Jeoloji Münendisliği Dergisi
Jeoloji Mühendisliği Dergisi

Jeoloji Mühendisliği Dergisi

2012 ARALIK Cilt 36 Sayı 2
COVER
View as PDF
COPYRİHT PAGE
View as PDF
CONTENTS
View as PDF
The Effect of Quaternary Alluvium on Strong Ground Motion: 2011Van Earthquakes
Levent Selçuk Harun Aydin
View as PDF

ABSTRACT: The distribution of damaged buildings observed from October 23 and November 9, 2011 Vanearthquakes shows that a major portion of damage occurred at settlement areas underlain by alluvialsoils. The effect of alluvial soil on strong ground motion and structural damage can be seen by comparingtwo strong ground motion records of the Van province, earthquake of 09 November 2011 (Mw:5.6). Onerecord at Edremit on travertine bedrock had a peak horizontal acceleration of 0.10 g. The other one, atthe city center of Van province, at a distance of 15 km from the epicenter in Quaternary alluvium, had theaccelaration value of 0.25 g. The effect of soil on the ground motion is about 2.5. In this study, the lateraland vertical distribution of the soil were obtained using a total of 81 geotechnical borehole data withdepths ranging from 10-25 m. Soil amplification values computed at the alluvial site based on measuredshear wave velocity show reasonably good agreement with the observed motions. The earthquake damagewas determined to be high at local areas of relatively poor soil conditions such as cohesionles andloose soil, high groundwater. In addition to the soil conditions, there is no doubt that the use of lowquality materials and low construction technologies have caused higher damage at central districts ofVan province. Considering the soil conditions, both ground deformation (soil amplification, liquefaction)and cycling loading will increase the loss of lives and property in the central districts of Van province.Therefore, in order to minimize the possible damage of a potential earthquake, ground conditions shouldbe considered at the Van settlement area.  

  • Earthquake

  • Distribution of damage

  • Peak ground acceleration

  • Van

  • Soil amplification

  • Acarlar, M., Bilgin, E., Elibol, E., Erkal., T., Gedik, İ., 1991. Van gölü doğu ve kuzeyinin jeolojisi, MTA Genel Müdürlüğü, No: 1061.

  • AFAD, 2011. 23 Ekim 2011 Van depremlerinin kuvvetli yer hareketleri kayıtlarının değerlendirilmesi, Afet ve Acil Durum Yönetimi Başkanlığı, Van Raporu, 19 s.

  • Akdemir, S., 1996. Van merkez ve çevresinin hidrojeoloji incelemesi, Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ, Yüksek Lisans Tezi (yayımlanmamış).

  • Akın, M.K., Kramer, S.L., Topal, T., 2011. Empirical correlations of shear wave velocity (Vs) and penetration resistance (SPT-N) for different soils in an earthquake-prone area (Erbaa-Turkey), Engineering Geology, 119 (1-2), 1-17

  • Aksoy, E., Tatar, Y., 1990. Van İli doğu-kuzeydoğu yöresinin stratigrafisi ve tektoniği. TÜBİTAK Doğa Dergisi, 14, 628-644.

  • Atsori, S., Tolomei, C., Salvi, S., Zoffoli, S., 2011. Coseismic ground displacement and preliminary source models for the 10/23/2011, Mw 7.2 Van earthquake, Eastern Turkey, SIGRIS activation report, PR6-7, 9 p.

  • BSSC, 2003. The 2003 HEHRP Recommended Provisions for the Development of Seismic Regulations for New Buildings and Other Structures, Building Seismic Safety Council, FEMA, Washington D. C.

  • Bear, J., 1988. Dynamics of Fluids in Porous Media. Dover Publications, 784 p.

  • Boore, D.M., 2004. Estimating Vs(30) from shallow velocity models (Depths <30 m). Bulletin of the Seismological Society of America, 94 (2), 591– 597.

  • Borcherdt, R. D., Gibbs, J. F., 1976. Effects of local geological conditions in the San Francisco Bay region on ground motions and the intensities of the 1906 earthquake, Bulletin of the Seismological Society of America, 66, 467-500.

  • Brocherdt, R.D., Wentworth, C.M., Janssen, A., Fumal, T., Gibbs, J., 1991. Methodology for predictive GIS mapping of special study zones for strong ground shaking in the San Francisco Bay Region, 4th International Conference on Seismic Zonation. Vol.

  • CEDIM, 2011. Comparing the current impact of the Van Earthquake to past earthquakes in Eastern Turkey, CEDIM Forensic Earthquake Analysis Group, Report 4, 28p.

  • Çiftci, Y., Selcuk, L., Özvan, A., Akkaya, İ., Sengül, A., Aras, B., 2004. Seismic risk analysis for the settlements in the basin of Lake Van, Turkey, Proceedings of 5 th International Symposium on Eastern Mediterranean Geology, Vol.2, Thessaloniki,

  • Dikmen, U., 2009. Statistical correlations of shear wave velocity and penetration resistance for soils. Journal of Geophysics and Engineering, 6, 61-72.

  • Emre, Ö., Duman T.Y., Özalp, S. Elmacı, H., 2011 23 Ekim 2011 Van depremi saha gözlemleri ve kaynak faya ilişkin ön değerlendirmeler. MTA Genel Müdürlüğü, Ankara, 22 s.

  • Grafit, 2012. Van ili Kalecik köyü imara esas jeolojik- Jeoteknik etüd raporu, Çevre ve Şehircilik Bakanlığı, Van, 138 s.

  • Hasançebi, N. Ulusay, R., 2006. Evaluation of site amplification and site period using different methods for an earthquake-prone settlement in Western Turkey. Engineering Geology, 87, 85- 104.

  • Joyner, W.B., Fumal, T., 1984. Use of Measured Shear-Wave elocity for predicting geological site effects on strong motion, Proceedings of Eighth world conferance on Earthquake Engineering, Prentice Hall Incorporation, California, USA, Vol 2, 777-783.

  • Kamalian, M., Jafari, M.K., Ghayamghamian, M.R., Shafiee, A., Hamzehloo, H., Haghshenas, E., Sohrabi-bidar, A., 2008. Site effect microzonation of Qom, Iran. Engineering Geology, 97, 63-79.

  • Keller, E.A., Pinter, N., 1996. Active Tectonics, Englewood Cliffs, Prentice Hall Incorporation, New Jersey, 338p.

  • Kiku, H., Yoshida, N., Yasuda, S., Irisawa, T., Nakazawa, H., Shimizu, Y., Ansal, A., Erkan, A., 2001. In-situ penetration tests and soil profiling in Adapazari, Turkey. Proc. ICSMGE/TC4 Satellite Conference on Lessons Learned from Recent Strong Eart

  • Koçyiğit A., Yılmaz A., Adamia S., Kuloshvili S., 2001. Neo-tectonics of East Anatolian Plateau (Turkey) and Lesser Caucasus: implication for transition from thrusting to strike-slip fault, Geodinamica Acta, 14(1–3),177–195.

  • Koçyiğit, A., 2002. Doğu Anadolu’nun neotektonik özellikleri ve depremselliği. Doğu Anadolu Jeoloji Çalıştayı – 2002 (DAJEO-2002), Yüzüncü Yıl Üniversitesi, bildiri özleri kitabı, Van, 2-4 s.

  • Koçyiğit, A., Deveci, Ş., Kaplan M., 2011. Van depremleri raporu (23 Ekim - 30 Kasım 2011) Orta Doğu teknik Üniversitesi (ODTÜ) Jeoloji Mühendisliği Bölümü Aktif Tektonik ve Deprem Araştırma Laboratuvarı, 22 s.

  • KOERI, 2011. Van earthquake (Mw 7.2) evaluation report as of 27 October 2011. Bogazçi University, Kandilli Observatory and Earthquake research institute, 3p.

  • KOERI, 2012. Son Depremler, Kandili Rasathanesi ve Deprem araştırma Enstitüsü, Boğaziçi Üniversitesi, http://www.koeri.boun.edu.tr/ sismo/zeqmap/gmapt.asp (Son Erişim: 26 Nisan 2012).

  • Kuo, C.H., Wen, K.L., Hsieh, H.H., Chang, T.M., Lin, C.M., Chen, C.T., 2011. Evaluating empirical regression equations for Vs and estimating Vs30 in northeastern Taiwan. Soil Dynamics and Earthquake Engineering, 31 (3), 431–439

  • Lee, S.H., 1990. Regression models for shear wave velocities Journal of the Chinese Institute of Engineers, 13, 519-532.

  • METU, 2011a. Processed mainshock accelerometric recordings of the 23 october 2011 Van earthquake, Report no: METU/EERC 2011-02, 18p.

  • METU, 2011b. 23 Ekim 2011 Mw 7.2 Van depremi sismik ve yapısal hasara ilişkin saha gözlemleri. Report no: METU/EERC 2011-04, 76s.

  • NRC, 1973. The Great Alaska Earthquake of 1964, National Research Council (US), National Academy of Science, DC, 1019 p.

  • Ohta, Y., Goto, N., 1978. Empirical shear wave velocity equation in terms of characteristic soil indexes. Earthquke Engineering and Structural Dynamics, 6, 167-187.

  • Örçen, S., Tolluoğlu, U., Köse, O., Yakupoğlu, T., Çiftçi, Y., Işık, A., Selçuk, L., Üner, S., Özkaymak, Ç., Akkaya, İ., Özvan, A., Sağlam, A., Baykal, M., Özdemir, Y., Üner, T., Karaoğlu, Ö., Yeşilova, Ç., Oyan, V., 2004. Van Şehri Kentleşme alanınd

  • Özkaymak, Ç., Sözbilir, H., Bozkurt, E., Dirik, K., Topal, T., Alan, H., Çağlan, D., 2011. 23 Ekim 2011 Tabanlı-Van Depreminin Sismik Jeomorfolojisi ve Doğu Anadolu’daki Aktif Tektonik Yapılarla Olan İlişkisi. JMO Jeoloji Mühendisliği Dergisi, 35 (2)

  • Özler, H.M., 2004. Van Akiferinin Hidrojeolojisi ve Tuzlanma Nedenleri. TÜBİTAK-YDABAG, Proje No: 101Y097, İstanbul.

  • Özvan, A., Akkaya, İ., Tapan, M., Şengül, A., 2005. Van yerleşkesinin deprem tehlikesi ve olası bir depremin sonuçları, Kocaeli Deprem sempozyumu, bildiriler kitabı, Kocaeli Üniversitesi, 1386-1393.

  • Panagiotis, C., 2011. Preliminary report Van Earthquake-Turkey Mw 7.2 -23 October 2011, National Kapodistrian University of Athens, 59 p.

  • Sandıkkaya, M. A., Yılmaz, M. T., Bakır, B. S., Yılmaz, Ö., 2010 Site classification of Turkish national strong-motion stations, Journal of Seismology, (2010) 14, 543–563.

  • Seed, H.B., Idriss, I.M., 1981. Evaluation of liquefaction potential sand deposits based on observation of performance in previous earthquakes. ASCE National Convention, 81- 544.

  • Selçuk, L., 2003. Yüzüncü Yıl Üniversitesi Zeve Kampusu yerleşim alanının Mühendislik Jeolojisi,Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Jeoloji Mühendisliği Anabilim Dalı, Van, Yüksek Lisans Tezi, 150s (yayımlanmamış).

  • Selçuk, L., Beyaz, T., 2005. Van Gölü havzasinin probabilistik sismik tehlike analizi. 40. Yıl Jeoloji Sempozyumu, Karadeniz Teknik Üniversitesi, Trabzon, 221-222.

  • Selçuk, L., Selçuk, A, Beyaz, T., 2010. Probabilistic seismic hazard assessment for Lake Van basin, Turkey. Natural Hazard, 54(2010), 949-965.

  • Shoji, Y., Tanii, K., Kamiyama, M., 2005. A study on the duration and amplitude characteristics of earthquake ground motions. Soil Dynamics and Earthquake Engineering, 25, 505-512.

  • Tamura, I., Yamazaki, F., 2002. Estimation of S-wave velocity based on geological survey data for K-NET and Yokohama seismometer network. Proceedings of JSCE (Japan Society of Civil Engineers), Vol. 696, 237-248.

  • TDY, 2007. Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, T. C. Bayındırlık ve İskan Bakanlığı, Afet İşleri Genel Müdürlüğü, Deprem Araştırma Dairesi, Ankara, 159s.

  • Ulugergerli, U. E., Uyanik, O., 2007. Statistical correlations between seismic wave velocities and SPT blow counts and the relative density of soils. Journal of Testing and Evaluation, 35, 1-5.

  • Ulusay, R., Kumsar, H., Konagai, K., Aydan, Ö., 2012. The Characteristics of Geotechnical Damage by the 2011 Van-Erciş Earthquake. Proceedings of the International Symposium on Engineering Lessons Learned from the 2011 Great East Japan Earthquake, Ma

  • Üner, S., Yeşilova, Ç., Yakupoğlu, T., Üner, T., 2010. Pekişmemiş sedimanlarda depremlerle oluşan deformasyon yapıları (sismitler): Van Gölü Havzası, Doğu Anadolu. Yerbilimleri, 31/1, 53- 66.

  • Youd, T.L., Idriss, I.M., (co-chair) 2001. Liquefaction resistance of soils. Summary report from the 1996 NCEER and 1998 NCEER/NSF Workshop on evaluation of liquefaction resistance of soils. Journal of Geotechnical and Geoenvironmental Engineering, 1

  • YTU, 2011. 23 Ekim 2011 Van depremi ön inceleme raporu, Yıldız Teknik Üniversitesi, 61s.



  • Selçuk, L , Aydın, H . (2012). Kuvaterner Yaşlı Alüvyal Zeminlerin Kuvvetli Yer Hareketine Etkisi: 2011 Van Depremleri . Jeoloji Mühendisliği Dergisi , 36 (2) , 75-98 . Retrieved from https://dergipark.org.tr/tr/pub/jmd/issue/28181/295927

  • Selçuk, L , Aydın, H . Kuvaterner Yaşlı Alüvyal Zeminlerin Kuvvetli Yer Hareketine Etkisi: 2011 Van Depremleri. Jeoloji Mühendisliği Dergisi 36 (2012 ): 75-98

  • Application of Statistical Methods to Determine Seasonal Variations of Metals in Soils and Plants Around A Copper Deposit in Çayeli, Turkey
    Gülten Yaylali Abaniz Necati Tüysüz
    View as PDF

    ABSTRACT: The study area is located at the southern part of the Black Sea Tectonic Unit in northern Turkey. Thisunit which is a part of the Alpine-Himalayan metallogenic belt extending from Eastern Europe throughCentral Asia to the Pacific region hosts several types of economic mineralization. Çayeli copper depositis one of the biggest deposits in the Eastern Black Sea region. Therefore, the host rocks in the study areacontain high concentrations of various ore elements. Soils derived from the ore-containing rocks and teaplants growing on these soils may also contain high element concentrations. In order to better understandthe seasonal variations, soil and tea leaf samples were collected during two seasons (April 2005, October2005) and analyzed for major elements (Mn, Al, Fe, Na, Ca, K, Mg, and P), and trace elements (As, Cd,Co, Cu, Hg, Pb, and Zn). Linear discriminant analysis was performed on the soil and plant data of thestudy area. Mahalanobis generalized distance of both soil and plant samples showed that there was alarge difference in the concentration level of two season’s data. Contamination in soils was qualified withpollution index and integrated pollution index. Results of analysis yield that soils are characterized byhigh concentrations of Cd, As, Pb, Zn, Mn, Cu, Co, and Hg. Since concentrations of other elements do notexceed the permissible levels they are not evaluated.

  • Tea

  • Çayeli copper deposit

  • Seasonal variation

  • Akçay, M., Tüysüz, N., 1997. Murgul Cu Madeni Çevresinde Ağır Elementlerin Yanal Dağılımı ve Çevresel Kirlilik Üzerine Etkileri, Geosound, 30, 725-741.

  • Akçay, M., Arar, M., 1999. Geology, Mineralogy and Geochemistry of The Çayeli Massive Sulfide Ore Deposits, Rize, NE-Turkey, Mineral Deposits, Processes to Processing, Stanley et.al. (eds), Balkema, Rotterdam. 459-462.

  • Cooley, W.W., Lohnes, P.R., 1971. Multivariate Data Analysis. John Wiley and Sons, Inc., New York, 364 p.

  • Çuvalcı, F., Yaprak, S., Eroğlu, C.İ., Kuruçelik, M.K., Doksanbir, T., 1997. Çayeli-Fındıklı (Rize) Güney Yöreleri Tahkik Jeokimya Raporu, MTA Yayınları, Ankara, 10298, 644 s.

  • Down, C.G., Stocks, J., 1977. Environmental Impact of Mining, Applied Science Publishers, London, 371 p.

  • Jung, M.C., Thornton, I., 1997. Environmental Contamination and Seasonal Variation of Metals in Soils, Plants and Waters in the Paddy Fields Around a Pb-Zn Mine in Korea, the Science of the Total Environment, 198, 105-121.

  • Kabata-Pendias, A., 2000. Trace Elements in Soils and Plants, 3rd edition, CRC Press, USA, 413 p

  • Knox, A. S., Gamerdinger, A. P., Adriano, D. C., Kokla, R. K., Kaplan, D. I., 1999. Sources and Practices Contributing to Soil Contamination, in Bioremediation of Contaminated Soils, American Society of Agronomy., Madison, Wisconsin, USA. 85.

  • Li, Y.H., 2000. A Compendium of Geochemistry: from Solar Nabula to the Human Brain. Princeton University Press, New Jersey, USA, 475 p.

  • Loska, K., Wiechula, D., Barksa, B., Cebula, E, Chojnecka, A., 2003 a. Assesment of Arsenic Enrichment of Cultivated Soils in Southern Poland, Polish Journal of Environmental Studies, 12, 187-192.

  • Loska, K., Wiechula, D., Korus, I., 2003 b. Metal Contamination of farming Soils Affected by Industry. Environment International 30, 159-165.

  • Meteoroloji Genel Müdürlüğü, 2012. www.meteor. gov.tr/veridegerlendirme.

  • Moredo-Pineiro, A., Fisher, A., Hill, S.J., 2002. The Classification of Tea According to Region of Origin Using Pattern Recognition Techniques and Trace Metal Data. Journal of Food Composition and analysis, 16, 195-211.

  • Nebioğlu, T.Y., 1975. Rize-Çayeli-Madenköy Sahasındaki Bakır Yatağına Ait Sonuç Raporu. MTA Yayınları, No: 283, Trabzon.

  • Rahta, D.S., Sahu, B.K., 1993. Seasonal Variation of Geochemical Data in Sediment Samples from Two Estuaries in Western India. Indian Journal of Environmental Health 35, 294–300.

  • Rahta, D.S., Venkataraman, G., 1997. Application of Statistical Methods to Study Seasonal Variation in the Mine Contaminants in Soil and Groundwater of Goa, India. Environmental Geology, 27, 253- 262.

  • Taylor, S.R., McLennan, S.M., 1995. The Geochemical Evolution of the Continental Crust. Reviews of Geophysics., 33, 165-241.

  • Tüysüz, N., 1995. Lahanos (Espiye-Giresun) Masif Sülfid Yatağına Ait Cevher Mineralleri ve Dokularının Cevher Oluşumu Açısından İncelenmesi, Geosound, 26, 79-92.

  • Tüysüz, N., Akçay, M., 2000. Doğu Karadeniz Bölgesindeki Altın Yataklarının Karşılaştırmalı İncelemesi. Cumhuriyetin 75. Yıldönümü Yerbilimleri ve Madencilik Kongresi Bildiriler Kitabı, MTA, Sanat Kitabevi, Ankara, 625-645.

  • Tüysüz, N., Yaylalı-Abanuz, G., 2005. Jeoistatistik- Kavramlar ve Bilgisayarlı Uygulamalar. Karadeniz Teknik Üniversitesi Yayınları, No:220, Trabzon, 382 s.

  • Yaylalı-Abanuz, G., Tüysüz, N., 2009. Heavy Metal Contamination of Soils and Tea Plants in The Eastern Black Sea region, NE Turkey. Environmental Earth Science., 59, 131-144.



  • Yaylalı Abanuz, G , Tüysüz, N . (2012). Çayeli Bakır Yatağı Çevresindeki Toprak ve Bitkilerde Mevsimsel Değişimlerin İstatistiksel Olarak Belirlenmesi . Jeoloji Mühendisliği Dergisi , 36 (2) , 99-114 . Retrieved from https://dergipark.org.tr/tr/pub/j

  • Yaylalı Abanuz, G , Tüysüz, N . Çayeli Bakır Yatağı Çevresindeki Toprak ve Bitkilerde Mevsimsel Değişimlerin İstatistiksel Olarak Belirlenmesi. Jeoloji Mühendisliği Dergisi 36 (2012 ): 99-114

  • Relationship Between Axial Strain and Liquefaction under Anisotropic Loading Conditions
    Koray Ulamiş Harn Jyh Yang Gary Norris
    View as PDF

    ABSTRACT: Soil liquefaction has been extensively defined via the laboratory and in-situ tests, regarding to eitherthe generation of excess pore water pressure or the soil vertical strain reaching a particular level under isotropic and anisotropic conditions. In this study, concolidated-drained anisotropic loading conditionswere applied herein to simulate the stresses under a shallow foundation at representative depths. Threedifferent particle size of sandy soils with two different relative density conditions were adopted for thesaturated drained cyclic tests. The number of cycle load (26 cycles) within a frequency of 1second waschosen depending on a constant earthquake magnitude. The variation of axial strain during the tests wasmonitored in order to evaluate the liquefaction behaviour of the three types of the sands. The axial strainis found to be relative density dependent. Ione sand and beach sand samples could not reach the initialliquefaction state due to dilation. Especially, the least uniform and coarsest concrete sand with 90 %relative density tends to liquefy based on the axial strain

  • Anisotropic stress

  • Cyclic triaxial test

  • Axial strain

  • Liquefaction

  • Bouferra, R., Benseddiq, N., Shahrour, I., 2007. Saturation and preloading effects on the cyclic behavior of sand. International Journal of Geomechanics, 7 (5), 194-202.

  • Castro, G., 1975. Liquefaction and cyclic mobility of saturated sands. Journal of Geotechnical Engineering Division, ASCE, 101 (GT6), 551- 569.

  • Castro, G., Poulos, S.J., 1977. Factors affecting liquefaction and cyclic mobility. Journal of Geotechnical Engineering Division, ASCE, 103, 501-516.

  • Ghionna, V.N., Porcino, D., 2006. Liquefaction resistance of undisturbed and reconstituted samples of a natural coarse sand from undrained cyclic triaxial tests. Journal of Geotechnical and Geoenvironmental Engineering, 132 (2), 194- 202.

  • Konrad, J.M., Wagg, B.T., 1993. Undrained cyclic loading of anisotropically consolidated clayey silts. Journal of Geotechnical Engineering, 119 (5), 929-947.

  • Lee, K.L., Seed, H.B., 1967. Cyclic stress conditions causing liquefaction of sand. Journal of Soil Mechanics and Foundations Division, ASCE, 93, 47-70.

  • Mohamad, R., Dobry,R., 1986. Undrained monotonic and cyclic triaxial strength of sand. Journal of Geotechnical Engineering, 112 (10), 941-958.

  • Norris, G.M., Siddharthan, R., Zafir, Z., Madhu, R., 1995. Liquefaction and residual strength of sands from drained triaxial tests. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 123 (3), 220-228.

  • Palmer, J., 1997. Undrained lateral compression response from drained lateralcompression test. University of Nevada, Reno, USA, Ph.D.Thesis, 440 p.

  • Seed, H.B., Lee, K.L., 1966. Liquefaction of saturated sands during cyclic loading. Journal of Soil Mechanics and Foundations Division, ASCE, 92, 105-113.

  • Seed, H.B., Mori, K., Chan, C.K., 1975. Influence of seismic history on the liquefaction characteristics of sands. UCB/EERC-75/25 Report, University of California, Berkeley, CA.,33p.

  • Seed, H. B., Idriss, I. M., 1982. Ground Motions and Soil Liquefaction During Earthquakes. Earthquake Engineering Research Institute Monograph, EERI, Oakland, CA., 134 p.

  • Seed, H.B., Idriss, I.M., Arango, I., 1983. Evaluation of liquefaction potential using field performance data. Journal of Geotechnical Engineering Division, ASCE, 109 (3), 458-482.

  • Tsuchida, H., 1970. Prediction and countermeasure against the liquefaction in sand deposits. Seminar in the Port and Harbor Research Institute, Abstracts, 3.1 - 3.33, Japan (In Japanese).

  • Ulamis, K., Yang, H. J., 2010. The prediction of the excess pore water pressure generation and the vertical strain in different cyclic stress ratio loadings under anisotropic undrained conditions. GSA Annual Meeting - Denver Colorado, USA ( In DVD).

  • Ulamis, K., Yang, H. J., 2011. Soil permeability related to liquefaction potential under anisotropic cyclic triaxial test, 43rd Engineering Geology and Geotechnical Engineering Symposium, 1 (1), 481-489.

  • Yang, H.J., 2005. Extension/compression test stressstrain- volume change characterization under drained conditions. University of Nevada, Reno, Ph.D. Thesis, 431 p.



  • Ulamış, K , Yang, H , Norris, G . (2012). Anizotropik Yükleme Koşullarında Eksenel Deformasyon İle Sıvılaşma İlişkisi . Jeoloji Mühendisliği Dergisi , 36 (2) , 115-124 . Retrieved from https://dergipark.org.tr/tr/pub/jmd/issue/28181/295934

  • Ulamış, K , Yang, H , Norris, G . Anizotropik Yükleme Koşullarında Eksenel Deformasyon İle Sıvılaşma İlişkisi. Jeoloji Mühendisliği Dergisi 36 (2012 ): 115-124

  • Mining Geology of the Magnetite Occurrences of Yellice (Çetinkaya-Sivas)
    Ceyda Öztürk Taner Ünlü İbrahim Sönmez Sayili
    View as PDF

    ABSTRACT: In the close vicinity of Yellice (Çetinkaya-Sivas), ophiolitic rocks which were trusted tectonicallybefore Maastrichtian over Munzur limestones of Taurus platform form the basement. Post-tectonic basindeposits (Saya formation and Sincan group) cover them unconformably. Magmatic activity observed inthe field is characterized by granitic rocks of Upper Cretaceous and/or subsequent ages, and volcanicsof Plio-Quarternary. The ores which is the subject of this study, are mainly composed of magnetites andlocated within serpentinized ultramafic rocks of the ophiolites. Primary ore minerals of the Yellice area,consist of chromite, magnetite, machinavite droplets bearing pentlandite, pyrrhotite, cubanite lamellaebearing chalcopyrite and pyrite disseminations characterizing liquid magmatic phase. In addition to thisprimary paragenesis of chromite, magnetite and sulphide assemblages, secondary magnetite mineralsformed from iron elements released intensively from ferromagnesian minerals during serpentinizationprocesses which characterize subsequent phase. Small amount of pyrite and silicate minerals accompaniedwith these assemblages. In general, the average compositions of serpentinized ultramafic rocks are 20.34% Fe2O3 (total Fe), 0.26 % MnO, 33.19 % MgO, 1.08 % CaO, 0.14 % Al2O3, 31.99 % SiO2, 0.18 % K2O,0.08 % Na2O with 5678 ppm Cr2O3, 1772 ppm Ni, 191.7 ppm Co, 280 ppm V2O5 and 163 ppm TiO2. Losson ignition is 10.49 %. In this study area, the ore seen as lenses within serpentinites, comprises mainlymagnetite, and reveals an average grade of 18-20 % Fe3O4 with visible and probable tonnage of 125million tons. At the early stages of the iron formation, it had started to develop as disseminations withinultramafic rocks and gained intensity subsequently by the minerals formed by iron elements released fromthe ferromagnesian minerals such as olivine and pyroxene during the serpentinization processes of theultramafic rocks. 

  • Çetinkaya

  • Iron

  • Mining geology

  • Ophiolite

  • Sivas

  • Yellice

  • ASTM, 1972. Inorganic index to the powder diffraction file. Joint Committee on Powder Diffraction Standards, Pennsylvania, 1432 p.

  • Bayhan, H., 1980. Güneş-Soğucak (Divriği/Sivas) yöresinin jeolojik, mineralojik, petrografikpetrolojik ve metalojenik incelemesi. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Doktora Tezi, 206 s (yayımlanmamış).

  • Bayhan, H., Baysal, O., 1981. Güneş - Soğucak (Divriği/ Sivas) yöresindeki sülfür cevherleşmelerinin mineralojik ve jenetik incelenmesi. Yerbilimleri, 8, 41 - 52.

  • Bayhan, H., Baysal, O., 1982. Güneş-Soğucak (Divriği/Sivas) yöresinin petrografik-petrolojik incelemesi. Türkiye Jeoloji Kurumu Bülteni, 25, 1 - 13.

  • Bucher, K., Frey, M., 2002. Petrogenesis of Metamorphic Rocks. Springer-Verlag, New York, 341 p.

  • Chidester, A. H., 1962. Petrology and geochemistry of selected talc-bearing ultramafic rocks and adjacent country rocks in North-Central Vermont. Geological Survey Professional Paper (United States), 345, 1-205.

  • Coleman, R. G., 1977. Ophiolites. Springer-Verlag, Berlin, 229 p.

  • Çağatay, A., 1974. Makinavit minerali içeren Kangal- Yellice karot numunelerinin maden mikroskobisi etüdü. MTA Dergisi, 84, 62-72.

  • Çelebi, A., 1998. İç-Doğu Anadolu demir provensindeki karakteristik cevherleşmeler. Ofiyolit-Granitoyid İlişkisiyle Gelişen Demir Yatakları Sempozyumu (Editörler: Boztuğ, Özer ve Otlu), Cumhuriyet Üniversitesi Matbaası, Sivas, 114-129.

  • Çoban, A., 1974. Sivas ili Çetinkaya-Yellice yöresi ayrıntılı demir aramaları ön jeolojik raporu. MTA Rapor No: 171, 12 s (yayımlanmamış).

  • Demirela, G., Kuşçu, İ., Yılmazer, E., Saraç, C., 2005. Orta Anadolu Bölgesinde yer alan Fe-skarn granitoyidlerinin temel jeokimyasal özellikleri. Türkiye Demir Yatakları Jeolojisi Madenciliği ve Mevcut Sorunları Sempozyumu (Editörler: Öztürk, Kahrim

  • Doğan, H., 1998. Divriği tipi demir yataklarının oluşumuna yönelik görüşler. Ofiyolit-Granitoyid İlişkisiyle Gelişen Demir Yatakları Sempozyumu (Editörler: Boztuğ, Özer ve Otlu), Cumhuriyet Üniversitesi Matbaası, Sivas, 148-161.

  • Dymek, R.F., Brothers, S.C., Schıffries, M.C., 1988. Petrogenesis of ultramafic metamorphic rocks from the 3800 Ma Isua supracrustal belt, West Greenland. Journal of Petrology, 29, Vol. 6, 1353-1397.

  • Engin, T., Hirst, D.M., 1970. The Alpine chrome ores of the Andızlık-Zımparalık area, Fethiye, SW Turkey. Mineralogical Magazine, 38, 76-82.

  • Erler, A., Bayhan, H., 1995. Anadolu granitoyidlerinin genel değerlendirilmesi ve sorunları. Hacettepe Üniversitesi Yerbilimleri Dergisi, 17, 49-67.

  • Ferraro, J.R., Nakamoto, K., Brown, C.W., 2003. Introductory Raman Spectroscopy. Academic Press, San Diego, CA, 434 p.

  • Genç,Y., 1992. Mineralogisch-petrographische, geologische und geochemische Untersuchung des quecksilbervorkommens von Narman- Erzurum (Türkei). Ruprecht-Karls Üniversitesi, Heidelberg (Almanya), Doktora Tezi, Heidelberger Geowissenschaftliche Abhandl

  • Guilbert, J.M., Park, C.F.J., 1986. Deposits related to intermediate to felsic intrusions-Cordilleran vein type deposits. The Geology of Ore Deposits (Editor: Guilbert), W.H.Freemann and Company, New York, 465–487.

  • Gültekin, A.S., 1993. Alacahan-Çetinkaya-Divriği (Sivas ili) arasında kalan alanın jeolojisi. İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Doktora Tezi, 183 s (yayımlanmamış).

  • Gümüş, A., 1979. Nouvelles Observations sur la Genese du Gisement de Ferde Divriği (Sivas- Turquie). Verhandlungen der Geologischen Bundesanstalt, 3, 347-355.

  • Gümüş, A., 1998. Divriği demir yatağının jenezi hakkında yeni görüşler. Ofiyolit-Granitoyid İlişkisiyle Gelişen Demir Yatakları Sempozyumu (Editörler: Boztuğ, Özer ve Otlu), Cumhuriyet Üniversitesi Matbaası, Sivas, 106-113.

  • Gysin, M., 1938. Le’re impression sur la geologie de la region de Divrik, sur la structure et sur I’origine du gisement de fer. MTA Rapor No: 700, 6 s (yayımlanmamış).

  • Hutchison, R.D., Lucarelli, L.B., Hortman, R.R., 1962. Türkiye’nin müntehap sahalarında maden kaynaklarının kıymetlendirilmesi hakkında havadan istikşaf programı, Cilt 3- Orta Anadolu Bölgesi. MTA Enstitüsü Yayın No: 110, 118 s.

  • Işık, M.A., 1998. Divriği yöresinde magmatizmametamorfizma ve cevherleşme. İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Doktora Tezi, 218 s (yayımlanmamış).

  • Iyer, K., Austrheim, H., John, T., Jamtveit, B., 2008. Serpentinization of the oceanic lithosphere and some geochemical consequences: constraints from the Leka ophiolite complex, Norway. Chemical Geology, 249, 66–90.

  • İzdar, E.K., Ünlü, T., 1985. Hekimhan-Hasancelebi- Kuluncak bölgesinin jeolojisi. Ege Bölgeleri Jeolojisi VI. Kollogyumu (Editörler: İzdar ve Nakoman), Piri Reis International Contribution Series Publication, İzmir, 303-329.

  • Karipi, S., Tsikouras, B., Hatzipanagiotou, K., Grammatikopoulos, T.A., 2007. Petrogenetic significance of spinel-group minerals from the ultramafic rocks of the Iti and Kallidromon ophiolites (Central Greece). Lithos, 99, 136–149.

  • Karkanas, P., Laskou, M., Economou, M., Zhelyaskova- Panayotova, M., 1996. Amphibolite dikes within the Zidani asbestos mine, northern Greece, and their significance. Ofioliti, 21 (2), 117-123.

  • Klemm, D.D., 1960. Die Eisenerzvorkommen von Divrik (Anatolien) als beispiel tektonisch angelegter pneumatolytisch-metasomatischer Lagerstaettenbildung. Neues Jahrbuch für Mineralogie, 94 (Festband Ramdohr), 591-607

  • Koşal, C., 1973. Divriği A-B-C demir yataklarının jeolojisi ve oluşumu üzerinde çalışmalar. MTA Dergisi, 81, 1-22.

  • Kovenko, V., 1937. Divriği imtiyaz manyetit yatağı hakkında rapor. MTA Rapor No: 485, 59 s (yayımlanmamış).

  • Kuşçu, İ., Yılmazer, E., Demirela, G., 2002. Sivas-Divriği bölgesi skarn tipi demir oksit yataklarına Fe-oksit-Cu-Au (Olympic Dam tipi) perspektifinden yeni bir bakış. Türkiye Jeoloji Bülteni, 45 (2), 33-46.

  • Kuşçu, İ., Yılmazer, E., Demirela, G., Gökçe, H., 2005. Orta ve Batı Anadolu’daki bazı «skarn tipi» Fe-Oksit yataklarının Fe-Oksit-Cu-Au (DOBA) potansiyeli. Türkiye Demir Yatakları Jeolojisi Madenciliği ve Mevcut Sorunları Sempozyumu (Editörler: Öztü

  • Kuşçu, İ., Yılmazer, E., Demirela, G., Gençalioğlu, G., Güleç, N., 2010. Iron oxide- (copper±gold) mineralisation in the Turkish Tethyan collage. Hydrothermal Iron Oxide Copper-Gold & Related Deposits: A Global Perspective (Editor: Porter), GeoConsul

  • Laskou, M., Economou, M., Zhelyazkova-Panayotova, M., Eliopoulos, D., 1996. Mineralogical and geochemical characteristics of magnetites from ophiolites of Greece and Bulgaria. Plate Tectonic Aspects of the Alpine Metallogeny in the Carpatho-Balkan Re

  • Marschik, R., Spikings, R., Kuşçu, İ., 2008. Geochronology and stable isotope signature of alteration related to hydrothermal magnetite ores in Central Anatolia, Turkey. Mineralium Deposita, 43, 111−124.

  • Maslennikov, V.V., 2011. Kişisel görüşme. Institute of Mineralogy, Russia Academy of Science, Ural Division of the Russian Academy of Sciences.

  • McMillan, P., 1989. Raman spectroscopy in mineralogy and geochemistry. Annual Review of Earth and Planetary Sciences, 17, 255-283.

  • Meschede, M., 1986. A methof of discriminating between different types of mid-ocean ridge basalts and continental tholeiites with the Nb- Zr-Y diagram. Chemical Geology, 56, 207-218.

  • Özdemir, C., 1971. Kangal-Yellice 1/10 000 ölçekli detay jeoloji raporu. MTA Rapor No: 1053, 6 s (yayımlanmamış).

  • Özkan, Y. Z., 1983. Caferi volkanitinin kökeni sorununa jeokimyasal bir yaklaşım. Türkiye Jeoloji Kurumu Bülteni, 4, 53-58.

  • Özkan, Y. Z., 1984. Guleman (Elazığ) ofiyolitinin yapısal incelemesi. MTA Dergisi, 97/98, 78-85.

  • Öztürk, H., 1998. Divriği bölgesi demir yataklarının yan kayaç ilişkileri. Ofiyolit-Granitoyid İlişkisiyle Gelişen Demir Yatakları Sempozyumu (Editörler: Boztuğ, Özer ve Otlu), Cumhuriyet Üniversitesi Matbaası, Sivas, 162-167.

  • Öztürk, C., 2011. Sivas, Çetinkaya-Yellice manyetit oluşumlarının maden jeolojisi. Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Yüksek Lisans Tezi, 265 s (yayımlanmamış).

  • Öztürk, C., Ünlü, T., Sayılı, İ.S., 2011. Mineralogy and geochemistry of the Yellice magnetite occurences of Sivas-Central Anatolia-Turkey. Goldschmidt Conference, Mineralogical Magazine, 75, Prag, 1583.

  • Pallister, J.S., Hopson, C.A., 1981. Semail ophiolite plütonic suite: field relations, phase variation, cryptic variation and layering, and a model of a spreading ridge magma chamber. Journal of Geophysical Research, 86, 593-644.

  • Pearce, A., Norry, M.J., 1979. Petrogenetic implications of Ti, Zr, Y, and Nb variations in volcanic rocks. Contributions to Mineralogy and Petrology, 69, 33–47.

  • Ramdohr, P., 1967. A widespread mineral association, connected with serpentinization. Neues Jahrbuch für Mineralogie, 107, 241-265.

  • Revan, M.K., 2010. Doğu Karadeniz bölgesi volkanojenik masif sülfid yataklarının tip özelliklerinin belirlenmesi. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Doktora Tezi, 206 s (yayımlanmamış).

  • Sawkins, F.J., 1984. Metal Deposits in Relation to Plate Tectonics (Minerals and Rocks), (2nd edition). Springer-Verlag, New York, 460 p.

  • Schroll, E., 1976. Analytisce Geochemie. Band I, Verdinand Enke Verlag, Stuttgart, 292 p.

  • Spooner, E.T.C., Fyfe, W.S., 1973. Sub-seafloor metamorphism, heat and mass transfer. Contributions to Mineralogy and Petrology, 42, 287-304.

  • Stendal, H., Ünlü, T., Konnerup-Madsen, J., 1995. Geological setting of iron deposits of Hekimhan Province, Malatya, Central Anatolia, Turkey. Transactions of the Institution of Mining and Metallurgy (section B - applied Earth Science), 104, 46-54.

  • Stern, C. R., Elthon, D., 1979. Vertical variations in the effects of hydrothermal metamorphism in the Chilean ophiolites: their implications for ocean flor metamorphism. Tectonophysics, 55 (1-2), 179-213.

  • Tokel, S., Köprübaşı, N., Uysal, İ., Van, A., 2011. Occurences and genesis of Fe-skarn in relation to tectonic environment in E-NE Anatolia: geochemical consideration. Neues Jahrbuch Mineralogie, 188/2, Stuttgart, 141-149.

  • Ünlü, T., 1983a. Sivas, Divriği-Akdağ, Gürün - Otlukilise, Erzincan, Kemaliye Bizmişen-Çaltı Kurudere ve Adıyaman Çelikhan Bulam demir yatakları hakkında görüşler. MTA Maden Etüd Dairesi Rapor No: 1901, 20 s (yayımlanmamış).

  • Ünlü, T., 1983b. Die Genese der Siderit - Lagerstätte Deveci in der Hekimhan - Provinz Malatya/ Turkei und ihre wirthschaftliche Bewertung. Berlin Teknik Üniversitesi, Almanya, Doktora Tezi, 84 s (yayımlanmamış).

  • Ünlü, T., Stendall, H., 1986. Divriği bölgesi demir yataklarının element korelasyonu ve jeokimyası, Orta Anadolu, Türkiye.Jeoloji Mühendisliği Dergisi, 28, 127-140.

  • Ünlü, T., 1989. Türkiye demir yatakları arama çalışmalarında 1. derecede ağırlıklı hedef saha seçimi ve maden jeolojisi araştırmaları ile ilgili proje teklifi. MTA Rapor No: 8593, 48 s (yayımlanmamış).

  • Ünlü, T., Stendal, H., 1989a. Divriği bölgesi demir cevheri yataklarının nadir toprak element (REE) jeokimyası, Orta Anadolu, Türkiye. Türkiye Jeoloji Bülteni, 32, 21-37.

  • Ünlü, T., Stendal, H., 1989b. Jeokimya verilerinin çok değişkenli jeoistatistik analizlerle değerlendirilmesine bir örnek: Divriği bölgesi demir yatakları, Orta Anadolu. MTA Dergisi, 112, 103-115.

  • Ünlü, T., 1991. Türkiye Demir Çelik İşletmeleri - Ankara Üniversitesi Divriği çevresi demir aramaları projesi. MTA Derleme No: 10139, 13 s (yayınlanmamış).

  • Ünlü, T., Stendal, H., Makovıcky, E., Sayılı, İ.S., 1995. Divriği (Sivas) demir yatağının kökeni, Orta Anadolu, Türkiye - bir cevher mikroskopisi çalışması. MTA Dergisi, 117, 17-28.

  • Wijkerslooth, P. D.E., 1939. Demirdağ (Divrik) demir yatakları hakkında jeolojik rapor. MTA Rapor No: 803, 12 s (yayımlanmamış).

  • Winkler, H.G.F., 1979. Petrogenesis of Metamorphic Rocks (fifth edition). Springer-Verlag, New York, 348 p.

  • Yılmaz, S., Boztuğ, D., Öztürk, A., 1993. Geological setting, petrographic and geochemical characteristics of the Cretaceous and Tertiary igneous rocks in the Hekimhan-Hasançelebi area, north-west Malatya, Turkey. Geological Journal, 28, 383-398.

  • Yılmaz, H., Yılmaz, A., Yıldırım, A., Dumanlılar, Ö., 2005. Divriği (Sivas)-Hekimhan (Malatya) dolayındaki demir yataklarının bölgesel jeolojik konumları. Türkiye Demir Yatakları Jeolojisi Madenciliği ve Mevcut Sorunları Sempozyumu (Editörler: Öztürk

  • Yılmaz, A., Yılmaz, H., 2006. Characteristic features and structural evolution of a post-collisional basin: The Sivas basin, Central Anatolia, Turkey. Journal of Earth Science, 27, 164-176.

  • Yılmazer, E., Kuşçu, İ., Demirela, G., 2002. Divriği A-B Kafa cevherleşmeleri, alterasyon zonlanması ve zonlanma süreçleri. 55. Türkiye Jeoloji Kurultayı, Ankara, 320-321.

  • Yılmazer, E., Kuşçu, İ., Demirela, G., 2003. Divriği A-B Kafa cevherleşmeleri, alterasyon zonlanması ve zonlanma süreçleri. Türkiye Jeoloji Bülteni, 46 (1), 17-34.

  • Zeck, H. P., Ünlü, T., 1988a. Alpine ophiolite obduction before 110±5 Ma ago Taurus Belt, eastern central Turkey. Tectonophysics, 145 (1- 2), 55-62.

  • Zeck, H. P., Ünlü, T., 1988b. Murmano plütonu’nun yaşı ve ofiyolitle olan ilişkisi (Divriği-Sivas). MTA Dergisi, 108, 82-97.

  • Zeck, H. P., Ünlü, T., 1991. Orta Anadolu’nun doğusunda yer alan şoşonitik, monzonitik Murmano plütonu-ön çalışma. MTA Dergisi, 112, 103-115.



  • Öztürk, C , Ünlü, T , Sayılı, S . (2012). Yellice (Çetinkaya-Sivas) Manyetit Oluşumlarının Maden Jeolojisi . Jeoloji Mühendisliği Dergisi , 36 (2) , 125-169 . Retrieved from https://dergipark.org.tr/tr/pub/jmd/issue/28181/295937

  • Öztürk, C , Ünlü, T , Sayılı, S . Yellice (Çetinkaya-Sivas) Manyetit Oluşumlarının Maden Jeolojisi. Jeoloji Mühendisliği Dergisi 36 (2012 ): 125-169

  • View as PDF
    ISSUE FULL FİLE
    View as PDF