possible to perform loss calculations for similar building stocks exposed to  seismic hazards in different regions.

  • Turkish building stock

  • February 6, 2023 Kahramanmaraş Earthquakes

  • Earthquake risk

  • Characteristics of the Turkish building stock

  • Statistical study

  • Ay, B. Ö., ve Eroğlu Azak, T. (2021). Türkiye’de Değişen Yapı Özelliklerinin Karşılaştırmalı İncelemesi. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi, 36(4), 1111–1126.

  • Albayrak, U., Canbaz, M., Albayrak, G. (2015). A Rapid Seismic Risk Assessment Method for Existing Building Stock in Urban Areas, Procedia Engineering, 118, 1242-1249.

  • Bal, I.E., Crowley, H., Pinho, R., Gülay, F.G. (2007). Structural Characteristics of Turkish RC Building Stock in Northern Marmara Region for Loss Assessment Applications. IUSS Press, Pavia.

  • Bal, I.E., Crowley, H., Pinho, R., Gülay, F.G. (2008). Detailed Assessment of Structural Characteristics of Turkish RC Building Stock for Loss Assessment Models. Soil Dyn. Earthq. Eng., 28(10-11), 914–932.

  • Bina Sayımı 2000 (2001). Devlet İstatistik Enstitüsü, Ankara, Türkiye.

  • Bozkurt, E. (2001). Neotectonics of Turkey-a synthesis. Geodynamica Acta 14, 3-30.

  • Cansız, S. (2022). Türkiye’de Kullanılan Deprem Yönetmeliklerinin Özellikleri ve Deprem Hesabının Değişimi. 14(1), 58-71. doi: 10.29137/ umagd.948025

  • Duman, T.Y., Emre, O. (2013). The East Anatolian Fault: geometry, segmentation and jog characteristics. Geol Soc London, Spec Publ 372:495–529. doi: 10.1144/SP372.14

  • Emre, Ö., Duman T. Y., Özalp, S., Elmacı, H., Olgun Ş., ve Şaroğlu, F., (2013). Türkiye Diri Fay Haritası, MTA.

  • Eroğlu Azak T., Ay, B.Ö., Akkar, S. (2014). A Statistical Study on Geometrical Properties of Turkish Reinforced Concrete Building Stock. 2nd European Conference on Earthquake Engineering and Seismology, August 24-29, İstanbul, Türkiye.

  • Güner, B. (2020). Türkiye’deki deprem hasarlarına dönemsel bir yaklaşım; 3 dönem 3 deprem. Doğu Coğrafya Dergisi, 25(43), 139–152.

  • Hempton, M. R. (1987). Constraints on Arabian Plate motion and extensional history of the Red Sea, Tectonics,6(6),687–705, doi:10.1029/ TC006i006p00687.

  • Kaplan, O., Güney, Y., Cengiz, A.E., Özçelikörs, Y., ve Topçu, A. (2015). Eskişehir İli Bina Envanterinin Yapısal Kusurları ve Düzensizlikler Bakımından İrdelenmesi, 3. Türkiye Deprem Mühendisliği ve Sismoloji Konferansı, 14-16 Ekim 2015, İzmir, Türkiye.

  • Konukcu, B.E., Karaman, H., & Şahin, M. (2017). Determination of Building Age for Istanbul Buildings to be Used for the Earthquake Damage Analysis According to Structural Codes by Using Aerial and Satellite Images in GIS, Nat. Hazards, 85(3), 1811-1834.

  • Meral, E. (2019). Evaluation of Structural Properties of Existing Turkish RC Building Stock. Iran J Sci Technol Trans Civ Eng 43, 445–462 (2019). https://doi.org/10.1007/s40996-018-0207-z

  • Özacar, A., Uzel, B., Bozkurt, E., Sançar, T., Sopacı, E., Kaymakçı, N., Rojay, B., Gülerce, Z., Kıncal, C., ve Gregory, L. (2023). Bölgesel Tektonizma ve Sismik Kaynak, 6 Şubat 2023, Kahramanmaraş- Pazarcık (Mw=7.7) ve Elbistan (Mw=7.6) Depremleri, Ön değerlendirme Raporu: Bölüm 2, Orta Doğu Teknik Üniversitesi, Deprem Mühendisliği Araştırma Merkezi.

  • Türkiye Yapı İzin İstatistikleri (2022). Türkiye İstatistik Kurumu.

  • Westaway, R., (1994). Present-day kinematics of the Middle East and Eastern Mediterranean, Journal of Geophysical Research, 99:12071-12090.

  • Westaway R., Arger, J. (1996). The Gölbaşı basin, southeastern Turkey: a complex discontinuity in a major strike-slip fault zone. Journal of the Geological Society; 153 (5): 729–744. doi: https://doi.org/10.1144/gsjgs.153.5.0729


  • Eroğlu Azak, T. & Ay, B. Ö. (2023). 6 Şubat 2023 Kahramanmaraş Depremlerinin Etkilediği İllerdeki Bina Stokunun Özellikleri . Jeoloji Mühendisliği Dergisi , 47 (1) , 47-66 . DOI: 10.24232/jmd.1294425

  • Basin and Near-Fault Effects on Earthquake Ground Motions: An Evaluation of the Antakya Records of the Kahramanmaraş Pazarcık Earthquake
    Nihat Sinan Işik
    View as PDF

    ABSTRACT: Earthquake ground motion on a site depends on the fault rupture mechanism, the structure of the crust, and the properties of the near-surface soils and soft rocks. It is known that near-surface soils and soft sedimentary rocks can cause significant structural damage even at great distances from the earthquake source. This phenomenon was observed in recent earthquakes in our country. The 6.9 magnitude earthquake that occurred off the coast of Samos Island in the Aegean Sea on October 30, 2020, caused extensive damage in the İzmir Bayraklı district, which is approximately 70 km from the epicenter. On February 6, 2023, the 7.7 moment magnitude Kahramanmaraş Pazarcık earthquake caused great loss of life and destruction in large areas. The response spectra of the ground motions created by the Kahramanmaraş Pazarcık earthquake in the Antakya region of Hatay, were far above the design response spectra defined in the Turkish Building Earthquake Code. In this study, the site effects affecting the earthquake ground motions and the near-fault effects are summarized. Some of the ground motion records recorded during the 7.7 magnitude Kahramanmaraş Pazarcık earthquake in the Hatay region were examined and evaluated in terms of possible basin effects and near field effects.

  • Earthquake

  • Basin Effect

  • Near-Fault Effects

  • Soil Amplification

  • Abdelmeguid, M., Zhao, C., Yalcinkaya, E., Gazetas, G., Elbanna, H. & Rosalis, A., (2023). Revealing The Dynamics of the Feb 6th 2023 M7.8 Kahramanmaras/Pazarcik Earthquake: near- field records and dynamic rupture modeling, arXiv:2305.01825 [physics.geo-ph].

  • AFAD (2023, 03 Mart), TADAS Türkiye İvme Veritabanı ve Analiz Sistemi https://tadas.afad. gov.tr/event-detail/17966.

  • AFAD (2023, 03 Mart), TADAS Türkiye İvme Veritabanı ve Analiz Sistemi https://tadas.afad. gov.tr/event-detail/17969.

  • Aguirre, J. & Irikura, K., (1997). Nonlinearity, liquefaction, and velocity variation of soft soil layers in Port Island, Kobe, during the Hyogoken Nanbu earthquake. Bull Seism Soc Am 87:1244– 1258

  • Aki, K. & P. Richards (1980). Quantitative Seismology. Theory and Methods, W. H. Freeman and Company, San Francisco.

  • Ayoubi, P., Mohammadi, K. & Asimaki, D., (2021). A systematic analysis of basin effects on surface ground motion, Soil Dynamics and Earthquake Engineering, 141.

  • Beresnev, I. A. & Wen, K., (1996). Nonlinear Soil Response – A Reality?, Bulletin of the Seismological Society of America, Vol. 86, No 6, pp. 1964 – 1978.

  • Boore, D.M., (2013). The Uses and Limitations of the Square-Root-Impedance Method for Computing Site Amplification, Bulletin of the Seismological Society of America, Vol. 103, No. 4, pp. 2356– 2368, August 2013, doi: 10.1785/0120120283.

  • Borcherdt, R. D., (1970). Effects of Local Geology on Ground Motion Near San Francisco Bay, Bulletin of the Seismological Society of America, Vol. 60, No 1, pp 29 – 61.

  • Chavez-Garcia, F., Raptakis, D., Makra, K., & Pitilakis, K. (2000). “Site effects at EuroSeisTest—II: Results from 2-D numerical modelling and comparison with observations.” Soil. Dyn. Earthquake Eng., 191, 23–39.

  • DMAM O.D.T.Ü. Deprem Araştırma Merkezi, (2023). 6 Şubat 2023 Kahramanmaraş-Pazarcık Mw=7.7 ve Elbistan Mw=7.6 Depremleri Ön Değerlendirme Raporu.

  • Elgamal, A. & He, L., (2004). Vertical earthquake ground motion records: an overview, Journal of Earthquake Engineering, 8 (05), 663 – 697.

  • Finn, W. D. L. (1991). Geotechnical engineering aspects of microzonation, Proc. of the Fourth International Conference on Seismic Zonation, Stanford, California, Vol. 1, 199-259.

  • Furumura M., Sasatani T. & Furumura T., 1997, Generation of Basin Induced Surface Waves Observed in the Tokachi Basin, Hokkaido Japan, J. Phys. Earth, 45, 287 – 305.

  • Gelagoti, F., Gazetas, G., & Kourkoulis, R. (2007). 2D Valley Effects: How predictable and important are they?”, Proceedings, 4th International Conference of Earthquake Geotechnical Engineering, Thessaloniki, 2007.

  • Gelagoti, F., Kourkoulis, R., Anastasopoulos, I., Tazoh, T. & Gazetas, G., (2010). Seismic Wave Propagation in a Very Soft Alluvial Valley: Sensitivity to Ground-Motion Details and Soil Nonlinearity, and Generation of a Parasitic Vertical Component, Bulletin of the Seismological Society of America, Vol. 100, No. 6, pp. 3035–3054.

  • Hartzell, S. H., (1998). Variability in nonlinear sediment response during the 1994 Northridge, California, earthquake. Bull Seismol Soc Am 88(6):1426–1437

  • Hunter, J. A, Crow, H., Brooks, G. R., Pyne, M., Lamontagne, M., Pugin, A., Pullan, S. E., Cartwright, T., Douma, M., Burns, R. A., Good, R. L., Motazedian, B., Folahan, I., Dixon, L., Dion, K., Duxbury, A., Landriault, V., Ter- Emmanuil, V., Jones, A., Plastow, G. & Muir, D., (2010). Seismic site classification and site period mapping in the Ottawa area using geophysical methods, Technical Report.

  • Idriss, I. M. & H. B. Seed (1968). An analysis of ground motions during the 1957 San Francisco earthquake, Bull Seism. Soc. Am. 58, 2013 - 2032.

  • Idriss, I. M. & H. B. Seed (1970). Seismic response of soil deposits, J. Soil Mech. Foundations Div. ASCE 96.

  • Kardoutsou, V., Taflampas, I. & Psycharis, I. N. (2017). A new pulse indicator for the classification of ground motions. Bulletin of the Seismological Society of America, 107(3):1356-1364.

  • Kudo, K., & Sawada, Y. (1998). A brief review on the Ashigara blind prediction test and some follow-up studies. Proc., 2nd Int. Symp. On the Effects of Surface Geology on Seismic Motion, Yokohama, Japan, 1, 305–312.

  • Kudo, K., Shima, E., & Sakaue, M. (1988). Digital strong motion accelerograph array in Ashigara valley. Proc., 9th World Conf. On Earth. Engin., Earthquake Engineering Research Center, Berkeley,119–124

  • Lanzo, G & Pagliaroli P, (2009), Numerical Modeling of Site Effects at San Giuliano di Puglia (Southern Italy) during the 2002 Molise Seismic Sequence, ASCE Journal of Geotechnical and Geoenvironmental Engineering, Vol. 135, No. 9.

  • Mello, M., Bhat, H.S. & Rosakis, A.J., (2016). Spatiotemporal properties of Sub- Rayleigh and supershear rupture velocity fields: Theory and experiments. Journal of the Mechanics and Physics of Solids 93, 153–181 (2016). https: // doi.org/10.1016/j.jmps.2016.02.031

  • Moustafa, A. & Takewaki, I., (2010). Characterization and modelling of near-fault pulse-like strong ground motion via damage-based critical excitation method. Struct. Eng. and Mechanics, 34, 755-778.

  • Nakamura Y., (1989). A Method for Dynamic Characteristics Estimation of Subsurface Using Microtremor on the Ground Surface, Quarterly Report of Railway Technical Research Institude, Vol 30, No 1.

  • Raptakis, D., Chavez-Garcia, F., Makra, K., & Pitilakis, K. (2000). Site effects at EuroSeis test—I: Determination of the valley structure and confrontation of observations with 1D analysis. Soil. Dyn. Earthquake Eng., 191, 1–22.

  • Satoh, T., Sato, T. & Kawase, H. (1995). Nonlinear Behavior of Soil Sediments Identified by Using Borehole Records Observed at the Ashigara Valley, Japan. Bull Seismol Soc Am 85(6):1821– 1834.

  • Seismosoft, (2022), SeismoSignal - A computer program for signal processing of time-histories. www.seismosoft.com.

  • Shearer, P. M. & J. A. Orcutt (1987). Surface and near-surface effects of seismic waves-theory and borehole seismometer results, Bull. Seism. Soc. Am. 77, 1168-1196.

  • Somerville, P. G., (2000). Seismic hazard evaluation. Bull. New Zealand Soc. Earthq. Eng., 33, 371- 386.

  • Tazoh, T., Dewa, K., Shimizu, K., & Shimada, M. (1984). Observations of earthquake response behavior of foundation piles for road bridges. Proc., 8th World Conf. on Earth Engineering, Vol. 3, 577–584.

  • TBDY, (2018). Türkiye Bina Deprem Yönetmeliği: Deprem Etkisi Altında Binaların Tasarımı için Esaslar, Türkiye Cumhuriyeti, Ankara.

  • Zeng, Y., Johnson, P.A & Beresnev, I.A. (1998). Pervasive nonlinear sediment response during the 1994 Northridge Earthquake: observations and finite-source simulations. J Geophys Res 103 (26):869

  • Zhang, B., & Papageorgiou, A., (1996). Simulation of the response of the Marina District Basin, San Francisco, California, to the 1989 Loma Prieta earthquake, Bull. Seismol. Soc. Am. 86, no. 5, 1382–1400.


  • Işık, N. S. (2023). Basen ve Yakın Fay Etkilerinin Deprem Yer Hareketi Üzerindeki Etkileri, Kahramanmaraş Pazarcık Depremi Antakya Kayıtlarının Değerlendirilmesi . Jeoloji Mühendisliği Dergisi , 47 (1) , 67-86 . DOI: 10.24232/jmd.1299027

  • The Importance of Geology and Engineering Geolology Studies in Reducing Uncertainties and Risks in Aggregate Production Sites
    Atiye Tuğrul Murat Yilmaz
    View as PDF

    ABSTRACT:Materials produced in rock quarries have many uses, such as concrete and cement raw material, asphalt and embankment aggregates and railway ballast. Aggregate production activities, which are mostly carried out in urban areas, are a risky activity due to geological, environmental, social, legal and economic uncertainties. Projects based on technical and scientific data have reduced uncertainty and risks; furthermore, projects developed with transparent and consistent data, will ensure that all internal and external stakeholders have accurate information about project risks.

    The quality expectations of rocks change according to their planned use. Many quarries exhibit parametric differences within very short distances. For example rock composition and texture, organic material and shell content, structural characteristics, weathering types and their products, and the presence of dangerous substances can all vary. For this reason, pre-operation geology and engineering geology studies should be carried out in the quarries.Determining the composition and quality changes of the rocks in the quarries and the geological, hydrogeological, geotechnical and environmental risks will play an important role in the quarry and facility planning. The aim of this study is to emphasize the importance of detailed geology and engineering geology surveys in reducing uncertainty and risks in quarry areas.

  • Aggregate production

  • Aggregate quality

  • Engineering geological studies

  • Risk

  • Briggs, C. A., & Bearman R. A., (1996). An investigation of rock breakage and damage in comminution equipment. Miner Eng., 9, 489– 497.

  • Evertsson, C. M., (2000). Cone crusher performance. PhD Thesis, Chalmers University of Technology, Goteborg.

  • Goodman, R. E., (1993). Engineering Geology, Rock in Engineering Construction, John Wiley and Sons Inc. (Publisher), 412 p.

  • Houston, E. C., & Smith, J. V., (1997). Assessment of rock quality variability due to smectitic alteration in basalt using X-ray diffraction analysis. Eng Geol., 46, 19–32.

  • Jern, M., (2001). Determination of the damaged zone in quarries, related to aggregate production. Bull Eng. Geol. Environ., 60, 157–166.

  • Johnson, R.B., & DeGraff, V.J., (1988). Principles of Engineering Geology, John Wiley and Sons Inc. (Publisher), New York, 497 p.

  • Langer, W.H., (2001). Geological considerations affecting aggregate specifications. 9th Annual Symposium of the International Center for Aggregates Research, Austin, Texas, April 23- 25.

  • Lizotte, Y.C., & Scoble, M.J., (1994). Geological control over blast fragmentation. Can Mining Metallurgical Bull. 87(983), 57–71.

  • Lolcama, J. L., Cohen, H. A., & Tonkin, M. J., (2002). Deep karst conduits, flooding, and sinkholes: lessons for the aggregates industry. Engineering Geology, 65, 151–157.

  • McNally, G.H., (1998). Soil and Rock Construction Materials, E & FN Spon, London, 403 p.,

  • Persson, L., (2002). Rock materials for construction: Resources, Properties, Heterogeneity and suitability for use: Examples and Issues from the Precambrian of Sweden, Proceedings of 9th IAEG Congress, Durban, South Africa, 105-120.

  • Raisanen, M., (2005). Quality assessment of a geologically heterogeneous rock quarry in Pirkanmaa county, southern Finland, Bulletin of Engineering Geology and the Environment, 64, 409-418.

  • Ramsay, D. M., Dhir, R. K., & Spence, I. M., (1974). The role of rock and clast fabric in the physical performance of crushed-rock aggregate, Engineering Geology, 8, 267-285.

  • Smith, M. R., & Collis, L., (1993). Aggregates. Geological Society Engineering Geology Special Publication, Vol 9. 339 p.

  • Stubbs, B. J., & Smith, J. V., (1997). Weathered bedrock as a source of sand and gravel aggregate in north-eastern New South Wales, Australia. Environ Geol., 32(1), 64–70.

  • Tuğrul, A. ve Yılmaz, M., (2007). Taş Ocaklarında Kayaç Kalitesinin Değişimi ve Ocak Yerlerinde Mühendislik Jeolojisi Araştırmalarının Önemi, IV. Ulusal Kırmataş Sempozyumu Bildiriler Kitabı, İstanbul, Türkiye, ss.63-72.

  • Tuğrul, A., Yılmaz, M., Hasdemir, S., & Sönmez, İ., (2016). Sustainable management of aggregate resources in İstanbul, From: Eggers, M. J., Griffiths, J. S., Parry, S. & Culshaw, M. G. (eds) 2016. Developments in Engineering Geology. Geological Society, London. Geological Society Engineering Geology Special Publication, 27, 55–61.

  • Tuğrul, A., (2018). The State of Aggregates in the World Today, 61st Annual Meeting/XIII IAEG Congress, Engineering Geology for a Sustainable World, 15-23 September 2018, San Francisco, USA.

  • Tuğrul, A., (2021). Sürdürülebilir madencilik yolunda sorumlu kaynak kullanımı ve sorumlu madencilikte UMREK koduna uygun raporlamanın önemi, Mimar ve Mühendis, sayı: 120, sayfa: 32-37.

  • Van Loon, A. J., (2002). The complexity of simple geology. Earth Sci Rev., 59, 287–295.

  • Yılmaz, M., & Tuğrul, A., (2013). The Importance of Lithologic Changes in an Aggregate Quarry, Global View of Engineering Geology and the Environment Proceedings, Faquan Wu & Shengwen Qi (eds), pp. 405-412.


  • Tuğrul, A. & Yılmaz, M. (2023). Agrega Üretim Sahalarındaki Belirsizlik ve Risklerin Azaltılmasında Jeoloji ve Mühendislik Jeolojisi Araştırmaların Önemi . Jeoloji Mühendisliği Dergisi , 47 (1) , 87-102 . DOI: 10.24232/jmd.1301789

  • ISSUE FULL FILE
    View as PDF