Jeoloji Münendisliği Dergisi
Jeoloji Mühendisliği Dergisi

Jeoloji Mühendisliği Dergisi

2017 ARALIK Cilt 41 Sayı 2
COVER
View as PDF
COPYRİHT PAGE
View as PDF
CONTENTS
View as PDF
Investigation of Water Seepage from Tailing Dams, Case of Çanakkale
Koray Ulamiş Recep Kiliç
View as PDF

ABSTRACT: The waste material extracted after ore mining process is floated in the tailing dams within the mining plants. In order to prevent possible water seepage, the geotechnical characteristics of natural building materials of the dams and foundation soils must be determined for the design of reservoir. In this study, the reasons of water seepage from the waste disposal reservoir of Pb-Zn mining plant located at southern Çanakkale, Kalkım town were investigated. In this context, horizontal and vertical distribution and the permeability of the foundation soils at the reservoir areawere determined by trial pits, disturbed/undisturbed sampling and laboratory testing. The optimum water content and maximum dry density of the soils have been tested by standard compaction tests. Moreover, the permeability coefficient of the same soils was tested by falling head permeameter. The clay lining beneath the reservoir is properly compacted based on the related regulations with no permeability problem. However, the seepage from the reservoir is found to be due to the alluvial soils of the stream bed which is not excavated before the construction. Heavy metal and oxidated residual materials were observed in the stream bed. A total length of 100 m of the embankment located on the alluvial soil was removed. This portion of the embankment was re-compacted using the clayey soils with optimum water content and maximum dry density. The seepage from the embankment is completely prevented after re-compaction with a full reservoir

  • Tailing Dam

  • Çanakkale

  • Environment

  • Permeability

  • Compaction

  • Seepage

  • Akıska, S., Demirela,G., Sayılı,S., 2013a. Geology, mineralogy and the Pb, S isotope study of the Kalkım Pb-Zn±Cu deposits Biga Peninsula, NW Turkey. Journal of Geosciences, 58, 279-396.

  • Akıska, S., Sayılı, S., Demirela, G., 2013b. Three-dimensional subsurface modeling of mineralization: a case study from the Handeresi (Çanakkale, NW Turkey) Pb-Zn-Cu deposit. Turkish Journal of Earth Sciences, 22, 574-587.

  • American Standards of Testing Materials (ASTM), 2012. Soil and Rock (I): D420 - D5876. Volume 04.08. 1830 p.

  • Anıl, M., 1984. Yenice (Arapuçandere -Kurttaşı- Sofular ve Kalkım Handeresi) Pb-Zn-Cu cevherleşmelerinin köken sorunu ve Tersiyer volkanizmasıyla ilişkileri. Jeoloji Mühendisliği Dergisi, 20, 17-31.

  • Cedergren, H. R., 1989. Seepage, Drainage and Flow Nets. 3rd Ed. Wiley, NY, 254-291 p.

  • Dougherty, T. C., Hall, A.W., 1995. FAO Irrigation and Drainage. Paper 53. HR Wallingford, 106 p.

  • Erentöz, C., 1975. 1/500 000 Ölcekli Turkiye Jeoloji Haritasi. MTA Ankara (yayımlanmamış).

  • Ghobadi, M. H., Khanlari, G. R., Djalaly, H., 2005. Seepage problems in the right abutment of the Shahid Abbaspour dam, southern Iran. Engineering Geology, 82, 119-126.

  • Gözler, Z., Ergül, E., Akçören, F., Genç, Ş., Akat, U., Acar, Ş. 1984. Çanakkale Boğazı doğusu- Marmara Denizi güneyi-Bandırma-Balıkesir- Edremit ve Ege Denizi arasındaki alanın jeolojisi ve kompilasyonu. MTA Derleme Rapor No: 7430, Balıkesir (yayıml

  • Hilf, J. W., 1975. Compacted fill. Chapter 7. In: Foundation Engineering Handbook, Winterkorn and Fang, eds, Van Nostrand Reinhold, NY, 244- 311.

  • Holtz, R. D., 1989. NCHRP Synthesis of Highway Practice 147: Treatment of Problem Foundations for Highway Embankments. TR, NRC, Washington DC,72 p.

  • ICOLD (International Commission on Large Dams), 1981. Dams and the Environment, Bulletin 35 (http://www.icold-cigb.org/GB/publications/ bulletins.asp).

  • Johnson, A.W., Sallberg, J. R., 1960. Factors that influence field compaction of soils. Bulletin 272, HRB. NRC, Washington DC, 206 p.

  • Kılıç, R., 2007. Oreks Madencilik Ltd. Şti. Kalkım Flotasyon Tesisi Atık Baraj Yeri (Çanakkale, Yenice) Zeminlerinin Geçirgenlik Özellikleri. AÜ Döner Sermaye Rapor, 15 s (yayımlanmamış)

  • McGuffey, V. C., Bellatty, T. A., Haas, W.M., 1990. Environmental considerations. In: TRB Guide to Earthwork Construction. Chapter 8, 83-91 p

  • M&T Müh. Ltd. Şti., 2005. Oreks Madencilik Ltd. Şti. Maden Zenginleştirme Tesisi, Çanakkale İli, Yenice İlçesi, Kalkım Beldesi, Karaaydin Köyü Nihai Çed Raporu. 104 s (yayımlanmamış).

  • Orgün, Y., Gültekin, A. H., Önal, A., 2005. Geology, mineralogy and fluid inclusion data from the Arapucan Pb-Zn-Cu-Ag deposit, Çanakkale, Turkey. Journal of Asian Earth Sciences, 25, 629-642.

  • Sharma, R. S., Al-Busaidi, T. S., 2001. Groundwater pollution due to a tailings dam. Engineering Geology, 60, 235-244.

  • Sim-Çed, Sicimoğlu Müh. İnş. Ltd. Şti., 2013. OREKS Madencilik Ltd. Şti. çinko, kurşun ve bakır zenginleştirme tesisi kapasite artırımı ve atık depo alanları projesi çevresel etki değerlendirmesi başvuru dosyası. 36 s (yayımlanmamış).

  • TRB (Transportation Research Board), 1990. Guide to Earthwork Construction. State of the Art Report, 8. Washington DC, 119 p.

  • TS 1900-1., 2006. İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri - Bölüm 1: Fiziksel Özelliklerin Tayini, 93 s, Ankara.

  • Tufan, A. E., 2003. Karaaydın Köyü (Yenice, Çanakkale) kurşun-çinko zuhurlarının jeolojisi, parajenezi ve oluşumu. Niğde Üniversitesi Mühendislik Bilimleri Dergisi, 7 (1- 2), 95-106.

  • Ulamış, K., Kılıç, R., Bilgehan, R. P., 2013. Atık barajlarında su kaçakları ve iyileştirme yöntemleri, Kalkım (Çanakkale) örneği. Baki Canik Su Medeniyeti Sempozyumu Bildiriler Kitabı, s.11, Aksaray.

  • Yılmaz, A., Atmaca, E., 2006. Environmental geological assessment of a solid waste disposal site: a case study in Sivas, Turkey. Environmental Geology, 50, 677-689.



  • Ulamış, K , Kılıç, R . (2017). Atık Barajlarındaki Su Kaçaklarının İncelenmesi, Çanakkale Örneği . Jeoloji Mühendisliği Dergisi , 41 (2) , 91-100 . DOI: 10.24232/jmd.326773

  • Ulamış, K , Kılıç, R . Atık Barajlarındaki Su Kaçaklarının İncelenmesi, Çanakkale Örneği. Jeoloji Mühendisliği Dergisi 41 (2017 ): 91-100

  • Hydrogeochemical Investigation of Karagöl (Borçka-Artvin) Lake and Its Vicinit
    Şehnaz Şener Hülya Kibar
    View as PDF

    ABSTRACT: In this study, geological and hydrogeological properties of Karagöl and its surroundings were investigated and hydrogeochemical properties and quality of waters were evaluated. The rock units are observed with different age and lithology in the Upper Cretaceous-Quaternary time interval in the study area. The groundwater reservoirs are alluvium and fractured-fissured magmatic rock units with locally limestone, sandstone levels. The most important surface waters are Çoruh River and Karagöl Lake in the region. In order to determine hydrogeochemical properties of the surface and spring waters, hydrochemical analyses were performed. According to the obtained results, the water resources are in Ca-HCO3, Ca-Mg-HCO3, and NaHCO3 facieses. The main factor in the development of water types is water-rock interactions. In general, increase of Na and Ca ions is related to Na-Ca feldspars alteration, while the Mg ions are mainly due to the weathering of silicate minerals such as biotite, amphibole, pyroxene. On the other hand, dominant HCO3 ion shows an increase associated with limestone and clayey limestone units, and also with the secondary calcite minerals which are formed as a result of the feldspar mineral alteration. Water resourcesare classified as 1st water quality in terms of all parameters and suitable for drinking and irrigation.

  • Weathering

  • Hydrogeochemistry

  • Hydrogeology

  • Karagöl

  • Güven, İ. H., Tosun, C. Y., 1986. Artvin-Borçka Karagöl Sahası Maden Jeolojisi Raporu. MTA Yayınları, Rapor No: 8021, Ankara.

  • Kopar, I., Sever, R., 2008. Karagöl (Borçka-Artvin). Atatürk Üniversitesi Sosyal Bilimler Enstitüsü Dergisi. 1, 21-38.

  • Şahinci, A., 1991. Doğal Suların Jeokimyası. Reform Matbaası, 548 s, İzmir.

  • T.C. Resmi Gazete, 2005. İnsani Tüketim Amaçlı Sular Hakkında Yönetmelik, 25730.

  • T.C. Resmi Gazete, 2008. Su Kirliliği ve Kontrol Yönetmeliği, 25687.

  • T.C. Resmi Gazete, 2012. İçme Suyu Elde Edilen veya Elde Edilmesi Planlanan Yüzeysel Suların Kalitesine Dair Yönetmelik, 28338.

  • Yılmaz, B. S., Gülibrahimoğlu, İ., Konak, O., Yazıcı, E. N., Köse, Z., Yaprak, S., Çuvalcı, F., Saraloğlu, A., Tosun, C.Y., 1998. Artvin İlinin Çevre Jeolojisi ve Doğal Olanakları. MTA Yayınları, s: 1-223. Ankara.



  • Şener, Ş , Kibar, H . (2017). Karagöl (Borçka-Artvin) Gölü ve Çevresinin Hidrojeokimyasal İncelemesi . Jeoloji Mühendisliği Dergisi , 41 (2) , 101-116 . DOI: 10.24232/jmd.334464

  • Şener, Ş , Kibar, H . Karagöl (Borçka-Artvin) Gölü ve Çevresinin Hidrojeokimyasal İncelemesi. Jeoloji Mühendisliği Dergisi 41 (2017 ): 101-116

  • Distribution of Water and Bottom Sediment Temperature of Lake Köyceğiz
    Özgür Avşar Bedri Kurtuluş
    View as PDF

    ABSTRACT: With its 52 km2 areal extent, the Lake Köyceğiz is the 16th largest lake in Turkey. As it is indicated in the earlier studies, the lake is meromictic. Within the scope of this study, thermoprobe and CTD measurements were done in April covering 40 locations and spatial distribution of the lake water temperature and the areal distribution of the lake bottom sediments were investigated in detail. Investigations including electrical conductivity and pH measurements at water monitoring locations show that there are physically four distinct water bodies in the Lake Köyceğiz. The water and sediment temperatures in northern basin are slightly less than the southern basin. In addition, subaqueous springs increase the temperature of the water and sediment, and create a positive temperature anomaly around these locations.

  • Meromictic

  • Subaqueous Geothermal Spring

  • Thermal Stratification

  • Thermoprobe

  • Spatial Distribution

  • Avşar, Ö., Avşar, U. Arslan Ş., Kurtuluş, B., Niedermann, S., Güleç, N., 2017. Subaqueous hot springs in Köyceğiz Lake, Dalyan Channel and Fethiye-Göcek Bay (SW Turkey): Locations, chemistry and origins. Journal of Volcanology and Geothermal Research

  • Avşar, U., Jónsson, S., Avşar, Ö., Schmidt, S., 2016. Earthquake-induced soft-sediment deformations and seismically amplified erosion rates recorded in varved sediments of Köyceğiz Lake (SW Turkey). Journal of Geophysical Research Solid Earth, 121, 4

  • Bayarı, C. S., Kazancı, N., Koyuncu, H., Çağlar, S. S., Gökçe, D., 1995. Determination of the origin of the waters of Köyceğiz Lake, Turkey. Journal of Hydrology, 166, 171-191.

  • Bozkurt, E., Park, R. G., 1999. The structure of the Palaeozoic schists in the Southern Menderes Massif, western Turkey: a new approach to the origin of the main Menderes Metamorphism and its relation to the Lycian nappes. Geodinamica Acta, 12, 25–42

  • Ertürk, A., 2002. Köyceğiz-Dalyan Lagün Sistemi’nin hidrolik modellenmesi. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Yüksek Lisans Tezi, 178 s (yayımlanmamaış).

  • Ertürk, A., Ekdal, A., Gürel, M., Karakaya, N., Cüceloğlu, G., Gönenç, E., 2017. Model-based assessment of groundwater vulnerability for the Dalyan Region of southwestern Mediterranean Turkey. Regional Environmental Change, 17 (4), 1193-1203.

  • Ertürk, A., Ekdal, A., Gürel, M., Karakaya, N., Güzel, C., Gönenç, E., 2014. Evaluating the impact of climate change on groundwater resources in a small Mediterranean watershed. Science of the Total Environment, 499, 437-447.

  • Golden Software Inc., 2012. Surfer 10 versiyonu. Golden, Inc., CO 80401 USA.

  • Gökgöz, A., Tarcan, G., 2006. Mineral equilibria and geothermometry of the Dalaman–Koycegiz thermal springs, southern Turkey. Applied Geochemistry, 21, 253-268.

  • Hinsbergen, D. J. J., 2010. A key extensional metamorphic complex reviewed and restored: The Menderes Massif of western Turkey. Earth- Science Reviews, 102, 60-76.

  • Hinsbergen, D. J. J., Dekkers, M. J., Bozkurt, E., Koopman, M., 2010. Exhumation with a twist: paleomagnetic constraints on the evolution of the Menderes metamorphic core complex (western Turkey). Tectonics, 29, 1-33.

  • Kazancı, N., Girgin, S., 2001. Physico-chemical and biological characteristics of thermal springs in Köyceğiz and Dalaman basins in southwestern Turkey and recommendations for their protection. Water Science and Technology, 43 (5), 211-221.

  • Kazancı, N., Plasa, R. H., Neubert, E., İzbırak, A., 1992. On the limnology of Lake Köyceğiz (SW Anatolia). Zoology in the Middle East, 6 (1), 109-126.

  • Rimmelé, G., Jolivet, L., Oberhansli, R., Goffe, B., 2003a. Deformation history of the high-pressure Lycian nappes and implications for tectonic evolution of SW Turkey. Tectonics, 22, 1007- 1027.

  • Rimmelé, G., Oberhänsli, R., Goffé, B.,1, Jolivet, L., Candan, O., Çetinkaplan, M., 2003b. First evidence of high-pressure metamorphism in the ‘‘Cover Series’’ of the southern Menderes Massif. Tectonic and metamorphic implications for the evolution o

  • Şenel, M., 1997. 1:100000 Ölçekli, Türkiye Jeoloji Haritaları Serisi. No. 1, Jeoloji Haritası Fethiye L7 paftası. Maden Tetkik ve Arama Genel Müdürlüğü, Jeoloji Etütleri Dairesi, Ankara, 30 s.

  • Sözbilir, H., Sarı, B., Uzel, B., Sümer, Ö., Akkiraz, S., 2011. Tectonic implications of transtensional supradetachment basin development in an extension-parallel transfer zone: the Kocaçay Basin, western Anatolia, Turkey. Basin Research, 23, 423-448

  • Ten Veen, J. H., Boulton, S. J., Alçiçek, M. C., 2009. From palaeotectonics to neotectonics in the Neotethys realm: the importance of kinematic decoupling and inherited structural grain in SW Anatolia (Turkey). Tectonophysics, 473, 261– 281.



  • Avşar, Ö , Kurtuluş, B . (2017). Köyceğiz Gölü Su ve Taban Sedimanlarının Sıcaklık Dağılımı . Jeoloji Mühendisliği Dergisi , 41 (2) , 117-136 . DOI: 10.24232/jmd.334546

  • Avşar, Ö , Kurtuluş, B . Köyceğiz Gölü Su ve Taban Sedimanlarının Sıcaklık Dağılımı. Jeoloji Mühendisliği Dergisi 41 (2017 ): 117-136

  • Identification of Fault Type Geological Structures around Trabzon by Using Gravity Data
    Mustafa Ali Elmas
    View as PDF

    ABSTRACT: The aim of this study is to define the fault related geological structures using gravity data around Trabzon. For this purpose, horizontal gradient magnitude, analytic signal, tilt angle, and hyperbolic of tilt angle techniques were operated. By applying these techniques to the first vertical derivative of the regional gravity data, faultsrelated geological structures were identified from maximum amplitude values with horizontal gradient magnitude and analytic signal maps, and zero amplitude values of the tilt angle and hyperbolic of tilt angle maps for this region. The basement topography was calculated using the Parker-Oldenburg algorithm. Identified fault-related geological structures were compared with the existing faults in the region. Although there is a good agreement between this study and the previous studies, some new fault-related structures were also identified. There is a significant relationship among the distribution of the fault-related geological structures, mineral deposits, and also earthquake epicenters in the region. This study was resulted to shed some light on the other following small to large scale geological studies for better understanding of the geological structure of the region. It is also believed that the results of the study maybe a guide to the search for new mineral deposits and the identification of risky locations for earthquakes.

  • Analytic Signal

  • Tilt Angle

  • Hyperbolic of Tilt Angle

  • Trabzon and Vicinity

  • Horizontal Gradient Derivative

  • Akaryalı, E., Tüysüz, N., 2013. The genesis of the slab window-related Arzular low sulfidation epithermal gold mineralization (eastern Pontides, NE Turkey). Geoscience Frontiers, 4, 409–421.

  • Arısoy, M. Ö., Dikmen, Ü., 2011. Potensoft: MATLAB-based Software for potential field data processing, modelling and mapping. Computer & Geosciences, 37, 935–942.

  • Aslaner, M., Gedikoğlu, A., 1984. Harşit Vadisi (Tirebolu-Giresun) metalik cevherleşme tipleri. Karadeniz Teknik Üniversitesi Jeoloji Dergisi, 3 (1-2), 1-15.

  • Aydın, F., Karsli, O., Chen, B., 2008. Petrogenesis of the Neogene alkaline volcanics with implications for post-collisional lithospheric thinning of the Eastern Pontides, NE Turkey. Lithos, 104, 249– 266.

  • Babacan, A. E., Gelisli, K., Ersoy, H., 2014. Seismic Tomography and Surface Wave Analysis Based Methodologies on Evaluation of Geotechnical Properties of Volcanic Rocks: A Case Study. Journal of Earth Science, 25 (2), 348–356.

  • Barazangi, M., Sandvol, E., Seber, D., 2006. Structure and tectonic evolution of the Anatolian plateau in eastern Turkey. In: Dilek, Y., Pavlides, S. (Eds.), Post-collisional Tectonics and Magmatism in the Mediterranean Region and Asia. Geological So

  • Bektaş, O., Van, A., Boynukalın, S., 1987. Doğu Pontidler’de (Kuzeydoğu Türkiye) Jura volkanizması ve jeotektoniği. Türkiye Jeoloji Bülteni, 30, 9-19.

  • Bektaş, O., Yılmaz, C., Taslı, K., Akdağ, K., Özgür, S., 1995. Cretaceous rifting of the eastern Pontide carbonate platform (NE Turkey): the formation of carbonates breccias and turbidites as evidences of a drowned platform. Geologia, 57 (1–2), 233–2

  • Bektaş, O., Şen, C., Atıcı, Y., Köprübaşı, N., 1999. Migration of the Upper Cretaceous subductionrelated volcanism toward the back-arc basin of the eastern Pontide magmatic arc (NE Turkey). Geological Journal, 34, 95–106.

  • Cooper, G. R. J., Cowan, D. R., 2006. Enhancing potential field data using filters based on the local phase. Computers and geosciences, 32 (10), 1585-1591.

  • Çavşak, H., Elmas, A., 2013. Determining crustal structure and density in the Eastern Black Sea and Pontide Mountains using 3D gravity model calculations. Carbonates and Evaporites, DOI: 10.1007/s13146-013-0161-6.

  • Ercan, Ö. A., Şeren, A., Elmas, A., 2014. Gold and silver prospection using Magnetic, Radiometry and Microgravity Methods in the Kışladağ province of Western Turkey. Resource Geology, DOI: 10.1111/rge.12024.

  • Evjen, H. M., 1936. The place of the vertical gradient in gravitational interpretations. Geophysics, 1, 127–136.

  • Ersoy, H., Yalçınalp, B., Babacan, A. E., 2014. Investigation of geological and geomechanical properties of the Saraftepe (Trabzon) tephritic sill. Journal of Geological Engineering, 38 (1), 39–50.

  • Eyüboğlu, Y., 2010. Late Cretaceous high-K volcanism in the eastern Pontides orogenic belt, and its implications for the geodynamic evolution of NE Turkey. International Geology Review, 52 (2–3), 142–186.

  • Eyüboğlu, Y., Bektaş, O., Pul, D., 2007. Mid- Cretaceous olistostromal ophiolitic melange developed in the back-arc basin of the eastern Pontide magmatic arc (NE Turkey). International Geology Review, 49 (12), 1103–1126

  • Eyüboğlu, Y., Bektaş, O., Seren, A., Maden, N., Jacoby, W. R., Özer, R., 2006. Three axial extensional deformation and formation of the Liassic rift basins in the Eastern Pontides (NE Turkey). Geologica Carpathica, 57 (5), 337–346.

  • Eyüboğlu, Y., Santosh, M., Yi, K., Tüysüz, N., Korkmaz, S., Akaryalı, E., Dudas, F., Bektaş, O., 2014. The Eastern Black Sea-type volcanogenic massive sulfide deposits: geochemistry, zircon U–Pb geochronology and an overview of the geodynamics of ore

  • Gomez-Ortiz, D., Agarwal, B. N. P., 2005. 3DINVER.M: A MATLAB program to invert the gravity anomaly over a 3-D horizontal density interface by Parker–Oldenburg’s algorithm. Computer Geosciences, 31, 513–520.

  • Gunn, P. J., 1975. Linear transformations of gravity and magnetic fields. Geophysical Prospecting, 23 (2), 300-312.

  • Lyngsie, S. B., Thybo, H., Rasmussen, T. M., 2006. Regional geological and tectonic structures of the North Sea area from potential field modelling. Tectonophysics, 413 (3–4), 147–170.

  • Maden, N., Gelişli, K., Bektaş, O., Eyüboğlu, Y., 2009. Two-and-three-dimensional crust topography of the Eastern Pontides (NE Turkey). Turkish Journal of Earth Sciences, 18, 225–238.

  • Maden, N., 2013. Geothermal structure of the eastern Black Sea basin and the eastern Pontides orogenic belt: Implications for subduction polarity of Tethys oceanic lithosphere. Geoscience Frontiers, 4, 389–398.

  • Maden, N., Öztürk, S., 2015. Seismic b-Values, Bouguer Gravity and Heat Flow Data Beneath Eastern Anatolia, Turkey: Tectonic Implications. Survey in Geophysics, 36, 549-570.

  • Miller, H. G., Singh, V., 1994. Potential field tilt -a new concept for location of potential field sources. Journal of Applied Geophysics, 32, 213–217.

  • Nabighian, M. N., 1972. The Analytic Signal of two dimensional magnetic bodies with polygonal cross section: Its properties and use for automated anomaly interpretation. Geophysics, 37, 507–517.

  • Oldenburg, D. W., 1974. The inversion and interpretation of gravity anomalies. Geophysics, 39, 526–536.

  • Oruç, B., Keskinsezer, A., 2008. Structural setting of the northeastern Biga Peninsula (Turkey) from tilt derivatives of gravity gradient tensors and magnitude of horizontal gravity components. Pure Applied Geophysics, 165, 1913-1927

  • Oruç, B., Sertçelik, İ., Kafadar, Ö., Selim, H. H., 2013. Structural interpretation of the Erzurum Basin, Eastern Turkey, using curvature gravity gradient tensor and gravity inversion of basement relief. Journal of Applied Geophysics, 88,105–113.

  • Oruç, B., Sönmez, T., 2017. The rheological structure of the lithosphere in the Eastern Marmara region, Turkey. Journal of Asian Earth Sciences, 139, 183-191.

  • Oruç, B., 2010. Edge detection and depth estimation using a tilt angle map from gravity gradient data of the Kozaklı-Central Anatolia Region, Turkey. Pure and Applied Geophysics, DOI: 10.1007/ s00024-010-0211-0.

  • Pamukçu, O. A., Akçıg, Z., Demirbaş, Ş., Zor, E., 2007. Investigation of crustal thickness in eastern Anatolia using gravity, magnetic and topographic data. Pure and Applied Geophysics, 164, 2345-2358.

  • Parker, R. L., 1973. The rapid calculation of potential anomalies. Geophysical Journal International, 31, 447–455.

  • Pavlis, N. K., Holmes, S. A., Kenyon, S. C., Factor. J. K., 2008. An Earth Gravitational Model to Degree 2160: EGM2008. EGU General Assembly 2008, Vienna, Austria, April 13–18, 2008. http://earth-info.nga.mil/GandG/wgs84/ gravitymod/egm2008. (Ziyaret

  • Schultze-Westrum, H. H., 1961. Das Geologische Profil des Aksudere Tales bei Giresun-Ein Beitrag zur Geologie und Lagerstättenkunde der Ost-Pontischen Erz- und Mineralprovinz, NEAnatolien, M.TA. Bulletin, 57, 65-74.

  • Spector, A., Grant, F. S., 1970. Statistical models for interpreting aeromagnetic data. Geophysics, 35, 293–302.

  • Türkiye Maden Tetkik ve Arama Genel Müdürlüğü, http://www.mta.gov.tr/v3.0/bolgeler/trabzon, (ziyaret tarihi: 10 Şubat 2017).

  • U.S. Geological Survey, Digital Elevation Models GTOPO30, Virginia, 1998, http://webmap.ornl. gov/wcsdown/wcsdown.jsp?dg_id=10003_1, (Ziyaret tarihi: 11 Şubat 2017).

  • Yılmaz, Y., 1984. Türkiye’nin jeolojik tarihinde magmatik etkinlik ve tektonik evrimle ilişkisi. Türkiye Jeoloji Bülteni, Ketin Sempozyumu, 63- 81.



  • Elmas, A . (2017). Trabzon Civarındaki Fay Türü Jeolojik Yapıların Gravite Verileri Kullanılarak Belirlenmesi . Jeoloji Mühendisliği Dergisi , 41 (2) , 137-154 . DOI: 10.24232/jmd.339691

  • Elmas, A . Trabzon Civarındaki Fay Türü Jeolojik Yapıların Gravite Verileri Kullanılarak Belirlenmesi. Jeoloji Mühendisliği Dergisi 41 (2017 ): 137-154

  • Underground Structures, Rock Structures and Rock Mechanics from Ancient Era to the Modern Age
    Ebru Akiş Özgür Satici
    View as PDF

    ABSTRACT: Usage of underground space is an old habit for human beings since ancient era. Our ancestors have used caves as a shelter for protection from the wild life and nature, and they excavated caves to extract valuable minerals. They also used them as sanctuaries, tombs or for storage of goods. In addition, they built tunnels to be used as assault systems or to underpass fortifications during ancient warfare. Later on, tunnels were driven to supply water to the towns or to protect the towns from floods. They also built them for communication purposes. Though not knowing the exact time when they were first used, natural underground structures which have several interconnections were also built for underground dwelling purposes through the human history. In the following centuries, due to the need of transportation facilities, transportation tunnels were constructed where new excavation techniques were also used. Navigation canal tunnels, railway tunnels and road tunnels were constructed during that period. All these structures were mostly excavated in rocks. The first excavations were performed manually. Later on, fire technique had been used to excavate more easily. This was followed by the methods in which gunpowder, explosives and tunneling machinery were used. By some means or other, ancient civilizations had used fundamental principles of rock mechanics and applied these principles in the construction of the underground structures. Principles of rock mechanics are the sine qua non for all of these structures and facilities. In this review paper, the history and evaluation of rock mechanics will be given briefly and some examples of historical and monumental underground and rock structures will be presented.

  • Ancient Underground Rock Structures

  • History of Rock Mechanics

  • Rock Engineering

  • Rock Mechanics Applications

  • Akoğlu, K. G., Saltık, E. N. C., 2015. Hydric dilation of Mount Nemrut sandstones and its control by surfactants. Journal of Cultural Heritage, 16, 276-283.

  • Akyol V., 2012. Sinop Turizm Potansiyeli (Tourism Potential of Sinop). http://turizm.sinop.edu.tr/ turizm_isletmeciligi_ve_otelcilik_yuksekokulu/ faaliyetler/turizm_durumu.pdf. Accessed 31.12.2015.

  • Alemohammad, S. H., Gharari, S., 2010. Qanat:An ancient invention for water management in Iran. http://hamed.mit.edu/sites/default/files/Qanat_ WHC_2010.pdf. Accessed 09.08.2017.

  • America’s Library, 2016. Mount Rushmore National Memorial a Local Legacy. http://www. americaslibrary.gov/es/sd/es_sd_mount_1.html. Accessed 09.01.2016.

  • Aydan, Ö., Ulusay R., 2003. Geotechnical and geoenvironmental characteristics of man-made underground structures in Cappadocia, Turkey. Engineering Geology, 69, 245-272.

  • Aydan, Ö., Ulusay R., 2013. Geomechanical evaluation of Derinkuyu antique underground city and its implications in geoengineering. Rock Mechanics and Rock Engineering, 46, 731-754

  • Aydan, Ö., Ulusay R., Tokashiki, N., 2014. A new rock mass quality rating system: Rock mass quality rating (RMRQ) and its application to the estimation of geomechanical characteristics of rock masses. Rock Mechanics and Rock Engineering, 47, 1255-127

  • Barton, N. Lien, R., Lunde, J., 1974. Engineering classification of cases for the design of tunnel support. Rock Mechanics 6(4), 189-236.

  • Barton, N., 1976. The shear strength of rock and rock joints. Int. Jour. Rock Mech. Min. Sci. and Geomech. Abstr., 13 (9): 255-279.

  • Barton, N., 2002a. Some New Q-value correlations to assist in site characterization and tunnel design. International Journal of Rock Mechanics and Mining Sciences, 39, 185-216.

  • Barton, N., 2002b. Deformation moduli and rock mass characterization. Tunneling and Underground Space Technology, 17, 221-222.

  • Bieniawski, Z.T.,1973. Engineering classification on jointed rock masses. Trans. South African Inst. Civil Engineering,15: 335-344.

  • Bonapace, P., Eder, M., Galler, R., Moritz, B., Schneider, E., Schubert, W., 2010. NATM The Austrian Practice of Conventional Tunnelling. American Society for Geomechanics, Salzburg, 73 p.

  • Brown, E. T., 2011. Fifty Years of the ISRM and associated progress in rock mechanics. 12th ISRM International Congress on Rock Mechanics.

  • Cai, M., Kaiser, P. K., Uno, H., Tasaka, Y., Minami, M., 2004. Estimation of rock mass deformation modulus and strength of jointed hard rock masses using GSI system. International Journal of Rock Mechanics and Mining Sciences, 41 (1), 3-19.

  • Deere, D. U., Hendron, A. J., Patton, F. D., Cording, E. J., 1967. Design of surface and near surface construction in rock. In Failure and breakage of Rock, Proc. 8th U.S. Symposium Rock Mechanics, New York. Soc. Min. Engr. Am. Inst. Metall. Petrolm.

  • Erdem, A., 2008. Subterranean space use in Cappdocia: The Uçhisar example. Tunnelling and Underground Space Technology, 23, 492- 499.

  • Evelpidou, N., Figueiredo, T., Mauro, F., Tecim, V., Vassilopoulos, A., 2010. Natural Heritage from East to West. Case studies from 6 EU countries, Verlag Berlin Heidelbarg: Springer.

  • Garry, D., 2012. Handbook of Tunnel Engineering Design, Construction and Risk Assessment. Auris Reference, London, 357 p.

  • Gelişli, K., Seren, A., Babacan, A.E., Çataklı, A., Ersoy, A., Kandemir, R., 2010. The Sumela Monastery slope in Maçka, Trabzon, Northeast Turkey: rock mass properties and stability assessment. Bulletin of Engineering Geology and the Environment. 70,

  • Gençtürk, B., Kılıç, S., Erdik, M., Pinho, R., 2007. Assessment of stone arch bridges under static loading using analytical techniques. New Horizons and Better Practices, 43, 1-10.

  • Gökçeoğlu, C., Aksoy, H., 2000. New approaches to the characterization of clay-bearing, densely jointed and weak rock masses. Engineering Geology, 58, 1-23.

  • Goodman, R. E., 1989. Introduction to Rock Mechanics (2nd Edition). John Wiley & Sons, New York, 562 p.

  • Hoek, E. 1983. Strength of jointed rock masses, 23rd. Rankine Lecture. Géotechnique 33(3), 187-223.

  • Hoek, E. 1994. Strength of rock and rock masses, ISRM News Journal, 2(2), 4-16.

  • Hoek, E., 2007. Practical Rock Engineering. https:// www.rocscience.com/learning/hoek-s-corner.

  • Hoek, E. and Bray, J.W., 1974. Rock Slope Engineering. London: Institution of Mining and Metallurgy.

  • Hoek, E. and Brown, E.T. 1980. Empirical strength criterion for rock masses. Journal of the Geotechnical Engineering Division, ASCE 106(GT9), 1013-1035

  • Hoek E. and Brown E.T. 1980. Underground Excavations in Rock . London: Institution of Mining and Metallurgy 527 p.

  • Hoek, E. and Brown, E.T. 1997. Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Science and Geomechanics Abstracts. 34(8), 1165-1186.

  • Hoek E., Kaiser, P. K., Bawden, W. F., 1995. Support of underground excavations in hard rock. Brookfield: Balkema. Rotterdam, 215 p.

  • Hoek, E., Marinos, P., Benissi, M., 1998. Applicability of the geological strength index (GSI) classification for very weak and sheared rock masses: the case of the Athens Schist Formation. Bulletin of Engineering Geology and the Environment, 57 (2),

  • Hoek, E., Wood, D. and Shah, S. 1992. A modified Hoek-Brown criterion for jointed rock masses. Proceedings of the International ISRM Symposium on Rock Characterization, International Society of Rock Mechanics: Eurock ‘92, (J.Hudson ed.). 209-213.

  • Hood, M., Brown, E.T., 1999. Mining rock mechanics: yesterday, today and tomorrow. Proceedings, 9th Congress, International Society for Rock Mechanics, Paris, Balkema: Rotterdam, 3, 1551- 1576.

  • Hoover, H. C., Hoover L. H., 1912. De Re Metallica Translated from the first Latin edition of 1556. The Mining Magazine, London, 641 p..

  • Jaeger, J. C., 2009. Rock Mechanics and Engineering. Cambridge. Cambridge Press. 523 p.

  • Kirman, E., Ulusoy, E., 2005. Paleolitik dönemde doğal yerleşim yeri olarak kullanılan Anadolu mağaraları”. In Proceedings of Turkiye Kuvaterner Sempozyumu TURQUA-V. Istanbul, İTÜ Avrasya Yer Bilimleri Enstitüsü.

  • Lauffer, H., 1958. Gebirgsklassifizierung für den Stollenbau. Geol. Bauwesen, 24: 46-51.

  • Marinos, P., Hoek, E., 2000. GSI: a geological friendly tool for rock mass strength estimation. Proceedings of International Conference on Geotechnical and Geological Engineering, Melbourne, 1422-1440.

  • Marinos, P., Hoek, E., 2001: Estimating the geotechnical properties of heterogenous rock masses such as flysch. Bull. Eng. Geol. Env. 60(2), 85-92.

  • Marinos, V., Marinos, P., Hoek, E., 2005. The geological strength index: applications and limitations. Bulletin of Engineering Geology and the Environment, 64 (1), 55-65 .

  • Marinos, P., Marinos, V., Hoek, E., 2007. Geological Strength Index (GSI) a characterization tool for assessing engineering properties of rock masses. Underground works under special conditions, 13-21.

  • Minisrty of Culture and Tourism, 2017. Sumela Monastery. http://www.kultur.gov.tr/EN,32834/ sumela-monastry.html Accessed 08.01.2016.

  • Osgoui, R. R., Ulusay, R., Ünal, E., 2010. An assistant tool for the geological strength index to better characterize poor and very poor rock masses. International Journal of Rock Mechanics and Mining Sciences, 47, 690-697.

  • Paradise, T. R., 2013. Assessment of tafoni distribution and environmental factors on a sandstone djinn block above Petra, Jordan. Applied Geography, 42, 176-185.

  • Patton, F. D., 1966. Multiple modes of shear failure in rock. Proceedings of 1st International Congress of Rock Mechanics, Lisbon, 1, 509-513.

  • Rihosek, J., Bruthans, J., Masin, D., Filippi, M., Carling, G. T., Schweigstillova, J., 2015. Gravity-induced stress as a factor reducing decay of sandstone monuments in Petra, Jordan. Journal of Cultural Heritage, 19, 415-425.

  • Romana, M., Perucho, A., Olalla, C., 2007. Underground works under special conditions. Taylor & Francis, London, Leiden, New York, Philadelphia, Singapore, 180 p.

  • Salam, M. E. A. E., 2002. Construction of underground works and tunnels in ancient Egypt. Tunnelling and Underground Space Technology, 17, 295- 304.

  • Schmidt, W. 1925. Gefügestatistik. Tschermaks Mineralogische und Petrographische Mitteilungen, 38: 392-423.

  • Singh, M., Kumar, S. V. Waghmare S. A., 2015. Characterization of 6-11th century A.D. decorative lime plasters of rock cut caves of Ellora. Construction and Building Materials, 98, 156-170.

  • Stini, J. 1922. Technische Geologie, 789 p. Stuttgart: Ferdinand Enke.

  • Sönmez, H., Ulusay, R., 1999. A discussion on the Hoek-Brown failure criterion and suggested modification to the criterion verified by slope stability case studies. Yer Bilimleri, 26, 77-99.

  • Sitini, J., 1950. Tunnelbaugeologie. Vienna,Springer

  • Szechy, K., 1973. The art of tunneling. Akademiaikiado, Budapest.

  • Terzaghi K., 1946. Rock tunneling with steel supports. Youngstown, Ohio. Commercial Sheving Co.

  • The Brunel Museum, 2017. The Thames Tunnel. http://www.brunel-museum.org.uk/history/thethames- tunnel. Accessed 31.05.2017.Topal, T., Doyuran, V., 1997, Engineering geological properties and durability assessment of the Cappadocian tuff. Engineering

  • Topal, T., Doyuran, V., 1998, Analyses of deterioration of the Cappadocian tuff, Turkey. Environmental Geology, 34, 5-20.

  • Topal, T., Deniz B. E., Güçhan, N. Ş., 2015. Decay of limestone statues at Mount Nemrut (Adıyaman, Turkey). International Journal of Architectural Heritage, 9, 44-264.

  • Türkiye Kültür Portalı, 2014. Titus Tüneli ve Beşikli mağara. http://www.kulturportali.gov.tr/turkiye/ hatay/gezilecekyer/titus-tuneli-ve-besiklimagara. Accessed 07.09.2014.

  • Ubierna, J. A. J., 1998. Tunnel heritage in Spain: Roots of the underground. Tunneling and Underground Space Technology, 13 (2), 131-141.

  • Ulusay, R., Özkan, İ., Ünal, E., 1992. Characterization of weak, stratified and clay bearing rock masses for engineering applications. Proceedings of Fractured and Jointed Rock Masses Conference, California, 229-235.

  • Ulusay, R. Sönmez H., 2000. Hoek Brown görgül yenilme ölçütüne ilişkin değişiklik önerileri ve uygulanabilirliği. Jeoloji Mühendisliği Dergisi, 53, 1-14.

  • Ünal, E., Özkan, İ., 1990. Determination of Classification Parameters for Clay-bearing and Stratified Rock Mass. 9th Conference on Ground Control in Mining, Morgantown, USA, 250-259.

  • Ünal, E., Özkan İ., Ulusay, R., 1992. Characterization of weak, stratified and clay bearing rock masses. ISRM Symposium: EUROCK’92 Rock Characterization, London, British Geotechnical Society, 330-335.

  • Ünal, E., 1996. Modified Rock Mass Classification: M-RMR System – Milestones in Rock Engineering. A Jubilee Collection; Z.T. Bieniawski, Balkema, 203-223.

  • Wickham, G.E., Tiedemann, H.R., Skinner, E.H., 1972. Support determination based on geological predictions. International Proceedings on North American Rapid Excavation Tunneling Conference, Chicago, 43-64.

  • Wikimedia Commons-a, 2017. The Eupalinos Tunnel.https://commons.wikimedia.org/wiki/ File:Eupalinian_aqueduct.JPG?uselang=tr. Accessed 31.05.2017.

  • Wikimedia Commons-b, 2017. The Thames Tunnel https://commons.wikimedia.org/ wiki/File:Thamestunnel1840.jpg?uselang=tr. Accessed 31.05.2017.

  • Wikimedia Commons-c, 2017. The Tunnel in İstanbul https://commons.wikimedia.org/ wiki/File:Istanbul_Tunel_Karak%C3%B6y_ Beyo%C4%9Flu.jpg?uselang=tr. Accessed 31.05.2017.

  • Wikimedia Commons-d, 2017. El Deir monastery in the ancient Jordanian city of Petra. https:// commons.wikimedia.org/wiki/File:Petra_ Jordan_BW_43.JPG?uselang=tr. Accessed 31.05.2017.

  • Wikimedia Commons-e, 2017. Ellora Temple. https:// commons.wikimedia.org/wiki/File:Ellora,_The_ Temple_2.jpg?uselang=tr. Accessed 31.05.2017.

  • Wikimedia Commons-f, 2017. Kaymaklı underground city in Capadocia.https://commons.wikimedia. o rg / w i k i / F i l e : K a y m a k l i _ u n d e rg r o u n d _ city_8923_Nevit_Enhancer.jpg?uselang=tr. Accessed 31.05.2017

  • Wikimedia Commons-g, 2017. Nemrut Mountain, head statues.https://commons.wikimedia. org/wiki/File:Heads_on_Mount_Nemrut. JPG?uselang=tr. Accessed 31.05.2017

  • Wikimedia Commons-h, 2017. Mount Rushmore sculptures. https://commons.wikimedia. o rg / w i k i / M o u n t _ R u s h m o r e _ N a t i o n a l _ Memorial?uselang=tr#/media/File:Rushmore_2. jpg. Accessed 31.05.2017.



  • Akış, E , Satıcı, Ö . (2017). İlk Çağlardan Günümüze Yeraltı Yapıları, Kaya Yapıları ve Kaya Mekaniği . Jeoloji Mühendisliği Dergisi , 41 (2) , 155-172 . DOI: 10.24232/jmd.344499

  • Akış, E , Satıcı, Ö . İlk Çağlardan Günümüze Yeraltı Yapıları, Kaya Yapıları ve Kaya Mekaniği. Jeoloji Mühendisliği Dergisi 41 (2017 ): 155-172

  • ISSUE FULL FİLE
    View as PDF