Jeoloji Münendisliği Dergisi
Jeoloji Mühendisliği Dergisi

Jeoloji Mühendisliği Dergisi

2006 ARALIK Cilt 30 Sayı 2
COVER
View as PDF
COPYRİHT PAGE
View as PDF
CONTENTS
View as PDF
Caliche Formation and Features
Muhsin Eren
View as PDF

ABSTRACT: Caliche is a general term that describes a secondary carbonate accumulation in unconsolidated sediments, sedimentary rocks and soils under semi-arid and arid climate conditions. Caliches are composed dominantly of small calcite crystals in micrite (< 4 m) and microsparite (5-15 m) size. Small amount of diagenetic minerals such as sepiolite, palygorskite, magnesium calcite and dolomite etc. are associated with calcium carbonate (low Mg-calcite) occurrences. Caliche appears in a variety of forms such as chalky powdery, nodular, tubular, laminated crust, hardpan (indurated crust). In caliche, macroscopic rhizolithic structures and microscopic alfa and beta fabric constituents are common. Two main hypotheses which explain the origin of caliche. These are; (a) downward movement of dissolved CaCO3 (per descensum; pedogenetic); and (b) capillary rise from groundwater (per ascensum; groundwater) models. During calicheformation, calcium is providedfrom varied sources.

  • Caliche

  • calcium carbonate

  • diagenetic mineral

  • per descensum (pedogenetic) model

  • capillary rise (groundwater) model

  • Aristarain, L. F., 1970. Chemical analyses of caliche profiles from the high plains, New Mexico. Journal ofGeology, 78,201-212

  • Demicco, R.V. and Hardie, L.A., 1994. Sedimentary structures and early diagenetic features of shallow marine carbonate deposits. SEPM Atlas Series 1, Tulsa, Oklahoma, 265 p.

  • Eren, M., Kadir, S., Hatipoğlu, Z., ve Gül., M., 2004. Mersin yöresinde kaliş gelişimi. TÜBİTAK Projesi YDABAG-102Y036, 136 s., (Yayınlanmamış).

  • Esteban, M. and Klappa, C.F., 1983. Subaerial exposure environment. In: Scholle, P.A., Bebout, D.G., and Moore, C.H., (eds.), Carbonate Depositional Environments, Association of American Petroleum Geologists Memoir 33, Tulsa, Oklahoma, p. 1-54.

  • Goudie, A. S., 1973. Duricrusts in Tropical and Subtropical Landscapes. Clarendon Press, Oxford, 174p.

  • Goudie, A. S., 1983. Calcrete. In: Goudie, A.S. and Pye, K., (eds.), Chemical sediments and geomorphology. Academic Press, London, p.93-131.

  • Goudie, A. S., 1996. Organic agency in calcrete development. Journal of Arid Environment, 32,103-110.

  • James, N.P. and Choquette, P.W., 1984. Diagenesis 9. Limestones- The meteoric diagenetic environment. Geoscience Canada 11,161-194.

  • Klappa, C.F., 1980. Rhizoliths in terrestrial carbonates: classification, recognition, genesis and significance. Sedimentology, 27,613-629.

  • Machette, M.N., 1985. Calcic soils of the southwestern United States. Geological Society of America, Special Paper No. 203, 1-21.

  • Semeniuk, V., and Meagher, T.D., 1981. Calcrete in Quaternary coastal dunes in South western Australia: a capillary-rise phenomenon associated with plants. Journal of Sedimentary Petrology 51,47-68.

  • Tucker, M.E., and Wright, V.P., 1990. Carbonate sedimentology. Blackwells, Oxford, 482 p.

  • Tucker, M.E., 1991. Sedimentary petrology: an introduction to the origin of sedimentary rocks. Blackwell Science, Oxford, 260 p.

  • Watts, N.L., 1980. Quaternary pedogenic calcretes from the Kalahari (Southern Africa): mineralogy, genesis and diagenesis. Sedimentology, 27,661-686

  • Wright, V.P., 1990. A micromorphological classification of fossil and recent calcic and petrocalcic microstructures. In: Douglas, L.A. (ed.), Soil Micromorphology: A Basic and Applied Science, Elsevier, Amsterdam, v. 19, 401-

  • Wright, V. P., and Tucker, M. E. (Eds.), 1991. Calcretes. Blackwell Scientific Publications, Oxford, 351 p.

  • The Role of Structural Features in the Development of Karren: East of Kızılörü Mountain (Korkuteli-Antalya)
    İlksen Koçak Graf Ayşe Bozcu
    View as PDF

    ABSTRACT: Karren observed in the area to the east of Kızılörü Mountain located in the northwest of Antalya has been formed on Jurassic-Cretaceous (Cenomanian) neritic limestones, In order to show the relationship of karren with the structural features, the main development directions of karren and the deviations of fracturesfrom the north have been measured in thefield and the data obtained have been evaluated by transferring them in to rose diagrams. In the rose diagrams prepared, between the dominant direction of circular karren and orientation ofp rimary and secondary fractures in the NE-SW directions a great harmony was observed. The relations between the primary and secondary dominant directions of the hydrodynamically controlled linear karren and dominant fracture orientations were significantly weak. Solutions pits and solutions pans are in larger scalefracture controlled while rillenkarren and rinnenkarren have a hydrodynamically controlled formation and development mechanism

  • Western Taurides

  • Fracture

  • Limestone

  • Karren

  • Bener, M., 1965. Göksu vadisi ve Taşeli Platolarında karst. İstanbul Üniversitesi. Coğrafya Enstitüsü, İstanbul, Doktora Tezi, 333 s. (yayımlanmamış), İstanbul.

  • Bögli, A., 196O.Kalklösungund karrenbildung. Zeitschrift für Geomorph. Supp. 2, Internationale Beitrâge zur Karstmorphologie, 4-21.

  • Dayan, E., Bilgin, A, Hançer, M., 1999. Karst landforms on the eastern slopes of Davras Dagi (Western Taurus): Karren, sinkholes and uvalas. Zeitschrift fur Geomorphologie, 43,321-340.

  • Erinç, S., 2001, Jeomorfoloji II ( 3. basım), Der Yayınlan: 294, İstanbul, 483 s.

  • Eroskay, S. O. ve Günay, G., 1980. Tecto-genetic classification and hydrogeological properties of the karst regions. International Seminar on Karst Hydrogeology, Turkey- Oymapmar, 1979-Proceedings, Günay, G., (ed.), Publ. by SHW, Ankara, 1-41.

  • Ford, D.C., Williams, P.W., 1989. Karst Geomorphology and Hydrology. Unwin Hyman Ltd., London 601 s.

  • Güldah, N., 1970. Karstmorphologische Studien im Gebiet des Poljesystems von Kestel (Westlischer Taurus, Türkei). Tübinger, Geogr. Studien, H. 40,104 s.

  • Güldah, N., 1972. Korkuteli-Bucak çevresinde lapya ve dolin çeşitleri ve bunların gelişmeleri. Jeomorfoloji Dergisi, 4 (4), 81- 98.

  • Günay Y., Bölükbaşı, A. S ve Yoldemir, O., 1982. Beydağlannın stratigrafisi ve yapısı. Türkiye Altıncı Petrol Kongresi ve Tebliğleri, Nisan 1982, Ankara, 91-101.

  • Güneysu, A. C., 1993. Kovada gölü doğusunun (İsparta) karst jeomorfolojisi. İstanbul Üniversitesi Deniz Bilimleri ve Coğrafya Enstitüsü, İstanbul, Doktora Tezi, 209 s (yayımlanmamış)

  • Jennings, J. N., 1971. Karst. The M.I.T. Press., Cabridge, Massaschussetts and London, 352 s.

  • Karaman, M. E., 1996. Temel Yapısal Jeoloji ve Uygulamaları. Devran Matbaacılık, Ankara, 336 s.

  • Keser, N., 1996. Kalkan-Kaş-Taşdibi arasının jeomorfolojisi. İstanbul Üniversitesi Deniz Bilimleri ve İşletmeciliği Enstitüsü, İstanbul, Doktora Tezi, 231 s (yayımlanmamış)

  • Koçak, I., 1991. Şarkikaraağaç Güneydoğusunun Karst Jeomorfolojisi. Selçuk Üniversitesi Sosyal Bilimler Enstitüsü, Konya, Yüksek Lisans Tezi, Konya, 76 s. (Yayımlanmamış)

  • Koçak, İ., 2000. Kırkgöz kaynaklan (Antalya) ve yakın çevresinin karst jeomorfolojisi. İstanbul Üniversitesi Sosyal Bilimler Enstitüsü Fiziki Coğrafya Bilim Dalı, Doktora Tezi, 359 s (yayımlanmamış)

  • Koçak, İ., 2003. Döşemealtı platosu kuzeybatısında (Antalya) karst-orman tahribatı ilişkisi. Süleyman Demirel Üniversitesi Burdur Eğitim Fakültesi Dergisi, 4 (5), 129-146.

  • Nazik, L., 1988. Beyşehir Gölü Yakın Güneyi Karst Jeomorfolojisi ve Karstik Parametrelerin İncelenmesi. Jeomorfoloji Dergisi, 14, 65-77.

  • Nazik, L., 1992. Beyşehir gölü güneybatısı ile Kembos polyesi arasının karst jeomorfolojisi. İstanbul Üniversitesi Deniz Bilimleri ve İşletmeciliği Enstitüsü, İstanbul, Doktora Tezi, 298 s (yayımlanmamış)

  • Öztaş, T., 1989. Mersin-Taşucu-Boğsak kaynağı ve dolayının karst hidrojeolojisi. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Doktora Tezi, 138 s (yayımlanmamış)

  • Poisson, A., 1977. Recherces geologiques dans les Taurides occidentales (Turquie). These d` Etat Univ., Aris sud (Orsay), No: 1902, 795 s.

  • Sweeting, M. M., 1973. Karst Landforms. The Macmillan Press. Ltd., London, 362 s.

  • Şenel, M., 1984. Discussion on the Antalya nappes, Geology of the Taurus Belt, Proc. Int. Sym., O. Tekeli, and M. C. Göncüoğlu (eds), Ankara, 41-51.

  • Şenel, M., 1997b. 1:250 000 Ölçekli Türkiye Jeoloji Haritaları. No:4, İsparta Paftası, MTA Yayınlan, Ankara, 47 s.

  • Şenel, M., Kengil, R., Ünverdi, M., Serdaroğlu, M. ve Gözler, M. Z., 1981. Teke Toroslarının güneydoğusunun jeolojisi. MTADergisi, 95/96,13-43.

  • Şenel, M., Selçuk, H., Bilgin, Z. R., Şen, A. M., Karaman, T, Dinçer, M. A., Durukan, E., Arbaş, A., Örçen, S. ve Bilgi, C., 1989. Çameli (Denizli) -Yeşilova (Burdur) - Elmalı (Antalya) ve dolayının jeolojisi. MTA Enstitüsü, Rapor No: 9429, Ankara, 3

  • Yalçınkaya, S., Ergin, A., Afşar, Ö. P., Dalkılıç, H., Taner, K. ve Özgönül., E., 1986, Batı Toroslarm jeoloji raporu. MTA Enstitüsü, Rapor No: 7898, Ankara, 132 s (yayınlanmamış)

  • Chemical Contets of Boottled Waters in Turkey and Their Evaluation According to the Health
    Müfit Şefik Doğdu
    View as PDF

    ABSTRACT: Increase in bottled water consumption in our country has been observed especially in last decade as in developed countries. A lot off irms have materialized the bottled water production particularly in the industrialized and overpopulated areas in Turkey with the high consumption of the bottled water. The number of bottled water production firm is over 180 in Turkey atp resent. In this study, physical and chemicalparameters oft he bottled waters have been evaluated according to the statistical characteristics. Physical and chemical parameters in the bottled water which are sometimes over the limits can negatively affect the human health. Median values oft he bottled waters` chemical parameters have been compared with the limit values designated by The Ministry of Health and interpretations of the over limit parameters have been realized. On the other hand, concentrations of calcium (Ca), magnesium and sodium (Na) ions, which are present in the major amounts in the bottled water and necessary for the human body, evaluated statistically and interpretedfrom the point of health. Ca, Mg and Na contents of the bottled and tap waters in Turkey have been compared with Europe and North America`s bottled and tap waters. This comparison has showed that these three minerals contents ofo ur bottled waters are poorer but, tap waters are richer than Europe and North America`s. It is understood that recommended daily intake amount of Ca (800 mg/day) and Mg (350 mg/day) for the body can be obtained by the consumption of2 liters per dayfrom the bottled, tap and mineral water in Turkey in the range of2.5% Ca, 8.8% Ca, 35% Caand 1.4 %Mg, 7.5%Mg, 33%Mg, respectively.

  • Aly, A.I.A. ve Khan, M.A., 1999. Chemical composition of bottledwater in Saudi Arabia. Environmental Monitoring and Assessment, 54:173-189.

  • Araya, A., Chen, B., Klevay, L.M., Strain, J.J. , Johnson, L.A., Robson, P., Shi, W., Nielsen, F., Zhu, H., Olivares, M., Pizarro, F. ve Haber, L.T., 2003. Confirmation of an acute no-observed-adverse-effect and low- observed-adverse-effect level for

  • Armas, A.B. ve Sutherland, J. P., 1999. A survey of the microbiological quality of bottled water sold in the UK and changes occurring during storage. International Journal of Food Microbiology, 48:59-65.

  • ASKİ, 2003. Ankara Büyükşehir Belediyesi Ankara Su ve Kanalizasyon İdaresi (ASKİ), Ankara İçme Suyu Kalitesi Ortalama Değerleri (Kasım 2003), http://www.aski.gov.tr.

  • Azoulay, A., Garzon, P. ve Eisenberg, M.J., 2001. Comparison of The Mineral Content of Tap Water and Bottled Waters. Journal of General Internal Medicine, 16:168-175.

  • Bedient, P.B., Rifai, H.S. ve Newell, C.J., 1994. Ground Water Contamination: Transport and Remidation. Prentice Hall Inc., New Jersey, 542 s.

  • Bohus, L.S., Gomez, J., Capote, T, Greaves, E. D. , Herrera, O., Salazar, V. ve Smith, A., 1997. Gross alpha radioactivity of drinking water in Venezuela. Journal of Environmental Radioactivity, 35:305-312.

  • Campese, V.M., 1994. Salt sensitivity in hypertension ranal and cardiovascular implications. Hypertension, 23:531-550.

  • Duenas, C., Fernandez, M.C., Liger, E. ve Carretero, J., 1997. Natural radioactivity levels in bottled water in Spain. Water Research, 31:1919-1924.

  • Duenas, C., Fernandez, M.C., Carretero, J., Liger, E. ve Canaete, S., 1999. 226Ra and 222Rn concentrations and doses in bottled waters in Spain. Journal of Environmental Radioactivity, 45:283-290.

  • Durlach, J., 1989. Recommended dietary amounts of magnesium: Mg RDA. Magnesium Res., 2:195-203.

  • ES (European Standards), 1970. European Standards for Drinking-Water. 2nd ed., Distributed by the Regional Office for Europe, World Health Organization, Geneva, 56 s.

  • EU (European Union), 1998. Council Directive 98/83/EC on The Quality of Water Intended for Human Consumption. Consolidated Text produced by the Consleg System of the Office for Official Publications of the European Communities (Consleg: 1998 10083-25

  • FDA (Food and Drug Administration, Department of Health and Human Services), 2003. The Code of Federal Regulations (CFR), CFR21-Food and Drugs, Part 165-Beverages Sec. §165.110: Bottled Water, Vol. 2, U.S. Government Printing Office, Revised as of Ap

  • Feru, A., 2004. Bottled natural mineral waters in Romania. Environmental Geology, Published online: 3 March 2004, DOI: 10.1007/S00254-004-1006-3.

  • Garzon, P. ve Eisenberg, M.J., 1998. Variation in the mineral content of commercially available bottled waters: implications for health and disease. The American Journal of Medicine, 105:125-130.

  • GCDWQ (Guidelines for Canadian Drinking Water Quality), 2003. Summary of Guidelines for Canadian Drinking Water Quality, Prepared by the Federal- Provincial-Territorial Committee on Drinking Water of the Federal-Provincial- Territorial Committee on E

  • Heany, R.P., Gallagher, J.C. ve Johnston, C.C., 1982. Calcium nutrition and bone haelth in the elderly. Am. J. Clin. Nutr., 36:986-1013.

  • Heany, R.P. ve Dowell, M.S., 1994. Absorbality of the calcium in a a high-calcium mineral water. Osteoporos Int., 4:323-324.

  • Hem, J.D., 1985. Study and Interpretation of The Chemical Characteristics of Natural Water. U.S. Geological Survey Water-Supply Paper 2254, U.S. Geological Survey, Alexandria, VA22304, USA, 263 s

  • IARC (International Agency for Research on Cancer), 1987. Overall Evaluation of Carcinogenicity: An Updateing of IARC Monographs Vol. 1 -42, Lyon.

  • IBWA (International Bottled Water Association), 2003. Model Bottled Water Regulation, 23 s., http://www.bottledwater.org.

  • Ikem, A., Odueyungbo, S., Egiebor, N.O. ve Kafili N., 2002. Chemical quality of bottled waters from three cities in eastern Alabama. The Science of the Total Environment, 285: 165-175.

  • İSKİ, 2004. İstanbul Büyükşehir Belediyesi İstanbul Su ve Kanalizasyon İdaresi (İSKİ), Ocak-2004 Su Kalitesi Raporu. http://www.iski.gov.tr/dosya/su_kalite /sukaliteocak 2004t.pdf.

  • Kralik, C., Friedrich, M. ve Vojir, E, 2003. Natural radionuclides in bottled water in Austria. Journal of Environmental Radioactivity, 65:233-241

  • MacGregor, G.A., 1985. Sodium is more important than calcium in essential hypertension. Hypertension, 7:628-637.

  • Marx, A. ve Neutra, R.R., 1999. Magnesium in drinking water and ischemic heart disease. Epidemiol Rev., 19:258-272.

  • McNeely, R.N., Neimanis, V.P. and Dwyer, L., 1979. Water Quality Sourcebook-A guide to Water Quality Parameters. Inland Waters Directorate, Water Quality Branch, Ottowa, Canada, 88 s.

  • Misund, A., Frengstad, B., Siewers, U. ve Reimann, C., 1999. Variation of 66 elements in European bottled mineral waters. The Science of the Total Environment, 243/244: 21-41.

  • Nawrocki, J., Dabrowska, A. ve Borcz, A., 2002. Investigation of carbonyl compounds in bottled waters from Poland. Water Research, 36:4893-4901.

  • Nkono, N.A. ve Asubiojo, O.I., 1997. Trace elements in bottled and soft drinks in Nigeria-preliminary study. The Science of the Total Environment, 208:161 -163.

  • Nsanze, H. ve Babarinde, Z., 1999. Microbiological quality of bottled drinking water in the UAE and the effect of storage at different temperatures. Environment International, 25:53-57.

  • Rangel, D.J.I., Rio, H.L., Garcia, F.M., Torres, L.L.Q., Villalba, M.L., Sujo, L.J. ve Cabrera, M.E.M., 2002. Radioactivity in bottled waters sold in Mexico. Applied Radiation and Isotopes, 56:931 -936.

  • Robles, E., Ramirez, P., Gonzalez, E., Sainz, M.A, Martinez, B., Duran, A. ve Martinez, M.A.E., 1999. Bottled-water quality in metropolitan Mexico City. Water, Air, and Soil Pollution, 113:217-226.

  • Sağlık Bakanlığı, 1997. İçilebilir Nitelikteki Suların İstihsali, Ambalajlanması, Satışı Ve Denetlenmesi Hakkında Yönetmelik. 22 s., 18.10.1997 tarihli ve 23144 sayılı Resmi Gazete`de yayımlanarak yürürlüğe girmiştir. http ://www. saglik.gov.tr/sb /e

  • Saleh, LA. ve Doush, LA., 1998. Survey of trace elements in household and bottled drinking water samples collected in Riyadh, Saudi Arabia. The Science of the Total Environment, 216:181-192.

  • Saleh, M.A., Ewane, E., Jones, J. ve Wilson, B.L., 2001. Chemical evaluation of commercial bottled drinking water from Egypt. Journal ofFood Composition and Analysis, 14:127- 152.

  • Sanchez, M.A., Montero, M.P.R., Escobar, VG. ve Vargas, M.J., 1999. Radioactivity in bottled mineral waters. Applied Radiation and Isotopes, 50:1049-1055.

  • Skwarzec, B., Struminska, D.I. ve Borylo, A., 2003. Radionuclides of 210Po, 234U and 23 8U in drinking bottled mineral water in Poland. Journal of Radioanalytical and Nuclear Chemistry, 256:361-364.

  • TS 266, 1997. Sular-İçme ve Kullanma Sulan Standardı. Birinci Baskı, G.T.İ.P. 2201.90.00.00.11, ICS 13.060.20, 25 s., Türk Standardlan Enstitüsü (TSE) - Necatibey Cad. No:112-Bakanlıklar, Ankara.

  • USEPA (United States Environmental Protection Agency), 2002. 2002 Edition of The Drinking Water Standards and Health Advisories. EPA 822-R-02-038, Office of Water, Washington DC., 19 p. http://www.epa.gov/waterscience/drinking/ standards/dwstandards.

  • Versari, A., Parpinello, G.P. ve Galassi, S., 2002. Chemometric survey of italian bottled mineral waters by means of their labelled physico-chemical and chemical composition. Journal of Food Composition andAnalysis, 15:251-264.

  • Warburton, D., Harrison, B., Crawford, C., Foster, R., Fox, C., Gour, L. ve Krol, P., 1998. A further review of the microbiological quality of bottled water sold in Canada: 1992-1997 survey results. International Journal of Food Microbiology, 39:221-

  • WHO (World Health Organization), 1996. Guidelines for Drinking-Water Quality. 2nd ed. Vol. 2., Health criteria and other supporting information, Geneva, 973 s.

  • Yongjian, L. ve Mou, S., 2003. Simultaneous determination of trace level bromate and chlorinated haloacetic acids in bottled drinking water by ion chromatography. Microchemical Journal, 75:79-86.

  • In-Situ Remediation Technologies Appliedfor Petroleum Hydrocarbon Contaminated Aquifers
    Cüneyt Güler Musa Alpaslan
    View as PDF

    ABSTRACT: Petroleum hydrocarbons are used to meet a big portion of energy demand that is needed to sustain the human life. Accidental release and leakage of petroleum hydrocarbons may cause groundwater contamination and can have extremely serious consequences from both human and environmental health perspectives. Basically, petroleum hydrocarbons can be divided in two major groups. First group is called light non-aqueous phase liquids which float on water. Second group of petroleum hydrocarbons is called dense non-aqueous phase liquids and they are denser than water. Contaminations caused by light non-aqueous phase liquids can be relatively more easily remediated when compared to dense non-aqueous phase liquids and contaminations caused by dense non-aqueous phase liquids generally require application of more complex remediation technologies. There are different methods exist for the remediation of petroleum hydrocarbon contamination in the saturated and unsaturated zones ofthe aquifers. Among these, most frequently used ones are; gas/air injection, soil vapor/gas extraction, directional wells,in-well aeration, dual phase extraction, chemical oxidation, thermal treatment, fracturing enhancement and permeable reactive barrier technologies. Before the application of any method, the most important thing to do is to define aquifer and contaminant characteristics and spatial extent of the contaminant for an effective treatment process. Each one of these methods has several advantages and disadvantages that are resulted directly from properties of the contaminated aquifers. For this reason, in the petroleum hydrocarbon contaminated aquifers generally not a single method is used but a combination of two or more methods are appliedfor a more effective treatment.

  • Adams, J.A. and Reddy, K.R., 2000. Removal of dissolved- and free-phase benzene pools from ground water using in situ air sparging: Journal of Environmental Engineering, ASCE, 126 (8), 697-707.

  • Anderson, W.C., 1995. Vacuum vapor extraction: WASTECH Innovative site remediation technology series, Vol. 8. American Academy of Environmental Engineers, Annapolis, MD., 224 p.

  • Baneıjee, P., 1993. Technology evaluation and applications analysis report: University of Cincinnati/Risk Reduction Engineering Laboratory - Hydraulic fracturing technology: U.S. Environmental Protection Agency, Washington, D.C., EPA/540/R- 93/505 (N

  • Barnes, D.L. and McWhorter, D.B., 1995. Mechanics of vacuum-enhanced recovery of hydrocarbons: In: R.E. Hinchee, J.A. Kidel and H.J. Reisinger (eds), Applied bioremediation of petroleum hydrocarbons. Battelle Press, Columbus, OH, 361-370.

  • BATTELLE, 1997. Engineering evaluation and cost analysis for bioslurper initiative (A005), Columbus, Ohio, 87 p.

  • Bedient, P.B., Rifai, H.S. and Newell, C.J., 1999. Ground water contamination: Transport and remediation (2nd Edition). Prentice-Hall, Upper Saddle River, NJ, 604 p.

  • Blake, S., Hockman, B. and Martin, M., 1990. Applications of vacuum dewatering techniques to hydrocarbon remediation: In: Proceedings of NWWA/API Conference on Petroleum hydrocarbons and organic chemicals in ground water: Prevention, detection, and r

  • Blake, S.B. and Gates, N.M., 1986. Vacuum enhanced hydrocarbon recovery: A case study: In: Proceedings of NWWA/API Conference on petroleum hydrocarbons and organic chemicals in ground water: Prevention, detection, and restoration. November 12-14, Hou

  • Borden, R.C., 1994. Natural bioremediation of hydrocarbon-contaminated ground water. Handbook of Bioremediation, Lewis Pub., Boca Raton, FL, 177-199.

  • Brown, R. and Jasiulweicz, F., 1992. Air sparging: A new model for remediation: Pollution Engineering, 52-55

  • Brown, R.A., Hicks, R.J. and Hicks, P.M., 1994. Use of air sparging for in situ bioremediation: In: R.E. Hinchee (ed), Air sparging for site remediation. Lewis Publishers, Boca Raton, FL, 38-55.

  • Bruce, L., Hockman, B., James-Deanes, R., King, J. and Laws, D., 1992. Vacuum recovery barrier wall system dewaters contaminated aquifer: A solution based on proper evaluation of hydrogeologic parameters: In: Proceedings of the NGWA/API Conference on

  • Chapelle, F.H., 1993. Ground-water microbiology and geochemistry. John Wiley, New York, 424 p.

  • Chapelle, F.H., 1999. Bioremediation of petroleum hydrocarbon-contaminated ground water - The perspectives of history and hydrogeology: Ground Water, 37(1), 122-132.

  • Connolly, M., Gibbs, B. and Keet, B., 1995. Bioslurping applied to a gasoline and diesel spill in fractured rock: In: R.E. Hinchee, J.A. Kittel and H.J. Reisinger (eds), Applied bioremediation of petroleum hydrocarbons. Battelle Press, Columbus, OH,

  • Davis, E.L., 1997. How heat can enhance in-situ soil and aquifer remediation: Important chemical properties and guidance on choosing the appropriate technique: Robert S. Kerr Environmental Research Laboratory, EPA/540/S-97/502, Washington, DC.

  • Department of Defense, 2002. Multi-site air sparging, Battle Press, Columbus, Ohio, 105 p.

  • DiGiulio, D.C. and Cho, J.S., 1990. Conducting field tests for evaluation of soil vacuum extraction application: In: Proc. Fourth Natl. Outdoor Action Conf, on Aquifer restoration, ground water monitoring, and geophysical methods. Natl. Ground Water

  • EPA, 1994. Assessing UST corrective action technologies: Lessons learned about in situ air sparging at the Denison Avenue Site, Cleveland, Ohio, EPA/600/R-95/040,98 p.

  • EPA, 1998. Permeable reactive barrier technologies for contaminant remediation, EPA/600/R-98/125,94p.

  • EPA, 2005. A citizen`s guide to in situ thermal treatment methods, http://www.envirotools.org/factsheets/Rem ediation/insitutherm. shtml

  • ESTCP, 2001. Use of cometabolic air sparging to remediate chlorethene-contaminated ground water aquifers, ESTCP cost and performance report (CU-9810), U.S. Department of Defense, 51 p.

  • ESTCP, 2003. Evaluating the longevity and hydraulic performance of permeable reactive barriers at Department of Defense sites, Cost and Performance Report (CU- 9907), U.S. Department of Defense, 57 p.

  • Fetter, C.W., 1999. Contaminant hydrogeology (2nd Edition). Prentice Hall, Upper Saddle River, NJ, 500 p.

  • Gavaskar, A.R., Gupta, N., Saas, B.M., Janosy, R.J. and O`Sullivan, D., 1988. Permeable barriers for groundwater remediation: Design, construction, and monitoring. Battle Press, Columbus, OH.

  • Gillham, R.W and O`Hannesin, S.F., 1992. Metal-catalyzed abiotic degradation of halogenated organic compounds: In: IAH Conference, Modern trends in hydrogeology, Hamilton, Ontario, May 10- 13, 1992. International Association of Hydrogeologists, Markh

  • Gönen, O. and Gvirtzman, H., 1997. Laboratory­ scale analysis of aquifer remediation by in­ well vapor stripping: 1. Laboratory results: Journal of Contaminant Hydrology, 29, 23- 39.

  • Gvirtzman, H. and Gorelick, S., 1992. The concept of in-situ vapor stripping for removing VOCs from groundwater, Transport in Porous Media 8. Kluwer Academic Publishers, Netherlands, 71 -92.

  • GWRTAC, 1996. Treatment walls: Technology evaluation report TE-96-01,38p.

  • GWRTAC, 1997. In-well vapor stripping, Technology overview report TO-97-01, 17 P-

  • GWRTAC, 2000. Technology status report hydraulic, pneumatic and blast-enhanced fracturing, Pittsburgh, PA, 48 p.

  • Hinchee, R.E. 1994. Air sparging for site remediation, Columbus, Ohio, CRC Press.

  • ITRC (Interstate Technology & Regulatory Council). 2005. Technical and regulatory guidance for in situ chemical oxidation of contaminated soil and groundwater (2nd Edition): Interstate Technology & Regulatory Council, In Situ Chemical Oxidation Team,

  • Johnson, P.C., 1998. Assessment of the contributions of volatilization and biodegradation to in-situ air sparging performance: Environmental Science and Technology, 32(2), 276-281.

  • Johnson, R.L., Johnson, PC., McWhorter, D.B., Hinchee, R.E. and Goodman, I., 1993. An overview of in situ air sparging: Ground Water Monitoring and Remediation, 13(4), 127-135.

  • Leonard, W.C. and Brown, R.A., 1992. Air sparging: An optimal solution: In: Proceedings of the Conference on Petroleum hydrocarbons and organic chemicals in ground water: Preventive, detection, and restoration. National Groundwater Association, Weste

  • Marley, M.C., Hazebrouck, D.J. and Walsh, M.T., 1992. The application of in-situ air sparging as an innovative soils and groundwater remediation technology: Ground Water Monitoring Review, 12(2), 137-145.

  • Place, M., Hoeppel, R., Chaudhry, T., McCall, S., and Williamson, T., 2003. Application guide for bioslurping principles and practices of bioslurping addendum: use of pre-pump separation for improved bioslurper system operation, 18p.

  • Reynolds, G.W, Hoff, J.T. and Gillham, R.W, 1990. Sampling bias caused by materials used to monitor halocarbons in groundwater: Environmental Science and Technology, 24(1), 135-142.

  • Rifai, H., Borden, R.C., Wilson, J.T. and Ward, C.H., 1995. Intrinsic bioattenuation for subsurface restoration, intrinsic bioremediation. Battelle Press, Columbus, OH, 1-30.

  • Riser-Roberts, E., 1992. Bioremediation of petroleum contaminated sites. CRC Press, 197p.

  • Schnarr, M., Truax, C., Farquhar, G., Hood, E., Gonullu, T. and Stickney, B., 1998. Laboratory and controlled field experiments using potassium permanganate to remediate trichloroethylene and perchloroethylene DNAPLs in porous media: Journal of Conta

  • Siegrist, R.L., 1998. In situ chemical oxidation: Technology features and applications: Conference on advances in innovative ground-water remediation technologies. Atlanta, GA. 15 December 1998. Ground­ water Remediation Technology Analysis Center. U

  • Smith, L.A. and Hinchee, R.E., 1993. In situ thermal technologies for site remediation. Lewis Publishers, Ann Arbor, MI, 224 p.

  • WHO (World Health Organization), 1998. Draft third edition of the WHO Guidelines for Drinking-Water Quality.

  • www.frtr.gov/matrix2/section4/D01 -4-30.html

  • www.frtr.gov/matrix2/section4/D01 -4-36.html

  • ISSUE FULL FİLE
    View as PDF