Müge Akin
Mutluhan Akin
İsmail Akkaya
Ali Özvan
Serkan Üner
Levent Selçuk
Mücip Tapan
View as PDF
ABSTRACT: One of the most important factors causing loss of life and property during earthquakes is the soilconditions that the structure is built on. Determination of the soil engineering properties for understandingthe behavior of ground under dynamic loads and/or minimizing the losses that may occur is quite crucial.The earthquakes occured in our country especially in 1999 and later on, and the resulting loss of lifeand property once more emphasized the importance of the social and economic dimensions of the impactcreated by the earthquake. Dynamic soil properties must be studied in accordance with the principlesof microzonation considering the natural disasters such as earthquake. For this aim, the dynamic soilproperties of Van Yuzuncu Yil University campus area are determined. Liquefaction, soil amplification andthe like for the campus area are investigated through field studies conducted in order to reveal the groundconditions, and consequently the suitability for settlement is evaluated to guide the future planning of thecampus.
GIS
Earthquake
Microzonation
Liquefaction
Van
Soil amplification
Acarlar, M., Bilgin, E., Elibol, E., Erkal., T., Gedik, İ., 1991. Van gölü doğu ve kuzeyinin jeolojisi. MTA Genel Müdürlüğü, Arşiv No: 1061, Ankara.
Akın, M., 2009. Seismic microzonation of Erbaa (Tokat- Turkey) located along eastern segment of the North Anatolian Fault Zone. Graduate School of Natural and Applied Sciences of Middle East Technical University, Ankara, Ph.D. Thesis, 416 p (unpublis
Akın K. M., Kramer S. L., Topal, T., 2011. Empirical correlations of shear wave velocity (Vs) and penetration resistance (SPT-N) for different soils in an earthquake-prone area (Erbaa-Turkey). Engineering Geology, 119 (12), 117.
Akın, M., Ozvan, A., Akın, K. M., Topal, T., 2013. Evaluation of liquefaction in Karasu River floodplain after the October 23, 2011, Van (Turkey) earthquake. Natural Hazards, Vol. 69, 15511575.
Aksoy, E., 1988. Van ili doğu-kuzeydoğu yöresinin stratigrafi ve tektoniği. Fırat Üniversitesi Fen Bilimleri Enstitüsü, Elazığ, Doktora Tezi, 171 s (yayımlanmamış).
Ansal, A., 1999. Strong ground motions and site amplification. Theme Lecture, 2nd International Conference on Earthquake Geotechnical Engineering, Balkema, Rotterdam, Ed. P. S. Pinto, Vol. 3, 879-894.
Ansal, A., Iyisan, R., Yıldırım, H., 2001. The cyclic behaviour of soils and effects of geotechnical factors in microzonation. Soil Dynamics and Earthquake Engineering, 21, 445-452.
Ansal, A., Laue, J., Buchheister, J., Erdik, M., Springman, S., Studer, J., Koksal, D., 2004. Characterization and site amplification for a seismic microzonation study in Turkey. 11th International Conference on Soil Dynamics and Earthquake Engineeri
Bell, F.G., Cripps, J.C., Culshaw, M.G., OHara, M., 1987. Aspects of geology in planning. In: Culshaw, M. G., Bell, F. G., Cripps, J. C., OHara, M. (Eds.), Planning and Engineering Geology, Geological Society Engineering Geology Special Publication
Bozkurt, E., 2001. Neotectonics of Turkey-a synthesis. Geodynamica Acta, 14, 3-30.
CEDIM, 2011. Comparing the current impact of the Van Earthquake to past earthquakes in Eastern Turkey. Center for Disaster Management and Risk Reduction Technology (CEDIM), Forensic Earthquake Analysis Group, Report 4, 28 p.
Dai, F. C., Liu, Y., Wang, S., 1994. Urban geology: a case study of Tongchuan City, Shaanxi Province, China. Engineering Geology, 38, 165-175.
Dai, F. C., Lee, C. F., Zhang, X. H., 2001. GIS-based geo-environmental evaluation for urban land-use planning: a case study. Engineering Geology, 61, 257-271.
Emre, Ö., Duman, T. Y., Özalp, S., Elmacı, H., 2011. 23 Ekim 2011 Van depremi saha gözlemleri ve kaynak faya ilişkin ön değerlendirmeler. MTA Genel Müdürlüğü Raporu, Ankara, 22 s.
GDDA, 1996. Earthquake zoning map of Turkey. General Directorate of Disaster Affairs, Ministry of Reconstruction and Resettlement of Turkey.
GDDA, 2000. Laws and regulations: regulations for the construction of buildings in hazard areas. Ankara, 244-332.
Hake, S. S., 1987. A review of engineering geological and geotechnical aspects of town and country planning with particular reference to minerals and the extractive processes. In: Culshaw, M. G., Bell, F. G., Cripps, J. C., OHara, M. (Eds.), Plannin
Idriss, I. M., Boulanger, R. W., 2006. Semi-empirical procedures for evaluating liquefaction potential during earthquakes. Soil Dynamics and Earthquake Engineering, 26, 115-130.
Iwasaki, T., Tokida, K., Tatsuoka, F., Watanabe, S., Yasuda, S., Sato, H., 1982. Microzonation for soil liquefaction potential using simplified methods. Proceedings of the 3rd International Conference on microzonation, Seattle, 3, 1310-1330.
Kanai, K., Tanaka, T., 1954. On microtremors I. Bulletin of the Earthquake Research Institution, 32, 199-209.
Kanai, K., Tanaka, T., 1961. On Microtremors VIII. Bulletin of Earthquake Research Institution, University of Tokyo, 39, 97-114.
KOERİ, 2011. Probabilistic Assessment of the Sismic Hazard for the Lake Van Basin, Ocotober, 23, 2011 (Son erişim: 23 Aralık 2011).
Koçyiğit, A., Yilmaz, A., Adamia, S., Kulashvili, S., 2001. Neotectonics of East Anatolian Plateau (Turkey) and Lesser Caucasus: Implication for transition from thrusting to strike-slip faulting. Geodinamica Acta, 14, 177-195.
Koçyiğit, A., 2013. New field and seismic data about the intraplate strike-slip deformation in Van region, East Anatolian Plateau, Turkey. Journal of Asian Earth Sciences, 62, 586-605.
Legget, R. F., 1987. The value of geology in planning. In: Culshaw, M. G., Bell, F. G., Cripps, J. C., OHara, M. (Eds.), Planning and engineering geology. Geological Society Engineering Geology Special Publication. 4, 53-58.
Nakamura, Y., 1989. A method for dynamic characteristics estimation of subsurface using microtremor on the gorund surface. Quarterly Report of Railway Technical Research Institute, 30 (1), 25-33.
NEHRP, 2000. Recommended Provisions for Seismic Regulations for New Buildings and other Structures, Part 1: Provisions, FEMA 368. Building seismic safety council of the National Institute of Building Sciences, USA, 392 p.
Örçen, S., Tolluoğlu, S., Köse, O., Yakupoğlu, T., Çiftçi, Y., Işık, M. A., Selçuk, L., Üner, S., Özkaymak, Ç., Akkaya, İ., Özvan, A., Sağlam, A., Baykal, M., Özdemir, Y., Üner, T., Karaoğlu, Ö., Yeşilova, Ç., Oyan, V., 2004. Van Şehri kentleşme alan
Özkaymak, Ç., 2003. Van şehri ve yakın çevresinin aktif tektonik özellikleri. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü, Van, Yüksek Lisans Tezi, 76 s (yayımlanmamış).
Özkaymak, Ç., Sözbilir, H., Bozkurt, E., Dirik, K., Topal, T., Alan, H., Çağlan, D., 2012. 23 Ekim 2011 Tabanlı-Van depreminin sismik jeomorfolojisi ve Doğu Anadoludaki aktif tektonik yapıyla olan ilişkisi. Jeoloji Mühendisliği Dergisi, 35 (2), 175-
Özvan, A., Akkaya, İ., Yılmazer, İ., 2005. Van yerleşkesindeki killerin plastisite özellikleri. 12. Ulusal Kil Sempozyumu, Van, 485-492.
Rau, J. L., 1994. Urban and environmental issues in East and Southeast Asian coastal lowlands. Engineering Geology, 37, 25-29.
Seed, H. B., Woodward R. J., Lundgren, R., 1962. Prediction of swelling potential for compacted clays. Journal of the Soil Mechanics and Foundation Division, ASCE, 88, 53-87.
Selçuk, L., 2003. Yüzüncü Yıl Üniversitesi Zeve Kampüsü yerleşim alanının mühendislik jeolojisi. Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Jeoloji Mühendisliği Anabilim Dalı, Van, Yüksek Lisans Tezi, 150 s (yayımlanmamış).
Selçuk, L., Aydın, H., 2012. Kuvaterner yaşlı alüvyal zeminlerin kuvvetli yer hareketine etkisi: 2011 Van Depremleri. Jeoloji Mühendisliği Dergisi, 36 (2), 75-97.
Sönmez, H., Gökçeoğlu, C., 2005. A liquefaction severity index suggested for engineering practice. Environmental Geology, 48, 81-91.
Şaroğlu, F., Yılmaz, Y., 1986. Doğu Anadoluda neotektonik dönemdeki jeolojik evrim ve havza modelleri. MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi, Ankara.
Topal, T., Doyuran, V., Karahanoglu, N., Toprak, V., Suzen, M. L., Yeşilnacar, E., 2003. Microzonation for earthquake hazards: Yenişehir settlement, Bursa, Turkey. Engineering Geology, 70, 93-108.
Van Rooy, J. L., Stiff, J. S., 2001. Guidelines for urban engineering geological investigations in South Africa. Bulletin of Engineering and Geological Environment, 59, 285-295.
Wathelet, M., Jongmans, D., Ohrnberger, M., Bonnefoy- Claudet, S., 2008. Array performances for ambient vibrations on a shallow structure and consequences over Vs inversion. Journal of Seismology, 12, 1-19.
Akın, M , Akın, M , Akkaya, İ , Özvan, A , Üner, S , Selçuk, L , Tapan, M . (2015). Mikrobölgeleme Çalışmasına Altlık Oluşturmak Üzere Van Yüzüncü Yıl Üniversitesi Kampüs Zemininin Dinamik Özelliklerinin Belirlenmesi . Jeoloji Mühendisliği Dergisi ,
Akın, M , Akın, M , Akkaya, İ , Özvan, A , Üner, S , Selçuk, L , Tapan, M . Mikrobölgeleme Çalışmasına Altlık Oluşturmak Üzere Van Yüzüncü Yıl Üniversitesi Kampüs Zemininin Dinamik Özelliklerinin Belirlenmesi. Jeoloji Mühendisliği Dergisi 39 (2015 ):
ABSTRACT: Rubble mound breakwater is one of the most important structures for shore and harbor. Durable and high quality natural rocks are commonly used to protect coastal engineering structures from the waves. In this study, numerous laboratory tests were performed for the quality assessment of different basalt levels for rubble mound breakwater in the Yumurtalik (Eastern Mediterranean) region in this study. Two different basalt types were observed in study area. These levels were evaluated with different rock quality classification systems. Basalts were grouped in to two classes as massive and vesicular. Iddingsite is a product of alteration of olivine minerals, which are commonly observed in the vesicular basalt. Vesicular basalt levels showed poor rock material strength due to alteration. The vesicular basalt levels in the study area should not be used for armourstones.
Acır, Ö., Kılıç, R., 2007. Samsun Limanı ana (kuzey) mendireği anroşmanlarının duraylılığının incelenmesi. 60. Türkiye Jeoloji Kurultayı, 301-302.
AFNOR (LAssociation Francaise de Normalization), 1980. Essai au bleu de methylene, AFNOR 80181. Paris La Defence., 18-592.
ASTM-535, 1989. Standard test method for resistance to degradation of large-size coarse aggregate by abrasion and impact in the Los Angeles Machine. C535, Annual Book of of ASTM Standards, American Society for Testing and Materials, West Conshocken,
Bearman, R. A., 1999. The use of the point load test for the rapid estimation of Mode I fracture toughness: International Journal of Rock Mechanics and Mineral Sciences, 36, 257-263.
BS 932-3, 1997. Tests for general properties of aggregates. Procedure and terminology for simplified petrographic description. British Standards Institution, London.
BS 5930, 1999. Code of Practice for Site Investigation. British Standards Institution, London.
BS 6349-7, 1991. Maritime structures. Guide to the design and construction of breakwaters. British Standards Institution, London.
BS EN 932-3, 1997. Tests for general properties of aggregates. Procedure and terminology for simplified petrographic description. British Standards Institution, London.
CIRIA/CUR, 1991. Manual on the Use of Rock in Coastal and Shoreline Engineering. CIRIA Special Publication 83, Report:154, London, 607 p.
CIRIA, CUR, CETMEF, 2007. The Rock Manual. The use of rock in hydraulic engineering. 2nd edition. C683, CIRIA, London, 1234 p.
DLH, 2007. Kıyı Yapıları ve Limanlar Malzeme, Yapım, Kontrol ve Bakım Onarım Teknik Esasları. 101 s, Ankara.
Ertaş, B., Topal, T., 2008. Quality and durability assessments of the armourstones for two ruble mound breakwaters (Mersin, Turkey). Environmental Geology, 53, 1235-1247.
Fookes, P. G., Poole, A. B., 1981. Some preliminary considerations on the selection and durability of rock and concrete materials for breakwaters and coastal protection works. Quaternary Journal of Engineering Geology, 14, 97-128.
Hoş, T., 1999. Dalgakıran inşaatlarında kullanılan kireçtaşlarının jeoteknik özellikleri. 52. Türkiye Jeoloji Kurultayı Bildiriler Kitabı, Ankara, 32- 38.
ISRM (International Society for Rock Mechanics), 1981. Rock characterization, testing and monitoring: ISRM Sugested Methods. E.T. Brown (ed), Pergamon Pres, Oxford, 211 p.
Kozlu, H., 1982. İskenderun baseni jeolojisi ve petrol olanakları. TPAO Rapor no: 1921, Ankara.
Kozlu, H., 1987. Misis-Andırın dolaylarının stratigrafisi ve yapısal evrimi. Türkiye 7. Petrol Kongresi Dergisi. 104 - 116.
Kozlu, H., 1997. Doğu Akdeniz Bölgesinde yeralan Neojen basenlerinin (İskenderun, Misis-Andırın) Tektono-Stratigrafi birimleri ve bunların tektonik gelişimi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü Doktora Tezi, 189 s, (yayınlanmamış).
Latham, J. P., 1991. Degradation model for rock armour in coastal engineering. Quaternary Journal of Engineering Geology , 24, 101-118.
Latham, J.P. ,1998. Assessment and specification of armourstone quality from CIRIA/CUR (1991) to CEN (2000). In: Advances in Aggregates and Armourstone Evaluation. The Geological Society, Engineering Geology Special Publication No.13, 65-85.
Lienhart, D. A., 1994. Durability issues in the production of rock for erosion control. In: Proceedings of the 1st North American rock Mechanics symposium on rock mechanics, models, and measurements, challenges from industry, Austin, Balkema, Rotterd
Lienhart, D. A., 1998. Rock engineering rating system for assessing the suitability of armourstone sources, Advances in Aggregates and Armourstone Evaluation. The Geological Society, Engineering Geology Special Publication, 13, 91106.
Özden, U. A., Topal, T., 2009. Evaluation of andesite source as armourstone for a rubble mound breakwater (Hisarönü-Turkey). Environmental Earth Sciences, 59 (1), 39-49.
Özvan, A., Dinçer, İ., Acar, A., 2011. Quality assessment of Geo-Material for coastal structures (Yumurtalık- Turkey). Marine Georesources and Geotechnology, 29 (4), 299316.
Parlak, O., Kozlu, H., Demirkol, C., Delaloye, M., 1997. Intracontinental Plio-Quaternary Volcanism Along The African-Anatolian Plate Boundary, southern Turkey. Ofioliti, 22 (4), 111- 117.
Parlak, O., Delaloye, M., Kozlu, H., Fontignie, D., 2000. Trace element adn Sr-Nd isotope geochemistry of the alkali basalt observed along the Yumurtalık Fault (Adana) in Turkey. Yerbilimleri, 22, 137-148.
Pelen, N., 1995. Osmaniye-Dörtyol-Erzin yöresi Kuvaterner bazaltlarının jeolojisi, petrografisi ve hidrojeolojik özellikleri. Çukurova Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, 144 s, (yayınlanmamış).
Robertson, A., Unlügenç, U. C., İnan, N., Tasli, K., 2004. The Misis Andırın Complex: a Mid Tertiary melange related to late-stage subduction of the Southern Neotethys in S Turkey. Journal of Asian Sciences, 22, 413-453.
Sevdinli, G., 2005. Ceyhan (Adana) dolayı yapıtaşı potansiyelinin değerlendirilmesi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü Yüksek Lisans Tezi, 134 s, (yayınlanmamış).
Smith, M. R. (Ed.), 1999. Stone: Building Stone, Rock Fill and Armourstone in Construction. Engineering Geology Group Special Publication, vol. 161. Geological Society, London, 478 p.
TS 699, 1987. Tabi yapıtaşları muayene ve deney metotları. TSE, Ankara, 84 s.
TS EN 1367-1, 2001. Agregaların termal ve bozunma özellikleri için deneyler-bölüm 1: donma ve çözünmeye karşı direncin tayini. TSE, Ankara, 11 s.
ABSTRACT: In this study, the relationship between engineering geological applications and tunnel excavationmethods were described. Even if several tunnel excavation methods have been suggested from past upto the present, most of them were only the various derivations of full face and sequential excavationtechniques. Internationally well-known tunnel excavation methods try to classify rock mass behaviors,but, cannot form a numerical base for the claimed methods. Therefore, objective evaluations are required(especially for their applications) to overcome the deficits rock mass classification systems are used.NATM and ADECO-RS are the two widespread methods at the present day tunnel practice. In bothmethods, rock mass behavior has been categorized in different ways. However, both of them failed togenerate objective base to describe the rock mass behavior. In this study, practical difficulties, functionalrelation of commonly used tunnel excavation methods between rock mass classifications systems and theirapplication to numerical models, have been described. For this aim; transition of rock mass classificationsystems to tunnel excavation and support classes, their application to numerical models, their assumptions,and in point of view of the engineering geology; assumption defects have been described with the help ofan example.
Rock mass classification
Engineering geology
Numerical models
Tunnel excavation methods
Aydan, Ö., Ulusay, R., Tokashiki, N., 2014. A new rock mass quality rating system: Rock Mass Quality Rating (RMQR) and its application to the estimation of geomechanical characteristics of rock masses. Rock Mechanics and Rock Engineering, 47 (4), 125
Barton, N., Lien, R., Lunde, J., 1974. Engineering classification of rock masses for the design of tunnel support. Rock Mechanics, 6, 189-239.
Barton, N., 2002. Some new Q-value correlations to assist in site characterization and tunnel design. International Journal of Rock Mechanics and Mining Sciences, 39, 185216.
Bieniawski, Z. T., 1989. Engineering rock mass classification. Wiley, New York, 251 p.
Deere, D. U., 1963. Technical description of rock cores for engineering purposes in Rock mechanics and engineering geology. Springer, Vienna.
Hoek, E., Brown, E. T., 1997. Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences, 34 (8), 11651186.
Jing, L., Stephansson, O., 2007. Fundamentals of discrete element methods for rock engineering: theory and applications. Developments in Geotechnical Engineering, 85.
KTŞ, 2013. Karayolu Teknik Şartnamesi, Bölüm 350.
Lauffer, H., 1958. Gebirgsklassifizierung für den Stollenbau. Geology Bauwesen, 74 (1), 4651.
Lunardi, P., 2008. Design and Construction of Tunnels: Analysis of Controlled Deformations in Rock and Soils. Springer, 576 p.
Satıcı, O., Ünver, B., 2015. Assessment of tunnel portal stability at jointed rock mass: a comparative case study. Computers and Geotechnics, 64, 7282.
Sönmez, H., Ulusay, R., 2002. A discussion on the Hoek Brown failure criterion and suggested modification to the criterion verified by slope stability case studies. Yerbilimleri Dergisi, 26, 77-79.
Terzaghi, K., 1946. Rock defects and loads in tunnel supports, Rock tunneling with steel supports, The Commercial Shearing and Stamping Co., Youngstown, Ohio, 17-99.
Tonon, F., 2010. Sequential excavation, NATM and ADECO: What they have in common and how they differ. Tunnelling and Underground Space Technology, 25, 245265.
Wickham, G. E., Tiedemann, H. R., Skinner, E. H., 1972. Support determination based on geologic predictions. In Lane, K.S.; Garfield, L.A. Proc. 1st North American Rapid Excavation&Tunnelling Conference (RETC), Chicago 1. American Institute of Mining
Wikipedia, 2015. http://tr.wikipedia.org/wiki/ Lağımcı_Ocağı (Son Erişim: 25 Mayıs 2015)
Wu J. H., Ohnishi, Y., Nishiyama, S., 2014. Simulation of the mechanical behavior of inclined jointed rock masses during tunnel construction using discontinuous deformation analysis. International Journal of Rock Mechanics and Mining Science, 41, 731
Satıcı, Ö , Topal, T . (2015). Tünel Açma Yöntemlerinin Mühendislik Jeolojisi ve Kaya Sınıflama Sistemleri ile Değerlendirilmesi . Jeoloji Mühendisliği Dergisi , 39 (1) , 45-57 . DOI: 10.24232/jeoloji-muhendisligi-dergisi.295353
Satıcı, Ö , Topal, T . Tünel Açma Yöntemlerinin Mühendislik Jeolojisi ve Kaya Sınıflama Sistemleri ile Değerlendirilmesi. Jeoloji Mühendisliği Dergisi 39 (2015 ): 45-57