Jeoloji Münendisliği Dergisi
Jeoloji Mühendisliği Dergisi

Jeoloji Mühendisliği Dergisi

2011 ARALIK Cilt 35 Sayı 2
COVER
View as PDF
COPYRİHT PAGE
View as PDF
CONTENTS
View as PDF
Investigation of Seismicity of Antalya City Metropolitan Area
Nihat Dipova Bülent Cangir
View as PDF

ABSTRACT: Population of Antalya is growing rapidly due to internal immigration. Moreover, millions of tourists are visiting Antalya every year. Antalya city center lies in the second degree earthquake zone of Turkey. Western part of Antalya, where seismic activity is more intense, lies in the first and second degree zones Taking in to account the poor construction quality and the weak ground conditions, seismicity of Antalya becomes point of interest. In this study, to investigate the seismicity of Antalya city center, a seismic hazard analysis was carried out considering earthquakes occurred between 1900 - 2010 in the seismotectonic zones around Antalya, using statistical techniques. Antalya city center is located in the central part of “Isparta angle” and affected by earthquakes which are the products of components of this tectonic structure. “a” parameters lie in the range between 5.61 – 6.77, and “b” parameters in 0.86 – 1.06 for the seismotectonic zones around Antalya. For a circle having radius of 100 km and the centre is located in Antalya city center, probability of occurrence of an earthquake having magnitude 5 or more is 71 %. It is understood that probability of an earthquake having magnitude 6.5 or more is 15 % in 50 years. Applying attenuation relationships, the greatest horizontal ground acceleration is estimated as 0.1g. For soft soils it is obvious that this value will reach a higher value due to ground amplification. It is clear that in a different study, magnification and liquefaction studies should be studied for the weak soils. Before starting an investigation for safety of buildings against earthquake, a micro-zonation study related to dynamic behaviour of all the Antalya soils should be completed.

  • Antalya

  • Attenuation

  • Seismicity

  • Peak horizontal ground acceleration

  • Seismotectonic

  • Akay, E., Uysal S., Poisson, A., Cravatte, J., Muller, C., 1985. Antalya neojen havzasının stratigrafisi. TJK Bülteni, 28, 105-119.

  • Aksu, A. E., Hall, J., Yaltırak, C., 2009. Miocenerecent evolution of Anaximander Mountains and Finike Basin at the junction of Hellenic and Cyprus Arcs, Eastern Mediterranean. Marine Geology, 258 (1-4), 24-47.

  • Ambraseys, N.N., Finkel, C.F., 1995. The Seismicity of Turkey and Adjacent Areas, a Historical Review. Eren Yayıncılık, İstanbul, 1500-1800.

  • Blumenthal, M.M., 1963. Le systeme structural du Taurus sud Anatolies. Bulletin De La Societe Geologique De France, In: Livre a Memoire de Professor P. Fallot. Mem. Soc. Geol. Fr. 1, 2, 611–662.

  • Borcherdt, R.D., Wentworth, C.M., Janssen, A., Fumal, T., Gibbs, J., 1991. Methodology for predictive GIS mapping of special study zones for strong ground shaking in the San Francisco Bay region. Proc. 4th International Conference On Seismic Zonation

  • Cornell, C. A., 1968. Engineering seismic risk analysis. Bulletin of the Seismological Society of America, 58, 1583-1606.

  • Demirtaş, R., Yılmaz, R., 1996. Türkiye’nin Sismotektoniği. Bayındırlık ve İskân Bakanlığı Yayınları, Ankara, 915 s.

  • Deniz, A., Yücemen, M.S., 2005. Antalya yöresi için deprem tehlikesinin stokastik yöntemler ile tahmini. Antalya Yöresinin İnşaat Mühendisliği Sorunları Kongresi, 22-25 Eylül 2005, Antalya

  • Duggan, P.M.T., 2011. Antalya’nın Gizli Tarihi, 2300 Yıl İçerisinde Bölgede Yaşanan Depremlerin ve Vebaların Kronolojisi. Odin Yayıncılık, İstanbul.

  • Dumont, J.F., Kerey, E., 1975. Kırkkavak fayı: Batı Toroslar ile Köprüçay baseni sınırında kuzeygüney doğrultu atımlı fay. Türkiye Jeoloji Kurultayı Bülteni, 18 (1), 59-62.

  • Dumont, J. F., Uysal, Ş., Şimşek, S., Karamanderesi, H., Letouzey, J.,1979. Güney batı Anadolu`daki grabenlerin oluşumu. MTA Enstitüsü Dergisi, 92, 7-17.

  • Erdik, M., Biro, Y., Onur, T., Sesetyan, K., Birgören, G., 1999. Assessment of earthquake hazard in Turkey and neighboring regions - GSHAP, Annali di Geofisica, 42, 6.

  • Garcia-Mayordomo, J., Faccioli, E., Paolucci, R., 2004. Comparative study of the seismic hazard assessments in european national seismic codes. Bulletin of Earthquake Engineering, 2, 51-73.

  • Glover, C., Robertson, A.H.F., 1998. Neogen intersection of the Aegean and Cyprus arcs: extensional and strike-slip faulting in the Isparta Angle, SW Turkey. Tectonophysics 298, 103- 132.

  • Gutenberg, B., Richter, C.F., 1944. Frequency of earthquakes in California. Bulletin of the Seismological Society of America, 34, 185–188.

  • IOC International Oceanographic Commission, 1981. International bathymetric chart of the Mediterranean (1:1.000.000 scale). Head Department of Navigation and Oceanography, Leningrad, USSR.

  • Joyner, W.B., Fumal, T.E., 1984. Use of measured shearwave velocity for predicting geologic and site effects on strong ground motion. Proceedings of 8th World Conference on Earthquake Engineering, 2, 777-783.

  • Kalkan, E., Gülkan, P., 2004. Site-dependent spectra derived from ground motion records in Turkey, Earthquake Spectra, Volume 20, Number 4, November 2004.

  • Kayabalı, K., 1995. Sismik tehlike analizi: Teori ve uygulama, Jeoloji Mühendisliği, 46, 28-43.

  • Koçyiğit, A., 1984. Güneybatı Türkiye ve yakın dolayında levha içi yeni tektonik gelişim. Türkiye Jeoloji Kurumu Bülteni, 27, 1-16.

  • Koçyiğit, A., Akyol, E., Bozkurt, B., Beyhan, A., 1997. Antalya Körfezi karasal çöküntüsünün neotektonik özellikleri, depremselliği ve daha önceki denizaltı çalışmaları ile karşılaştırılması. Tübitak Proje No: YDABÇAG-437/G

  • Lomnitz, C., 1966. Statistical prediction of earthquakes. Reviews of Geophysics, 4, 377- 393.

  • Midorikawa, S., 1987. Prediction of isoseismal map in the Kanto plain due to hypothetical earthquake. Journal of Structural Engineering, 33 (B), 43-48.

  • Özhan, G., 2004. Antalya Körfezi jeolojik ve tektonik özellikleri. Antalya’nın Jeolojisi ve Doğal Afet Konferansları, 2-3 Aralık 2004, Antalya.

  • Poisson, A., Yağmurlu, F., Bozcu, M., Şentürk, M., 2003. New insights on the tectonic setting and evolution around the apex of the Isparta Angle (SW Turkey). Geol. J. 38: 257-282.

  • Reiter, L., 1990. Earthquake hazard analysis. Columbia University Press, New York, 245 p.

  • Schwartz, D. P., Coppersmith, K. J., 1984. Fault behavior and characteristic earthquakes: Examples from Wasatch and San Andreas fault zones. Journal of Geophysical Research, 89, 5681-5698.

  • Şaroğlu, F., Emre, Ö., Boray, A., 1987. Türkiye`nin aktif fayları ve depremsellikleri. MTA Rapor no: 8174, 394 s (yayınlanmamış).

  • Şenel, M., 1997. 1:100.000 Türkiye Jeoloji Haritası, Antalya L11 Paftası. MTA Yayınları, Ankara.

  • Tan, O., Tapırdamaz, M.C., Yörük, A., 2008. The earthquake catalogues for Turkey. Turkish Journal of Earth Sciences, 17, 405–418.

  • Ten Veen, J.H., Woodside, J., Zitter, T.A.C., Dumont, J., Mascle, J., Volkonskaia, A., 2004. Neotectonic evolution of the Anaximander Mountains at the junction of the Hellenic and Cyprus arcs. Tectonophysics. 391 (1-4), 35-65.

  • Ulusay, R., Tuncay., E., Sönmez, H., Gökçeoğlu, C., 2004. An attenuation relationship based on Turkish strong motion data and isoacceleration map of Turkey. Engineering Geology, 74, 265– 291

  • Yağmurlu, F., Savaşcın, Y., Ergun, M., 1997. Relation of alkaline volcanism and active tectonism within the evolution of Isparta Angle, SWTurkey. The Journal of Geology, 105, 717-728.

  • Yağmurlu, F., Şentürk, M., 2005. Güneybatı Anadolu`nun güncel tektonik yapısı. Türkiye Kuvaterner Sempozyumu V, İTÜ Avrasya Yer Bilimleri Enstitüsü, 02-03 Haziran 2005, 55-61, İstanbul.

  • Yeats, R.S., Sieh, K., Allen, C.R., 1997. The geology of earthquakes. Oxford University Press.

  • Yıldırımlı, Ç., 2008. Türkiye için topoğrafik etkiyi de içeren eş ivme haritasının geliştirilmesi, Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Yüksek lisans tezi.

  • Yücemen, M. S., 2008. Deprem tehlikesinin tahmininde olasılıksal yöntemler (14. Bölüm), binalar için deprem mühendisliği temel ilkeleri. (Editörler: Erdem Canbay, Uğur Ersoy, Güney Özcebe, Haluk Sucuoğlu, S. Tanvir Wasti) Bizim Büro Basımevi, Ankara.



  • Dipova, N , Cangir, B . (2011). Antalya İli Yerleşim Alanının Depremselliğinin Araştırılması . Jeoloji Mühendisliği Dergisi , 35 (2) , 93-114 . Retrieved from https://dergipark.org.tr/tr/pub/jmd/issue/28179/295887

  • Dipova, N , Cangir, B . Antalya İli Yerleşim Alanının Depremselliğinin Araştırılması. Jeoloji Mühendisliği Dergisi 35 (2011 ): 93-114

  • Comparison of Weathering Properties by the Help of Electrical Resistivity Tomography Technique (ERT)
    Ömer Ündül Atiye Tuğrul İ.halil Zarif
    View as PDF

    ABSTRACT: Weathering grades and their depths are some of the most important geo-engineering propertiesdetermining the cost, efficiency and sustainability of the engineering projects. Weathering properties of therocks should be clearly defined during the preliminary surveys of the studies on foundations, slopes etc. Asweathering properties are heterogeneous and anisotropic more boreholes are needed to increase theaccuracy of the interpretations of the subsurface. Electrical Resistivity Tomography (ERT) technique isused for different purposes to obtain faster and more economical data from wider area than drilling. Dueto such specialities of ERT, the technique was used for determining the weathering properties of thepyroxenites and dunites outcropping in Bursa region. ERT studies were carried out in three lines. Two- ofthe lines were on the dunites and the other line on the pyroxenite. Dunites in this study were observed fromunweathered to completely weathered stages, and the pyroxenites were observed from slightly tocompletely weathered stages. During ERT studies both dipole-dipole and Wenner configurations weredeployed. According to the data obtained, inversion model sections were generated. These sections wereevaluated regarding the changes in engineering properties of the dunites and pyroxenites. According to theevaluations, it is concluded that Wenner configuration especially for the dunites represents betterresistivity distributions for the weathering properties. 

  • Weathering

  • Dunite

  • Electrical resistivity tomography (ERT)

  • Orhaneli

  • Pyroxenite

  • ANON, 1995. The description and classification of weathered rocks for engineering purposes. Quaterly Journal of Engineering Geology, 28, 207-242.

  • Barker, R., Rao, T.V., Thangarajan, M., 2001. Delineation of contaminant zone through electrical imaging technique. Current Science, 81 (3), 277–283.

  • Beauvais, A., Ritz, M., Parisot, J.-C., Bantsimba, C., Dukhan, M., 2004. Combined ERT and GPR methods for investigating two-stepped lateritic weathering system. Geoderma 119, 121–132.

  • Cavinato, G.P., Di Luzio, E., Moscatelli, M., Vallone, R., Averardi, M., Valente, A., Papale, S., 2006. The new Col di Tenda tunnel between Italy and France: integrated geological investigations and geophysical prospections for preliminary studies on

  • Ceryan, S., 2008. New chemical weathering indices for estimating th mechanical properties of rocks: A case study from the Kürtün Granodiorite, NE Turkey. Turkish Journal of Earth Sciences, 17, 187-207.

  • Chandra, S., Dewandel, B., Dutta, S., Ahmed, S., 2010. Geophysical model of geological discontinuities in a granitic aquifer: Analyzing small scale variability of electrical resistivity for groundwater occurrences. Journal of Applied Geophysics, 71,

  • Cosenza, P., Marmet, E., Rejiba, F., Cui, Y.J., Tabbagh, A., Charlery, Y., 2006. Correlations between geotechnical and electrical data: a case study at Garchy in France. Journal of Applied Geophysics, 60, 165–178.

  • Dahlin, T., Bjelm, L., Svensson, C., 1999. Use of electrical imaging in site investigations for a railway tunnel through the Hallandsås Horst, Sweden. Quarterly Journal of Engineering Geology, 32, 163–172

  • Dahlin, T., Owen, R., 1998. Geophysical investigations of alluvial aquifers in Zimbabwe. Proceedings of the 4th EEGS Meeting. Barcelona, 14– 17 September 1998, 151–154.

  • Danielsen, B.E., Dahlin, T., 2009. Comparison of geoelectrical imaging and tunnel documentation at the Hallandsås Tunnel, Sweden. Engineering Geology, 107, 118–129.

  • Diamantis, K., Gartzos, E., Migiros, G., 2009. Study on uniaxial compressive strength, point load strength index, dynamic and physical properties of serpentinites from Central Greece: Test results and empirical relations. Engineering Geology, 108, 19

  • Drahor, M.G., Göktürkler, G., Berge, A.M., Kurtulmus, T.Ö., 2006. Application of electrical resistivity tomography technique for investigation of landslides: a case from Turkey. Environmental Geology, 50, 147–155.

  • Emre, H., 1986. Orhaneli ofiyolitinin jeolojisi ve petrolojisi. İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Doktora Tezi, 165 s (yayımlanmamış).

  • Ganerød, G.V., Rønning, J.S., Dalsegg, E., Elvebakk, H., Holmøy, K., Nilsen, B., Braathen, A., 2006. Comparison of geophysical methods for subsurface mapping of faults and fracture zones in a section of the Viggja road tunnel, Norway. Bulletin of Eng

  • Gay, D.A., Morgan, F.D., Vichabian, Y., Sogade, J.A., Reppert, P., Wharton, A.E., 2006. Investigations of andesitic volcanic debris terrains: Part 2 — Geotechnical. Geophysics 71, B9–B15.

  • Giao, P.H., Weller, A., Hien, D.H., Adisornsupawat, K., 2008. An approach to construct the weathering profile in a hilly granitic terrain based on electrical imaging. Journal of Applied Geophysics, 65, 30–38.

  • Godio, A., Strobbia, C., Bacco, G., 2006. Geophysical characterisation of a rockslide in an alpine region. Engineering Geology, 83, 273– 286.

  • Gökçeoğlu, C., Zorlu, K., Ceryan, S., Nefeslioglu, H.A., 2009. A comparative study on indirect determination of degree of weathering of granites from some physical and strength parameters by two soft computing techniques. Materials Characterization,

  • Griffiths, D.H., Barker, R.D., 1993. Twodimensional resistivity imaging and modelling in areas of complex geology. Journal of Applied Geophysics, 29, 211–226.

  • ISRM, 1981. Rock Characterization, Testing and Monitoring: ISRM Suggested Methods. Pergamon, Oxford. 211 p.

  • Kılıç, R., 1999. A unified alteration index (UAI) for mafic rocks. Environmental and Engineering Geosciences, 4, 475–483.

  • Kılıç, R., Ulamış, K., Kadıoğlu, Y.K., Yurdakul, M., 2010. Bolu civarındaki metakristalin kayaçların ayrışma derecesinin incelenmesi. Mühendislik Jeolojisi Türk Milli Komitesi Bülteni, 30, 17-34.

  • Loke, M.H., 2000. Electrical imaging surveys for environmental and engineering studies, a practical guide to 2-D and 3-D surveys. Unpublished short training course lecture notes, Geotomo software, Penang, Malaysia, 65 p.

  • Loke, M.H., Barker, R.D., 1996. Rapid least-squares inversion of apparent resistivity pseudosections using a quasi-Newton method. Geophysical Prospecting, 44, 131–152.

  • Orhan, M., Işık, N.S., Topal, T., Özer, M., 2006. Effect of weathering on the geomechanical properties of andesite, Ankara-Turkey. Environmental Geology, 50 (1), 85-100.

  • Özkoçak, O., 1969. Etude géologique du massif ultrabasique d’Orhaneli et da sa proche bordure (Bursa - Turquie). These de Doctorat, Univ. de Paris, 181 p.

  • Sudha, K., Israil, M., Mittal, S., Rai, J., 2009. Soil characterization using electrical resistivity tomography and geotechnical investigations. Journal of Applied Geophysics, 67, 74–79.

  • Tuğrul, A., Zarif, İ.H., 2000. Engineering aspects of limestone weathering in Istanbul, Turkey. Bulletin of Engineering Geology and the Environment, 58 (3), 191–206.

  • Ündül, Ö., 2007. Ayrışmanın Çınarcık barajı göl alanındaki (Bursa) ultramafik kayaçların mühendislik özelliklerine etkisi. İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Doktora Tezi, 141 s (yayımlanmamış).

  • Ündül, Ö., Tuğrul, A., 2010. Ayrışmanın dünit ve diyoritin mühendislk özelliklerine etkisi. Mühendislik Jeolojisi Türk Milli Komitesi Bülteni, 30, 73-94.



  • Ündül, Ö , Tuğrul, A , Zarif, H . (2011). Ayrışma Özelliklerinin Elektriksel Özdirenç Tomografisi (EÖT) Yöntemi Yardımı İle Karşılaştırılması . Jeoloji Mühendisliği Dergisi , 35 (2) , 115-132 . Retrieved from https://dergipark.org.tr/tr/pub/jmd/issue

  • Ündül, Ö , Tuğrul, A , Zarif, H . Ayrışma Özelliklerinin Elektriksel Özdirenç Tomografisi (EÖT) Yöntemi Yardımı İle Karşılaştırılması. Jeoloji Mühendisliği Dergisi 35 (2011 ): 115-132

  • Excavatability Properties of Rock Masses Having Different Weathering Degrees: An Example of Gümüşhane Granitoid, Gümüşhane, NE Turkey
    Selçuk Alemdağ Ayberk Kaya Zülfü Gürocak Serhat Dağ
    View as PDF

    ABSTRACT: The studies to determine the excavatability properties of rocks contribute to the applicability of theengineering project in terms of the cost of excavation. In this study, excavatability properties of EarlyCarboniferous aged Gümüşhane Granotiod outcropped in the residential area of Gümüşhane were  examined. Firstly, four different areas were selected and the rock masses were grouped according to theirdegree of weathering based on the description criteria of ISRM. As a result of these studies, the rockmasses in field-1, field-2 and field-3 were determined as moderately weathered. The weathering degree ofrock mass in field-4 was highly weathered. In the second stage, properties of discontinuities andgeomechanical parameters of intact rock material were determined. In the next stage, RMR89, Q and GSIvalues of rock masses were determined and the rock masses were classified using the excavatabilityclassification systems. Moderately and highly weathered rock masses were classified to be in ripping anddigging categories, respectively. It was determined that the moderately weathered rock masses wereripped by using hydraulic breaker and the highly weathered rock masses were digged by using face shovel.In the final stage, the data obtained from these studies and the excavation works in the selected areas werecompared. According to the results, the excavation methods suggested by Tsiambaos and Saroglou (2009)are completely compatible with in-situ excavation works.

  • Degree of weathering

  • Gümüşhane granitoid

  • Excavatability classification systems

  • Abdullatif, O.M., Cruden, D.M., 1983. The relationship between rock mass quality and ease of excavation. Bulletin of the International Association of Engineering Geology, 28, 183- 187.

  • Atkinson, T., 1971. Selection of open-pit excavating and loading equipment. Transactions of the Institution of Mining and Metallurgy, 80, A101-129.

  • Bailey, A.D., 1975. Rock types and seismic velocities versus rippability. Highway Geology Symposium, Proceedings, 26, 135-142.

  • Barton, N., Grimstad, E., 1994. The Q-System following twenty years of application in NTM support selection. 43rd Geomechanic Colloquy, Felsbau, Salzburg, 6 (94), 428-436.

  • Bieniawski, Z.T., 1989. Engineering Rock Mass Classifications. Wiley, New York, 238 p.

  • Bozdağ, T., 1988. Indirect rippability assessment of coal measure rocks. Orta Doğu Teknik Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Yüksek Lisans Tezi, 86 s (yayımlanmamış).

  • Ceylanoğlu, A., Gül, Y., Akın A., 2007. Kazılabilirlik ve riperlenebilirlik sınıflama sistemlerinin incelenmesi ve yeni bir sınıflama sisteminin önerilmesi. Madencilik Dergisi, 46 (2), 13-26.

  • Franklin, J.A., Broch, E., Walton, G., 1971. Logging the mechanical character of rock. Transactions of the Institution of Mining and Metallurgy, 80, A1-9.

  • Gürocak, Z., Alemdağ, S., Zaman, M.M., 2008. Rock slope stability and excavatability assessment of rocks at the Kapıkaya dam site, Turkey. Engineering Geology, 96, 17-27.

  • ISRM (International Society for Rock Mechanics)., 1981. Rock Characterization, Testing and Monitoring. International Society of Rock Mechanics Suggested Methods, Pergamon Press, Oxford, 211 p.

  • ISRM (International Society for Rock Mechanics)., 1985. Suggested method for determining point load strength. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 22 (2), 53-60.

  • Kandemir, R., 2004. Gümüşhane ve yakın yöresindeki Erken-Orta Jura yaşlı Şenköy Formasyonu’nun çökel özellikleri ve birikim koşulları. Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon, Doktora Tezi, 272 s (yayımlanmamış).

  • Karpuz, C., 1990. A classification system for excavation of surface coal measures. Mining Science and Technology, 11, 157-163.

  • Kaya, A., Bulut, F., Alemdağ, S, 2011. Applicability of excavatability classification systems in underground excavations: A case study. Scientific Research and Essays, 6 (25), 5331- 5341.

  • Ketin, İ., 1966. Anadolu’nun tektonik birlikleri. Maden Tetkik ve Arama Enstitüsü Dergisi, 66, 20-34.

  • Kirsten, H.A.D., 1982. A classification system for excavation in natural materials. The Civil Engineering in South Africa, 24, 293–308.

  • Palmström, A., 2005. Measurements of and correlations between block size and rock quality designation (RQD). Tunnels and Underground Space Technology, 20, 362-377.

  • Paşamehmetoğlu, A.G., Karpuz, C., Müftüoğlu, Y., Özgenoğlu, A., Bilgin, A., Ceylanoğlu, A., Bozdağ, T., Toper, Z., Dinçer, T., 1988. TKİ dekapaj ihale panoları için makina parkı seçimi, maliyet analizi ve birim maliyetin (TL/m3) saptanması, Jeoteknik

  • Pettifer, G.S., Fookes, P.G., 1994. A revision of the graphical method for assessing the excavatability of rock. Quarterly Journal of Engineering Geology, 27, 145–164.

  • Priest, S.D., Hudson, J.A., 1976. Discontinuity spacing in rock. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 13, 135-148.

  • Scoble, M.J., Müftüoğlu, Y.V., 1984. Derivation of a diggability index for surface mine equipment selection. Mining Science and Technology, 1, 305-322.

  • Singh, R.N., Denby, B., Eğretli, İ., Pathan, A.G., 1986. Assessment of ground rippability in opencast mining operations. University of Nottingham Mining Department Magazine, 38, 21-34.

  • Smith, H.J., 1986. Estimating rippability of rock mass classification. The 27th U.S. Symposium on Rock Mechanics, Proceedings, University of Alabama, 443-448.

  • Sönmez, H., Ulusay, R., 2002. A discussion on the Hoek-Brown failure criterion and suggested modifications to the criterion verified by slope stability case studies. Hacettepe Üniversitesi Yerbilimleri Dergisi, 26, 77-99.

  • Topuz, G., Altherr, R., Schwarz, W.H., Dokuz, A., Meyer, H.P., 2007. Variscan amphibolite-facies rocks from the Kurtoğlu metamorphic complex, Gümüşhane area, Eastern Pontides, Turkey. International Journal of Earth Sciences, 96, 861– 873.

  • Tsiambaos, G., Saroglou, H., 2009. Excavatability assessment of rock masses using the Geological Strength Index (GSI). Bulletin of Engineering Geology and the Environmental, 69 (1),13-27.

  • Weaver, J.M., 1975. Geological factors significant in the assessment of rippability. The Civil Engineering in South Africa, 17 (12), 313-3



  • Alemdağ, S , Kaya, A , Gürocak, Z , Dağ, S . (2011). Farklı Ayrışma Derecesine Sahip Kaya Kütlelerinin Kazılabilirlik Özellikleri: Gümüşhane Granitoyidi Örneği, Gümüşhane, KD Türkiye . Jeoloji Mühendisliği Dergisi , 35 (2) , 133-150 . Retrieved from

  • Alemdağ, S , Kaya, A , Gürocak, Z , Dağ, S . Farklı Ayrışma Derecesine Sahip Kaya Kütlelerinin Kazılabilirlik Özellikleri: Gümüşhane Granitoyidi Örneği, Gümüşhane, KD Türkiye. Jeoloji Mühendisliği Dergisi 35 (2011 ): 133-150

  • An Investigation on the Causes of Deformations Formed Along the Sarıgöl Fault Zone
    Mehmet Yalçin Koca Hasan Sözbilir Bora Uzel
    View as PDF

    ABSTRACT: In this study, causes of surface deformations observed along the Sarıgöl fault zone have been investigated. Sarıgöl Town is located at the southeastern end of the Gediz Graben. The rocks exposed in the study area, from bottom to top, are metamorphic rocks of Menderes Massif, Plio-Pleistocene aged Asartepe formation and Holocene alluvium. The Asartepe formation is made up of weakly cemented clastic rocks and unconformably overlies the metamorphic rocks. The mapped faults divide the Sarıgöl area in to 3 different blocks. One of the fault passing throughout Sarıgöl municipality exhibits current deformational patterns on irrigational chanells, asphalt roads and cracks on the walls of several houses. The amount of vertical displacement of surface rupture along the fault is about 20-45 cm in the year of 2000. On the other hand, the amount of displacement measured on the same profile in 2010 is 1.00 – 1.25 m. In this study causes for the additional vertical displacements of 60 – 85 cm which occurred in ten years were investigated in detail. Sarıgöl fault is defined as “Listric normal growth fault” in this study. Soil beds in the hanging wall fault pocket are sloped towards the concave-up fault surface. In this pocket, an impermeable CH-type clay level at a depth of 9.0 - 11.5 m from the ground surface is located, and this level is overlaid by the silty and sandy soil beds. Surface water are accumulated in the area of triangular shape which is located on the clay level in front of the fault plane. It is estimated that sandy soils, which back-tilted toward listric fault, have been eroded from the open space of fault by the piping under the effect of water and back-tilting after the raining. Formation of the open space in the fault is explained by the rotational movement on the hanging wall of the fault. In addition, subsidence developed on the hanging wall of the fault due to the problem caused by decrease of the water level and drought in the years between 2000 and 2010 were computed. An extra load of 1.0 t/m2 per meter of the decreasing water level was formed and the normally consolidated soil layers were overconsolidated. Amount of vertical displacement on the surface ruptures along the Sarıgöl fault depending on both seismic activity in the region and overconsolidation was investigated in detail.

  • Gediz graben

  • Recent deformation

  • Listric normal fault

  • Engineering geology

  • Sarıgöl

  • Arpat, E., Bingöl, E., 1970. Ege Bölgesi graben sisteminin gelişimi üzerine düşünceler. Maden Tetkik ve Arama Estitüsü Dergisi, 73, 1-9.

  • ASTM D 2435-96, 2003. Standart test medhod for one-dimensional consolidation porperties of soils. Annual Book of ASTM Standarts: 04.08, West Conshocken, 238–247.

  • Aytekin, M., 2000. Deneysel Zemin Mekaniği. Akademi Yayınevi, Trabzon, 264 s.

  • Bowles, J. E., 1998. Foundation Analysis and Design (2nd edition). McGraw-Hill, New York, 1175 p.

  • Koca, M. Y., Kıncal, C., 2001. The geotechnical properties of the Sarıgöl province (Manisa, Turkey). 4th International Symposium on Eastern Mediterranean Geology, Isparta, Turkey, 21-25 May, Proceedings, 463–480. http://www.koeri.boun.edu.tr/ Kandill

  • Koca, M. Y., Sözbilir, H., Özer, S. ve Kıncal, C., 2000. Manisa ili Sarıgöl ilçesi yerleşim alanına ait jeolojik etüt raporu. Dokuz Eylül Üniversitesi, Mühendislik Fakültesi Jeoloji Mühendisliği Bölümü, Araştırma Raporu.

  • Sarıgöl Gazetesi, 2010. Aylık bağımsız gazete. Sarıgöl, 154-155, s. 9.

  • Seyitoğlu, G., Scott, B. C., 1991. Late Cenozoic crustal extension basin formation in West Turkey. Geological Magazine, 128, 155-166.

  • Temiz, H., Gürsoy, H., Tatar, O., 1998. Kinematic of late Pliocene-Quarternary normal faulting in the southeastern end of the Gediz Graben, Western Anatolia, Turkey. International Geology Review, 40, 638-646.

  • Tokimatsu, K., 1988. Penetration test for dynamic problems. Penetration Testing. ISOPT-1, De Ruiter (Ed.), Balkema, Rotterdam, 117-136.

  • Wroth, C. P., Wood, D. M., 1978. The correlation of index properties with some basic engineering properties of soils. Canadian Geotechnical Journal, 15 (2), 137-145.



  • Koca, Y , Sözbilir, H , Uzel, B . (2011). Sarıgöl Fay Zonu Boyunca Meydana Gelen Deformasyonların Nedenleri Üzerine Bir Araştırma . Jeoloji Mühendisliği Dergisi , 35 (2) , 151-174 . Retrieved from https://dergipark.org.tr/tr/pub/jmd/issue/28179/29590

  • Koca, Y , Sözbilir, H , Uzel, B . Sarıgöl Fay Zonu Boyunca Meydana Gelen Deformasyonların Nedenleri Üzerine Bir Araştırma. Jeoloji Mühendisliği Dergisi 35 (2011 ): 151-174

  • Seismic Geomorphology of October 23, 2011 Tabanlı-Van Earthquake and Its Relation to Active Tectonics of East Anatolia
    Çağlar Özkaymak Hasan Sözbilir Erdin Bozkurt Ramazan Kadir Dirik Tamer Topal Hüseyin Alan Dündar Çağlan
    View as PDF

    ABSTRACT: This study aims to explore the origin and location of the October 23, 2011 Tabanlı-Van earthquake within active tectonic framework of Van city and its surroundings. Field-based studies have been done just after the Tabanlı-Van earthquake, and then geometry and type of observed deformational structures were evaluated and integrated with the results of previous active tectonic studies in the region. The observedstructures can, based on seismic geomorphological indicators, be grouped in to two main categories: (1) seismotectonic landforms related to tectonic stress, and (2) seismogravitational landforms related to seismic shaking and earth’s gravity. Seismotectonic landforms are common within a 10-km-long deformation zone located between Van Lake and Erçek Lake. These occurs as N50–70°E trending synclines and anticlines, most commonly in the area between Bardakçı and Topaktaş villages. Seismogravitational landforms are common in water-saturated sediments of Lake Van, particularly along its eastern margin; they are mostly liquefaction-induced features and are expressed in the form of lateral spreading, ground subsidence, and mass movement. Reverse fault planes deforming and displacing Upper Pliocene-Pleistocene sediments form the other group of common structures in the region. They trend in N50–70°E direction direction and dip at 45-50° to the north; they are oblique structures with sinistral strike-slip components. Similar active faults were mapped by Özkaymak (2003) at three locations to the north of Van city center: north of Beyüzümü village, near the main gate of the Yüzüncü Yıl University Zeve Campus and southern part of the Aşıt village. Evaluation of previously mapped fault segments and recent observations in the deformation zone are consistent with an approximately 10 km wide active thrust fault zone that comprises, at least, five N50–70°E striking and north-diping (ca. 47°) fault segments. Kinematics of these faults is consistent with fault plane solutions of 23 October, 2011 Tabanlı-Van earthquake. We suggest that newly formed and/or reactived fault segments in this fault zone were the source of the 23 October, 2011 Tabanlı-Van earthquake. The absence of surface rupture(s) is attributed to the geometry of a blind thrust. According to geological mapping and kinematic analyses, the active tectonics of the region is the manifestation of, in addition to ENE-WSW-striking thrust faulting, NNW-SSE-directed compression as expressed by NE-SW-trending sinistral strike-slip faulting, NW-SE-trending dextral strike-slip faulting and N-S-trending normal faulting

  • Active tectonics

  • East Anatolia

  • Blind thrust

  • Seismic geomorphology

  • Tabanlı-Van earthquake

  • Acarlar, M., Bilgin, Z. A., Erkal, T., Güner, E., Şen, A. M., Umut, M., Elibol, E., Gedik, İ., Hakyemez, Y., Uğuz, M.F., 1991. Van Gölü Doğu ve Kuzeyinin jeoloji. M.T.A. Raporu, No: 9469 (yayımlanmamış).

  • AFAD, 2011. T.C. Başbakanlık Afet ve Acil Durum Yönetimi Başkanlığı web sitesi, http://www.afad.gov.tr/haber/haber_detay.asp?h aberID=578

  • Aksoy, E., 1988. Van İli Doğu-Kuzeydoğu Yöresinin Stratigrafisi ve Tektoniği (Doktora Tezi, yayınlanmamış). F.Ü. Fen Bilimleri Enstitüsü, Elazığ.

  • Alan, H., Bozkurt, E., Çağlan, D., Dirik, K., Özkaymak, Ç., Sözbilir, H., Topal, T., 2011. Van depremleri (Tabanlı-Edremit) raporu, Jeoloji Mühendisleri Odası, Yayın No. 10.

  • Ambraseys, N. N., 1988. Engineering seismology. Earthquake Engineering and Structural Dynamics 17, 1–105.

  • Ambraseys, N. N., Finkel, C. F., 1995. The seismicity of Turkey and adjacent Areas: A historical review, 1500–1800. İstanbul: Eren publishing and booktrade.

  • Atkinson, G., 1984. Simple computation of liquefaction probability for seismic hazard applications. Earthquake Spectra, 1, 107–123.

  • Audemard, F. A., De Santis, F., 1991. Survey of liquefaction structures induced by recent moderate earthquakes. Bulletin of the International Association of Engineering Geology, 44, 5-16.

  • Aydar, E., Gourgaud, A., Ulusoy, İ., Digonnet, F., Labazuy, P., Şen, E., Bayhan, H., Kurttaş, Y., Tolluoğlu, Ü., 2003. Morphological analysis of active Mount Nemrut stratovolcano, eastern Turkey: evidences and possible impact areas of future eruption

  • AZUR, 2011. Nice Üniversitesi, GeoAzur Laboratuvarı web sayfası, https://geoazur.oca.eu/, Geosciences Azur (University of Nice, France).

  • Dewey, J. F., Hempton, M. R., Kidd, W. S. F., Şaroğlu, F., Şengör, A. M. C., 1986. Shortening of Continental Lithosphere: The Neotectonics of Eastern Anatolia-A Young Collision Zone. Geological Society Special Publication, 19, 3-37.

  • Dramis, F., Blumetti, A. M., 2005. Some considerations concerning seismic geomorphology and paleoseismology. Tectonophysics, 408, 177-191.

  • EMSC, 2011. Avrupa Ortadoğu Sismoloji merkezi web sayfası, http://www.emsc-csem.org; EMSC: European-Mediterranean Seismological Centre.

  • ERD, 2011. Afet İşleri Genel Müdürlüğü Deprem Araştırma Dairesi web sayfası, http://www.deprem.gov.tr;

  • Ergin, K., Güçlü, U., Uz, Z., 1967. Türkiye ve Civarının Deprem Kataloğu (MS. 11-1964). İstanbul: İstanbul Teknik Üniversitesi Maden Fakültesi Arz Fiziği Enstitüsü yayınları, No 28.

  • Ersoy, O., Chinga, G., Aydar, E., Gourgaud, A., Çubukcu, H. E, Ulusoy, İ., 2006. Texture discrimination of volcanic ashes from different fragmentation mechanisms: A case study, Mount Nemrut stratovolcano, eastern Turkey. Computers & Geosciences, 32,

  • GFZ, 2011. Almanya Yerbilimleri Araştırma Merkezi web sayfası, http://www.gfzpotsdam. de/portal/gfz/home; German Research centre for Geoscience.

  • Göncüoğlu, M. C., Turhan, N., 1984. Geology of the Bitlis metamorphic belt. In: Tekeli, O. ve Göncüoğlu, M.C. (eds), Geology of Taurus Belt. MTA Yayınları, 237-244.

  • Guidoboni, E., Comastri, A., Triana, G., 1994. Catalogue of Ancient Earthquakes in the Mediterranean Area up to the10th Century. Italy: Istituto Nazionale di Geofisica.

  • Güner, Y., 1984. Nemrut yanardağının jeolojisi, jeomorfolojisi ve volkanizmanın evrimi. Jeomorfoloji Dergisi, 12, 23–65.

  • HARV, 2011. Harvard Üniversitesi CMT Kataloğu web sayfası, http://www.seismology.harvard.edu/; HARV: Harvard Seismology Group Harvard University.

  • Helvaci, C., Griffin, W. L., 1984. Rb-Sr geochronology of the Bitlis Massif, Avnik (Bingöl) area, S.E. Turkey. In: Dixon, J.E. ve Robertson, A.H.F. (eds), The Geological Evolution of eastern Mediterranean. Geological Society, London, Special Publicat

  • Hempton M. R., 1987. Constraints on Arabian plate motion and extensional history of the Red sea. Tectonics, 6, 687-705.

  • INGV, 2011. İtalya Ulusal deprem izleme merkezi web sayfası, http://ring.gm.ingv.it/; Instuto Nazionale di Geofisica e Vulcanologia, Italy.

  • KANDİLLİ, 2004. Türkiye’de 1900 – 2004 yılları arasında can kaybı ve hasara neden olmuş önemli depremler. B.Ü. Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü web sayfası, http://www.koeri.boun.edu.tr/sismo/Depremler/t Large2.htm

  • KANDİLLİ, 2011. B.Ü. Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü web sayfası, http://www.koeri.boun.edu.tr/.

  • Karaoğlu, Ö., Özdemir, Y., Tolluoğlu, Ü., Karabıyıkoğlu, Ö., Köse, O., Froger, J. L., 2005. Stratigraphy of the volcanic products Around Nemrut caldera: implications for reconstruction of the caldera formation. Turkish Journal of Earth Sciences, 14,

  • Ketin, İ., 1947. Kurzer Bericht über die letzten Erdbeben in der Türkei. Geol. Rdsch., Bd. 35

  • Ketin, İ., 1977. Van Gölü ile İran Sınırı Arasındaki Bölgede Yapılan Jeoloji Gözlemlerinin Sonuçları Hakkında Kısa bir Açıklama. Türkiye Jeoloji Kurumu Bülteni, 20-2, 79-85.

  • Koçyiğit A., Beyhan A., 1998. A New Intracontinental Transcurrent Structure: The Central Anatolian Fault Zone, Turkey. Tectonophysics, 284, 317-336.

  • Koçyiğit, A., Yılmaz, A., Adamia, S., Kuloshvili, S., 2001. Neotectonics of East Anotolian Plateau (Turkey) and Lesser Caucasus: İmplication for Transition From Thrusting to Strike-Slip Faulting. Geodinamica Acta, 14, 177-195.

  • Koçyiğit, 2002. Doğu Anadolu’nun neotektonik özellikleri ve depremselliği. Doğu Anadolu Jeoloji Çalıştayı – 2002 (DAJEO-2002) bildiri özleri kitabı, s. 2-4.

  • Köse, O., Özkaymak, Ç., 2002. Van Şehri Kuzeyi Genç Göl Çökellerinde Aktif Tektonik Bulgular. ATAG-6 (Aktif Tektonik Araştırma Grubu Altıncı Toplantısı), 21-22 Kasım 2002, Bildiri Özleri Kitabı, s.64-65, MTA Genel Müdürlüğü, Ankara.

  • Moretti, M., Alfaro, P., Caselles, O., Canas, J.A., 1999. Modelling seismites with a digital shaking table. Tectonophysics, 304, 369–383

  • MTA, 2002. 1:500 000 ölçekli Türkiye jeoloji haritaları, Van paftası. MTA Genel Müdürlüğü, Ankara.

  • Oberhänsli, R., Candan, O., Bousquet, R., Rimmele, G., Okay, A.I., Goff, J., 2010. Alpine high pressure evolution of the eastern Bitlis complex, SE Turkey. In: Geological Society, London, Special Publications 340, 461-483

  • Oswalt, F., 1912. Armenian. Handbuch der regionalen Geologie. H. 10. Heidelberg.

  • Özdemir, Y., Karaoğlu, Ö., Tolluoğlu, Ü., Güleç, N. 2006. Volcanostratigraphy and petrogenesis of the Nemrut stratovolcano (East Anatolian High Plateau): the most recent postcollisional volcanism in Turkey. Chemical Geology 226, 189-211.

  • Özdemir, Y., Blundy, J., Güleç, N. (2011) The importance of fractional crystallization and magma mixing in controlling chemical differentiation at Süphan stratovolcano, eastern Anatolia, Turkey. Contribution of Mineral Petrology, 162, 573–597.

  • Özkaymak, Ç., Köse O., 2002. Van İli ve yakın civarı aktif tektoniğine yönelik bulgular. 55. Türkiye Jeoloji Kurultayı, 11-15 Mart 2002, Bildiri Özleri Kitabı, s.226, TMMOB Jeoloji Mühendisleri Odası, Ankara.

  • Özkaymak, Ç., 2003. Van Şehri ve Yakın Çevresinin Aktif Tektonik Özellikleri. Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü (Yüksek Lisans Tezi, basılmamış), 76 s.

  • Özkaymak, Ç., Yürür, T., Köse., 2004a. An example of intercontinental active collisional tectonics in the Eastern Mediterranean region (Van, Eastern Turkey). Fifth International Symposium on Eastern Mediterranean Geology (5th ISEMG), s153-156. 14-20

  • Özkaymak Ç., Sağlam A., Köse O., 2004b. Van Gölü Doğusu Aktif Tektonik Özellikleri (Doğu Anadolu, Türkiye). ATAG-7 Makaleler Kitabı, 54-60.

  • Parlak, O., Delaloye, M., Kozlu, H., Höck, V., Çelik, Ö.F., 2000. Geochemistry and tectonic setting of the Yüksekova ophiolite from the South-East Anatolian Orogenic Belt. International Earth Sciences Colloquium on the Aegean Region (IESCA-2000), 25-

  • Parlak, O., Delaloye, M., Kozlu, H., Höck, V., Çelik, Ö.F., 2001. Examination of an oceanic crust generation in island arc tectonic setting: evidence from the Yüksekova ophiolite. 4th International Symposium on Eastern Mediterranean Geology, 21-25 Ma

  • REDPUMA, 2003. İsviçre Sismoloji Merkezi web sayfası, http://seismo.ethz.ch/moment_tensor, Swiss Seismological Service in Zurich, Switzerland.

  • Rodriguez-Pascua, M. A., Calvo, J. P., De Vicente, G., Gómez-Gras, D., 2000. Soft sediment deformation structures interpreted as seismites in lacustrine sediments of the Prebetic Zone, SE Spain, and their potential use as indicators of earthquake mag

  • Soysal, H., Sipahioğlu, S., Kolçak, D., Altınok, Y., 1981. Türkiye ve Çevresinin Tarihsel Deprem Kataloğu (2100 B.C.–1900 A.D.). TÜBİTAK raporu, No. TBAG-341.

  • Şaroğlu, F., Yılmaz, Y., 1986. Doğu Anadolu’da Neotektonik Dönemdeki Jeolojik Evrim ve Havza Modelleri. MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi, Ankara.

  • Şengör A. M. C., Kidd W. S. F., 1979. Postcollisional Tectonics of the Turkish Iranian Plateau and a Comparison with Tibet. Tectonophysics, 55, 361-376.

  • Şengör, A.M.C., Yılmaz, Y., 1983. Türkiye’de Tetis’in Evrimi: Levha Tektoniği Açısından bir Yaklaşım. Türkiye Jeoloji Kurumu Yerbilimleri Özel Dizisi, no. 1, İstanbul.

  • Tan, O., Tapırdamaz, M.C., Yörük, A., 2008. The Earthquakes Catalogues for Turkey. Turkish Journal of Earth Science, 17, 405–418.

  • Ternek, Z., 1953. Van Gölü Güneydoğu Bölgesinin Jeolojisi. Türkiye Jeoloji Kurultayı Bülteni, 4. (2), 1-27.

  • TUBITAK, 2011. Türkiye Bilimsel ve Teknik Araştırma Kurumu Marmara Araştırma Merkezi web sayfası http://www.mam.gov.tr/.

  • USGS, 2011. Amerika Birleşik Devletleri Jeolojik Araştırma Dairesi web sayfası, http://www.usgs.gov/; USGS: United States Geological Survey.

  • Ustaömer, P. A., Ustömer, T., Collins, A.S., Robertson, A. H. F., 2009. Cadomian (Ediacaran–Cambrian) arc magmatism in the Bitlis Massif, SE Turkey: Magmatism along the developing northern margin of Gondwana. Tectonophysics, 473, 99-112.

  • Üner, S., 2003. Van Gölü Dogusu (Beyüzümü – Göllü Dolayı), Pliyo – Kuvaterner Yaslı Karasal Çökellerin Sedimantolojisi (yüksek lisans tezi, basılmamıs). Yüzüncü Yıl Üniversitesi, Fen Bilimleri Enstitüsü, Van. 78.

  • Üner, S., Yeşilova, Ç., Yakupoğlu, T., Üner, T. 2010. Pekişmemiş sedimanlarda depremlerle oluşan deformasyon yapıları (sismitler): Van Gölü Havzası, Doğu Anadolu. Yerbilimleri, 31, 53– 66.

  • Yılmaz, Y., Dilek, Y., Işık, H., 1981. Gevaş (Van) Ofiyolitinin Jeolojisi ve Sinkinematik bir Makaslama Zonu. Türkiye Jeoloji Kurumu Bülteni, 24, 37-44.

  • Yılmaz Y., Şaroğlu F., Güner Y., 1987. Initiation of the Neomagmatism in East Anatolia. Tectonophysics, 134, 177-199.

  • Yılmaz, Y., 1990. Comparison of Young Volcanic Associations of Western and Eastern Anatolia Formed Under a Compressional Regime: a Review. Journal of Volcanology and Geothermal Research, 44, 69-87.

  • Yılmaz, Y., Yiğitbaş, E., Genç, Ş.C., 1993. Ophiolitic and Metamorphic Assemblages of Southeast Anatolia and Their Significance in the Geological Evolution of the Orogenic Belt. Tectonics,12 (5), 1280-1297.

  • Yılmaz,Y., Güner,Y., Şaroğlu, F., 1998. Geology of the Quaternary Volcanic Centres of the East Anatolia. Journal of Volcanology and Geothermal Research 85, 173-210.



  • Özkaymak, Ç , Sözbilir, H , Bozkurt, E , Dirik, K , Topal, T , Alan, H , Çağlan, D . (2011). 23 Ekim 2011 Tabanlı-Van Depreminin Sismik Jeomorfolojisi ve Doğu Anadolu’daki Aktif Tektonik Yapılarla Olan İlişkisi . Jeoloji Mühendisliği Dergisi , 35 (2)

  • Özkaymak, Ç , Sözbilir, H , Bozkurt, E , Dirik, K , Topal, T , Alan, H , Çağlan, D . 23 Ekim 2011 Tabanlı-Van Depreminin Sismik Jeomorfolojisi ve Doğu Anadolu’daki Aktif Tektonik Yapılarla Olan İlişkisi. Jeoloji Mühendisliği Dergisi 35 (2011 ): 175-2

  • View as PDF
    ISSUE FULL FİLE
    View as PDF