Jeoloji Münendisliği Dergisi
Jeoloji Mühendisliği Dergisi

Jeoloji Mühendisliği Dergisi

2018 ARALIK Cilt 42 Sayı 2
COVER
View as PDF
COPYRİHT PAGE
View as PDF
CONTENTS
View as PDF
The Differences of Strength and Deformation Properties of Dikes and Host Rocks in the Paleozoic Sequence of İstanbul
Ömer Ündül Buğra Can Çobanoğlu Feyat Taz
View as PDF

ABSTRACT: The enlargement of settlement areas due to increasing population emerges the construction of infrastructuraland other engineering structures. The construction of engineering structures has been densely continued from thesecond half of the 1900’s to the present in İstanbul. Many engineering projects are being planned for the nearfuture. The recent structures are larger and deeper than the previous structures. Thus, the planners and engineershave faced to more geo-engineering problems related with geological uncertainties. In recent years, majority of theengineering structures in İstanbul are getting denser in the Paleozoic sequence of İstanbul along both the two sidesof the Bosphorus. The Paleozoic sequence of İstanbul mostly consists of sedimentary rocks. These sedimentary rocksare crosscut by dikes with varying compositions, in random orientation and dimensions (e.g. millimeter to couple ofmeter in scale). The dike crosscutting the İstanbul Paleozoic rocks generate unexpected and unwanted conditionssuch as squeezing of TBMs, stability problems, water leakage etc. As a result, increase in time and budget of theprojects occur. This study aims to define the strength and deformation properties of dikes in İstanbul under axialloadings. Besides, the brittleness of the studied rocks and their engineering behavior in practical applications wereevaluated. In addition, the behavior of dikes and host rocks were compared regarding basic rock mass properties.Based on the test results, the uniaxial compressive strength and Young’s modulus of dikes and the host rocks aredetermined as 46-277MPa and 33-158 MPa, and 16-99 GPa and 5-57 GPa, respectively. Besides, the brittle failureof the magmatic rocks under axial loadings is obvious in the graph of strength versus strain. Once the problemsencountered particularly in tunnel constructions in İstanbul are evaluated, it is defined that the differences betweenthe strength and strain characteristics of host rocks and dikes become an important geological problems. The resultsof this study state necessitate the detailed geo-mechanical investigations during the construction and for the longterm performance of underground rock structure. 

  • Brittleness

  • Dike

  • Elastic Properties

  • Geomechanical Properties

  • İstanbul

  • Altındağ, R. 2000. The role of rock brittleness on analysis of percussive drilling performance, (in Turkish), Proceedings of 5th National Rock Mechanics 2000, 105–112.

  • Amann, F., Button, E.A., Evans, K.F., Gischig, V.S., Blümel, M., 2011. Experimental study of the brittle behavior of clay shale in short-term unconfined compression. Rock Mechanics Rock Engineering, 44 (4), 415–430.

  • Andreev, G. E., 1995. Brittle failure of rock materials: test results and constitutive models. A. A. Balkema, Rotterdam, p. 446.

  • Arıkan, F., Ulusay R., Aydın N., 2007. Characterization of weathered acidic volcanic rocks and a weathering classification based on a rating system. Bulletin of Engineering Geology and the Environment, 66, 415–430.

  • Aydan, Ö., Geniş, M., Akagi, T., Kawamoto, T., 2001. Assessment of susceptibility of rock bursting in tunnelling in hard rocks. Proc. of the International Symposium on Modern Tunneling Science and Technology (eds. Adachi), Swets&Zeitlinger, Vol. 1, 3

  • Aysal, N., Keskin M., Peytcheva I., Duru O., Akgündüz S., 2015. Geochronology, geochemistry and isotope systematics of a mafic-intermediate dyke complex in the İstanbul zone, Northern Turkey. Goldschmidt 2015, Prag, CEK CUM., 16-21, 155-155.

  • Biberoğlu, S., 2006. Engineering geological and geotechnical properties of volcanic dikes along the Marmaray Project Route, İstanbul. 5s. (in Turkish, unpublished)

  • Bieniawski, Z.T., 1967. Mechanism of brittle failure of rock part I—theory of fracture process. International Journal of Rock Mechanics Mining Science Geomechanics Abstracts, 4 (4), 395– 406.

  • Bilgin, N., Çopur, H., Balci, C., Tumac, D. 2008. The selection of a TBM using full scale laboratory tests and comparison of measured and predicted performance values in Istanbul Kozyatagi- Kadikoy metro tunnels. World Tunnel Congress 2008 Proceeding

  • Bilgin, N., 2016. An appraisal of TBM performances in Turkey in difficult ground conditions and some recommendations. Tunnelling and Underground Space Technology, 57, 265-276.

  • Bilgin, N., Çopur, H., Balci, C. 2016. TBM excavation in difficult ground conditions: case studies from Turkey. Wiley, 354 p.

  • Blindheim, O.T., Bruland, A., 1998. Boreability testing. Norwegian TBM tunnelling 30 years of Experience with TBMs in Norwegian Tunnelling. Norwegian Soil and Rock Engineering Association, Publication no 11, 29–34.

  • Dalgıç, S., 2000. The influence of weak rocks on excavation and support of the Beykoz Tunnel, Turkey. Engineering Geology, 58, 137–148.

  • Dalgıç, S., 2002. A comparison of predicted and actual tunnel behavior in the Istanbul Metro, Turkey. Engineering Geology, 63, 69-82.

  • Damjanac, B., Fairhurst, C., 2010. Evidence for a long-term strength threshold in crystalline rock. Rock Mechanics and Rock Engineering, 43 (5), 513–531.

  • Diederichs, M.S., 2007. The 2003 Canadian Geotechnical Colloquium: Mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunneling. Canadian Geotechnical Journal, 44, 1082–1116.

  • Diederichs, M.S., Kaiser, P.K., Eberhardt, E., 2004. Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation. International Journal of Rock Mechanics Mining Science Geomechanics Abstracts, 41 (5

  • Eberhardt, E., Stimpson, B., Stead, D., 1999. Effect of grain size on the initiation and propagation threshold of stress-induced brittle fracture. Rock Mechanics and Rock Engineering, 32 (2), 81–99.

  • Eroskay, S.O., 1985. Graywackes of İstanbul region. Derin Kazılar ve İksa Metodları Sempozyumu, Boğaziçi Üniversitesi, 141-144.

  • Eyigün, Y., 2014. The bearing capacities of piles in İstanbul greywackes. PhD. Thesis, İstanbul Teknik Üniversitesi, 219 s (in Turkish).

  • Fugro, 2010. Geotechnical report Eurasia tunnel project investigation data. Geotechnical Data Bosphorus Railway Crossing, Vol 1-2, İstanbul Turkey.

  • Gong, Q. M., Zhao, J., 2007. Influence of rock brittleness on TBM penetration rate in Singapore granite. Tunnelling and Underground Space Technology, 22, 317–324.

  • Hajiabdolmajid, V., Kaiser, P.K., Martin, C.D., 2002. Modelling brittle failure of rock. International Journal of Rock Mechanics Mining Science Geomechanics Abstracts, 39, 731–741.

  • Hajiabdolmajid, Y., Kaiser, P., 2003. Brittleness of rock and stahility assessment in hard rock tunnelling. Tunnelling and Underground Space Technology, 18, 35-48.

  • Heidari, M., Khanlari G.R., Torabi-Kaveh M., Kargarian, S., Saneie, S., 2014. Effect of porosity on rock brittleness. Rock Mechanics Rock Engineering, 47, 785-790.

  • Hetenyi, M., 1966. Handbook of experimental stress analysis. Wiley, New York, p 15.

  • Holt, R. M., Fjær, E., Stenebråten, J.F., Nes, O. M., 2015. Brittleness of shales: Relevance to borehole collapse and hydraulic fracturing. Journal of Petroleum Science and Engineering, 131, 200–209.

  • Hucka, Y., Das B., 1974. Brittleness determination of rocks by different methods. International Journal of Rock Mechanics Mining Science Geomechanics Abstract, 11, 389-392.

  • International Society for Rock Mechanics (ISRM), 1981. Rock characterization testing and monitoring — ISRM Suggested Methods. In: Brown, E.T. (Ed.), Pergamon, New York

  • International Society for Rock Mechanics (ISRM), 2007. The complete ISRM suggested methods for rock characterization, testing and monitoring. Kozan, Ankara, pp 1974–2006.

  • İstanbul Büyükşehir Belediyesi (İBB), 2011. İstanbul İl Alanının Jeolojisi. İstanbul Büyükşehir Belediyesi Planlama ve İmar Daire Başkanlığı, Editör Necdet Özgül, 333 s.

  • Kahraman, S., 2002. Correlation of TBM and drilling machine performances with rock brittleness. Engineering Geology, 65 (4), 269–283.

  • Kaiser, P.K., Cai, M., 2012. Design of rock support system under rockburst condition. Journal of Rock Mechanics and Geotechnical Engineering, 4 (3): 215–227.

  • Kaya, O., 1973. The Devonian and lower Carboniferous stratigraphy of the İstinye, Bostancı and Büyükada subareas. Kaya O (ed.), Paleozoic of İstanbul, Ege Üniversitesi Fen Fakültesi Kitaplar Serisi, 40, 1-143.

  • Ketin, İ., 1941. Das granitmassiv westlich von Alemdağ. İstanbul Üniversitesi Enstitüsü Neşriyatı, 7, 1-13.

  • Ko, T.Y., Kim, T.K., Son, Y., Jeon, S., 2016. Effect of geomechanical properties on Cerchar Abrasivity Index (CAI) and its application to TBM tunnelling. Tunnelling and Underground Space Technology, 57, 99–111.

  • Lajtai, E.Z., 1974. Brittle fracture in compression. International Journal of Fracture, 10 (4), 525– 536.

  • Lee, S.M., Park, B.S., Lee, S.W. 2004. Analysis of rockbursts that have occurred in a waterway tunnel in Korea. Proceedings of the ISRM SINOROCK 2004 Symposium, International Journal of Rock Mechanics and Mining Sciences, 41(1), 911–916.

  • Martin, C.D., 1997. Seventeenth Canadian Geotechnical Colloquium: the effect of cohesion loss and stress path on brittle rock strength. Canadian Geotechnical Journal, 34, 698–725.

  • Martin, C.D., Christiansson, R., 2009. Estimating the potential for spalling around a deep nuclear waste repository in crystalline rock. International Journal of Rock Mechanics and Mining Sciences, 46 (2), 219–228.

  • Meng, F., Zhou, H., Zhang, C., Xu, R., Lu, X., 2015. Evaluation methodology of brittleness of rock based on post-peak stress-strain curves. Rock Mechanics and Rock Engineering, 48, 1787- 1805.

  • Nicksiar, M., Martin, C.D., 2013. Crack initiation stress in low porosity crystalline and sedimentary rocks. Engineering Geology, 154, 64–76.

  • Okay, A.C., 1948. Şile Mudarlı, Kartal ve Riva arasındaki bölgenin jeolojik etüdü. İstanbul Üniversitesi Fen Fakültesi Mecmuası, 8/4, 311- 335.

  • Önalan, M., 1981. İstanbul Ordovisiyen ve Silüriyen istifinin çökelme ortamları. İstanbul Yerbilimleri Dergisi., c. 2, 3-4, 161-177.

  • Önalan, M., 1982. Pendik bölgesi ile adaların jeolojisi ve sedimenter özellikleri. İstanbul Üniversitesi Yerbilimleri Fakültesi, Doçentlik Tezi, 156s.

  • Özgül, N., 2012. Stratigraphy and some structural features of the İstanbul Palaeozoic. Turkish Journal of Earth Sciences, 21, 817–866.

  • Penck, W., 1919. Grundzüge der Geologie des Bosporus, Veröffentlichungen Des Instituts Für Meereskunde, Geol.- Nalturw, Reihe, H. 4, Berlin.

  • Tapponnier, P., Brace,W.F., 1976. Development of stress-inducedmicrocracks in Westerly granite. International Journal of Rock Mechanics Mining Science Geomechanics Abstracts, 13, 103–112.

  • Tchihatcheff, P. de, 1864. Le Bosphore et Constantinople, avec carte geologique, Paris p.232.

  • Ündül, Ö., Amann F., Aysal, N., Plötze, M., 2015. Micro-textural effects on crack initiation and crack propagation of andesitic rocks. Engineering Geology, 193, 267-275.

  • Ündül, Ö., 2016. İstanbul Paleozoyik istifindeki dayklar ile bölgedeki diğer mağmatik kayaların gevreklik ve jeomekanik özelliklerinin araştırılması. TUBİTAK Projesi, 319316 (devam ediyor).

  • Ündül, Ö., Amann, F., Perras, M., Aysal, N., Çobanoğlu, B.C., 2016. Strength, deformation and cracking characteristics of limestones. Rock Mechanics and Rock Engineering: From the Past to the Future, Eurock 2016 Proceedings Book (Eds. Ulusay, R., Ayd

  • Ündül, Ö., Çobanoğlu, B., 2017. İstanbul’daki magmatik kayaların dayanım ve deformasyon özellikleri ile yan kayaçlar ile ilişkileri. Ulusal Mühendislik Jeolojisi ve Jeoteknik Sempozyumu, 12-14 Ekim, 245-252.

  • Varol, A., Dalgıç, S., 2006. Grouting applications in the İstanbul metro, Turkey. Tunnelling and Underground Space Technology, 21, 602–612.

  • Xia, Y. J., Li, L. C., Tang, C. A., Li, X. Y., Ma, S., Li, M., 2017. A new method to evaluate rock mass brittleness based on stress–strain curves of class I. Rock Mechanics and Rock Engineering, 50, 1123-1139.

  • Yağız, S., 2009. Assessment of brittleness using rock strength and density with punch penetration test. Tunnelling and Underground Space Technology, 24 (1), 66–74.

  • Yıldırım, M., Tonaroğlu, M., Selçuk, M.E., Akgüner, C., 2013. Revised stratigraphy of the Tertiary deposits of İstanbul and their engineering properties. Bulletin of Engineering Geology and the Environment, 72, 431-420.

  • Zhishui, L.I.U., Zandong, S.U.N., 2015. New brittleness indexes and their application in shale/clay gas reservoir prediction. Petroleum. Exploration Development, 42(1), 129–137.



  • Ündül, Ö , Çobanoğlu, B , Taz, F . (2018). İstanbul Paleozoyik İstifi’ndeki Dayklar ile Yan Kayalarının Dayanım ve Deformasyon Özelliklerindeki Farklılıklar . Jeoloji Mühendisliği Dergisi , 42 (2) , 121-142 . DOI: 10.24232/jmd.486009

  • Ündül, Ö , Çobanoğlu, B , Taz, F . İstanbul Paleozoyik İstifi’ndeki Dayklar ile Yan Kayalarının Dayanım ve Deformasyon Özelliklerindeki Farklılıklar. Jeoloji Mühendisliği Dergisi 42 (2018 ): 121-142

  • Difficulty on Performance Prediction of Excavation with Machine in Weak Rocks
    Evren Poşluk Mustafa Korkanç
    View as PDF

    ABSTRACT: Rock mass classification systems are used for rock mass characterization and design in the preliminary stagesof many mining activities and engineering applications. There are theoretical and experimental methods for theprediction of tunnel boring machine (TBM) performance in project stage. The correct estimation of machineperformance is influenced by many input parameters of rock mass, and although it is relatively easy to predictmachine performance in isotropic intact rock environments, it is very difficult in poor rock having anisotropicbehaviour. Many studies in this area have shown a poor relationship with penetration and rock mass classifications.In this study, the performance analysis of TBM in anisotropic weak rock environment with the QTBM method, whichis used in the Tunnel No. 26 (between Bilecik and Bozuyuk), located in the Ankara-İstanbul high-speed train line,has been examined in the section until the machine is trapped in the tunnel. It is concluded that there exist problemsfor the anisotropic weak rocks in the QTBM method. It is extremely difficult to estimate the intermittent disk changetime interval in such environments, and the relationship between properties of anisotropic rock mass and machinecharacteristics should be considered together for the performance machine prediction.

  • Anisotropy

  • Advance rate

  • QTBM

  • TBM performance

  • Tunnel

  • Weak rock

  • Barton, N. R., Lien, R., Lunde, L., 1974. Engineering classification of rock masses for the design of tunnel supports. Rock Mechanics, 6(4), 189-239.

  • Barton, N., 2000. TBM Tunneling in jointed and faulted rock. Balkema, Brookfield. 173 p.

  • Benato, A., Oreste, P., 2015. Prediction of penetration per revolution in TBM tunneling as a function of intact rock and rock mass characteristics. International Journal Rock Mechanics Mining Science, 74, 119–127.

  • Bieniawski, Z.T., Celada, B., Galera, J.M., 2007. TBM Excavability : prediction and machine-rock interaction. In : Proceedings, Rapid Excavation and Tunneling Conference, 1118–1130.

  • Bruland, A., 1998. Hard rock tunnel boring Ph.D. Thesis. Norwegian University of Science and Technology, Trondheim, Vol. 3, 54 p.

  • Büchi, E., 1984. Einfluss Geologischer Parameter auf die Vortriebsleistung einer Tunnelbohrmaschine. PhD Thesis. University of Bern, 136 p.

  • Delisio, A., Zhao, J., 2014. A new model for TBM performance in blocky rock conditions. Tunnelling and Underground Space Technology, 43, 440–452.

  • Farmer, I.W., Glossop, N.H., 1980. Mechanics of disc cutter penetration. Tunnels and Tunnelling International, 12(6), 22-25.

  • Frough, O., Torabi, S.R., Yagiz, S., 2015. Application of RMR for estimating rock mass–related TBM utilization and performance parameters: a case study. Rock Mechanics and Rock Engineering, 48(3), 1305-1312.

  • Gong, Q.M., Zhao, J., 2009. Development of a rock mass characteristics model for TBM penetration rate prediction. International Journal of Rock Mechanics and Mining Sciences, 46(1), 8–18.

  • Graham, P.C., 1976. Rock exploration for machine manufacturers. In: Bieniawski, Z. T. (Ed.), Exploration for Rock Engineering. Balkema, Johannesburg, 173–180.

  • Hassanpour, J., Rostami, J., Khamehchiyan, M., Bruland, A., 2009. Developing new equations for TBM performance prediction in carbonateargillaceous rocks: a case history of Nowsood water conveyance tunnel. Geomechanics and Geoengineering An Internatio

  • Hughes, H.M., 1986. The relative cuttability of coal measures rock. Mining Science and Technology, 3, 95–109.

  • Innaurato, N., Mancini, R., Rondena, E., Zaninetti, A., 1991. Forcasting and effective TBM performance in a rapid excavation of a tunnel in Italy. In: Wittke W, editor. Proceedings of the 7th International Congress Rock Mechanics, 1009– 1014.

  • ISRM, 2007. The Complete ISRM Suggested Methods for Rock Characterization. Testing and Monitoring : 1974-2006, Suggested Methods prepared by the Commission on Testing Methods, ISRM, R. Ulusay and A. Hudson (eds.), Kozan Ofset, Ankara, 628 p.

  • Mahmutoğlu, Y., Vardar, M., Koçak, C., Şans, G., 2006. Tunnelling difficulties under squeezing and flowing conditions at Ayaş, Central Turkey. Felsbau Rock and Soil Engineering, 24(5), 44- 50.

  • Maidl, B., Schmid, L., Ritz, W., Herrenknecht, M., 2008. Hardrock Tunnel Boring Machines, Gmbh & Co.KG, Berlin. 356 p.

  • Movinkel, T., Johannessen, O., 1986. Geological parameters for hard rock tunnel boring. Tunnels & Tunnelling International, 18(4), 45-48.

  • Nelson, P., 1993. TBM Performance analysis with reference to rock properties, mechanized excavation. In : J.A. Hudson (ed). Comprehensive Rock Engineering, 4, 261-291.

  • Ozdemir, L., Miller, R.J., Wang, F.D., 1977. Mechanical tunnel boring prediction and machine design. NSF APR73-07776-A03. Colorado School of Mines, Golden, Colorado, USA. 313 p.

  • Palmström, A., 1995. RMI–a rock mass characterization system for rock engineering purposes. Ph.D. Thesis, University of Oslo, 400 p.

  • Rostami, J., Ozdemir, L., 1993. A new model for performance perdiction of hard rock TBMs. In: RETC proceedings, p. 793–809.

  • Rostami, J., Ozdemir, L., Nilsen, B., 1996. Comparison between CSM and NTH hard rock TBM performance prediction models. In: Proceedings, The Annual Conference of the Institution of Shaft Drilling Technology (ISDT), Las Vegas.

  • Roxborough, F.F., Phillips, H.R., 1975. Rock excavation by disc cutter. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 12, 361–366.

  • Salimi, A., Faradonbeh, R. S., Monjezi, M., Moormann, C., 2016. TBM performance estimation using a classification and regression tree (CART) technique. Bulletin of Engineering Geology and the Environment, 77(1), 429-440. https://doi.org/10.1007/s1006

  • Sanio, H.P., 1985. Prediction of the performance of disc cutters in anisotropic rocks. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 22 (3), 153–161.

  • Sapigni, M., Berti, M., Behtaz, E., Busillo, A., Cardone, G., 2002. TBM performance estimation using rock mass classification. International Journal of Rock Mechanics and Mining Sciences, 39, 771– 788.

  • Sato, K., Gong, F., Itakura, K., 1991. Prediction of disc cutter performance using a circular rock cutting ring. In: Proceedings, The First International Mine Mechanization and Automation Symposium, Colorado School of Mines, Golden, Colorado, USA. 23

  • Snowdon, R.A., Ryley, M.D., Temporal, J., 1982. A study of disc cutting in selected British rocks. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 19, 107–121.

  • Şentürk, K., Karaköse, C., 1981. Orta Sakarya bölgesinde Liyas öncesi ofiyolitlerinin ve mavi şistlerinin oluşumu ve yerleşmesi. Türkiye Jeoloji Kurumu Bülteni, 24(1), 1-11.

  • Tarkov, P.J., 1973. Predicting TBM penetration rates in selected rock types. In: Proceedings, 9th Canadian Rock Mechanics Symposium, Montreal. 263-274.

  • Tüysüz, O., Genç, Ş. C., 2012. TCDD Ankaraİstanbul hızlı tren projesi Vezirhan-İnönü etabı T26 tünel güzergahının jeolojisi raporu. Avrasya Yer Bilimleri Enstitüsü, İTÜ, İstanbul. 24 s.

  • Yağız, S., 2002. Development of rock fracture and brittleness indices to quantify the effects of rock mass features and toughness in the CSM Model basic penetration for hard rock tunneling machines. Ph.D. Thesis, Department of Mining and Earth System

  • Yağız, S., 2008. Utilizing rock mass properties for predicting TBM performance in hard rock condition. Tunnelling and Underground Space Technology, 23 (3), 326– 339.

  • Yılmaz, Y., 1979. Söğüt-Bilecik bölgesinde polimetamorfizma ve bunların jeoteknik anlamı. Türkiye Jeoloji Kurumu Bülteni, 22-1, 85-100.

  • Yüzer, E., Vardar, M., 1986. Kaya Mekaniği. İTÜ Vakfı Yayınları, No. 11, İTÜ Maden Fakültesi Ofset Atölyesi, İstanbul, 187 s.



  • Poşluk, E , Korkanç, M . (2018). Zayıf Kayaçlarda Makinalı Kazı Performansının Kestirilmesindeki Zorluklar . Jeoloji Mühendisliği Dergisi , 42 (2) , 143-158 . DOI: 10.24232/jmd.486013

  • Poşluk, E , Korkanç, M . Zayıf Kayaçlarda Makinalı Kazı Performansının Kestirilmesindeki Zorluklar. Jeoloji Mühendisliği Dergisi 42 (2018 ): 143-158

  • Engineering Properties of Basalt Coarse Aggregates in Hamdan Area, NW Sana’a, Yemen
    Ibrahim A. Al-Akhaly
    View as PDF

    A

  • Basalt

  • Coarse aggregate

  • Hamdan

  • Sana’a

  • Yemen.

  • Aitcin, P.C., Mehta, P.K., 1990. Effects of coarse aggregate characteristics on Mechanical properties of high strength concrete. ACI Materials Journal, 87 (2), 103-107.

  • ASTM C 33-01. Standard specification for concrete aggregate. Annual book of ASTM standards.

  • ASTM C 88-99. Standard test method for soundness of aggregates by use of sodium sulfate or magnesium sulfate. Annual book of ASTM standards

  • ASTM C 127-01. Standard test method for density, relative density (specific gravity), and absorption of coarse aggregate. Annual book of ASTM standards.

  • ASTM C 131-96. Standard test method for resistance to degradation of small size coarse aggregate by abrasion and impact in the Los Angeles Machine. Annual book of ASTM standards

  • ASTM C 136-01. Standard test method for sieve analysis of fine and coarse aggregates, Annual book of ASTM standards.

  • ASTM C 289-01. Standard test method for potential alkali-silica reactivity of aggregates (Chemical Method). Annual book of ASTM standards.

  • ASTM D 3398-00. Standard test method for index of aggregate particle shape and texture. Annual book of ASTM standards.

  • Balletto, G., Furcas, C., 2011. Environmental sustainability in the construction industry related to the production of aggregates qualitative aspects, case studies and future outlooks. International Journal of Environmental Science and Development, 2

  • Bérubé, M.A., 2001. The mineralogical and petrographic analysis of concrete aggregates. The Journal of The Minerals, Metals & Materials Society (TMS), 53(12), 45–47.

  • Blyth, F.G., Freitas, M.H., 1977. A geology for engineers. 6th Edition. Edward Arnold. The Pitman Press. Great Britain.

  • Bosworth, B.; Huchon, P., McClay, K., 2005. The Red Sea and Gulf of Aden basins. Journal of African Earth Science, 43(1-3), 334-378. http://dx.doi. org/10.1016/j.jafrearsci.2005.07.020

  • BS 812. 1990. Testing aggregates. British Standards Institution, London, UK.

  • BS 812: Part 1. 1975. Methods for determination of particle size and shape. British Standards Institution, London, UK.

  • BS 812: Part 2. 1975. Determination of relative densities and water absorption of coarse aggregates. British Standards Institution, London, UK

  • BS 812: Part 105.1. 1989. Determination of aggregate particle shape (flakiness index). British Standards Institution, London, UK.

  • BS 812: Part 105.2. 1989. Determination of aggregate particle shape (elongation index). British Standards Institution, London, UK.

  • BS 812: Part 112. 1990. Methods for determination of aggregate impact value (AIV). British Standards Institution, London, UK.

  • BS 812: Part 113. 1990. Methods for determination of aggregate abrasion value (AAV). British Standards Institution, London, UK

  • Engidasew, T.A., 2013. Engineering geological characterization of volcanic rocks of Ethiopian and Sardinian highlands to be used as construction materials. PhD. Thesis, Università degli Studi di Cagliari. Cagliari, Italy (unpublished).

  • Farny, J., Kosmatka, S., 1997. Diagnosis and control of alkali-aggregate reactions in concrete. Concrete Information - IS413.01T. PCA, 24 p.

  • Fatt, N.T., Beng, Y.E., 2007. Potential alkali–silica reaction in aggregate of deformed granite. Geological Society of Malaysia, Bulletin, 53, 81–88.

  • Fookes, P.G., 1980. An introduction to the influence of natural aggregates on the performance and durability of concrete, The Quarterly Journal of Engineering Geology. 13(4), 207-229.

  • Goodman, R.E., 1993. Rock in engineering construction, Engineering Geology, Wiley, New York.

  • Harrison, D.J., Bloodworth, A.J., 1994. Construction materials. Industrial Minerals Laboratory Manual, Technical Report WG/94/12, Mineralogy and Petrology Group, British Geological Survey, Keyworth, UK

  • Kandhal, P.S., Lee, D.Y., 1970. An evaluation of the bulk specific gravity for granular materials. Highway research board, Highway research record No. 307.

  • Kandhal, P.S., Lynn, C.Y., Parker, F., 1998. Tests for plastic fines in aggregates related to stripping in asphalt paving mixtures. Journal of the Association of Asphalt Paving Technologists, 67.

  • Katayama, T., St John, D.A., Futagawa, T., 1989. The petrographic comparison of rocks from Japan and New Zealand-Potential reactivity related to interstitial glass and silica minerals. In: Okada, K, Nishibayashi, S and Kawamura, M (editors). Proceedi

  • Korkanç, M., Tuğrul, A., 2004. Evaluation of selected basalts from Niğde, Turkey, as source of concrete aggregate. Engineering Geology, (75) 291–307.

  • Korkanç, M., Tuğrul, A., 2005. Evaluation of selected basalts from the point of alkali-silica reactivity. Cement and Concrete Research, 35, 505-512.

  • Kruck, W., Schäffer, U., 1991. Geological map of the Republic of Yemen, Sheet Sana’a, Ministry of Oil and Mineral Resources, Sana’a, Yemen, scale 1:250,0000.

  • Krynine, D., Judd, W., 1957. Principles of engineering geology and geotechnics. McGraw-Hill, New York, USA.

  • Mattash, M.A., Balogh, K., 1994. K-Ar radiometric age data on Cenozoic volcanic and their associated intrusion from Yemen. Acta mineral Petrograph., Szeged, 35, 83-92.

  • Mattash, M.A., Pinarelli, L., Vaselli, O., Minissale, A., Al-Kadasi, M., Shawki, M.N., Tassi, F., 2013. Continental flood basalts and rifting: Geochemistry of Cenozoic Yemen Volcanic Province. International Journal of Geoscience, 4(10), 1459-1466.

  • Menegaki, M.E., Kaliampakos, D.C., 2010. European aggregates production: drivers, correlations and trends. Resources Policy, 35, 235-244. doi: 10.1016/j.resourpol.2010.01.003

  • Mielenz, R.C., Benton, E.J., 1958. Evaluation of the quick chemical test for alkali reactivity of concrete aggregate. Highway Research Board, Washington, D.C., 1-15

  • Neves, J., Diogo A.C., Freire A.C., de Brito, J., 2015. Aggregates. In: Materials for construction and civil engineering. Springer International Publishing, Cham, 857–896. doi: 10.1007/9783319082363_20

  • Neville, A.M., 1981. Properties of concrete. 3rd Edition, Longman Group Ltd. London, UK.

  • Neville, A.M., 2000. Properties of concrete. 4th Edition, Pearson Education Asia Ltd. Edinburgh, UK.

  • Ramsay, D.M., Dhir, R.K., Spence, I.M., 1974. The role of rock and clast fabric in the physical performance of crushed-rock aggregate. Engineering Geology, 8, 267-285

  • Schmidt, R.J., Graf, P.E., 1972. The effect of water on resilient modulus of asphalt treated mixes. Proceeding of Association of Asphalt Paving Technologists, 41, 118-162.

  • Smith, M.R., Collis, L., 1993. Aggregates. Geological Society Engineering Geology Special Publication, 9, Geological Society, London.

  • Smith, M.R., Collis, L., 2001. Aggregates- sand, gravel and crushed rock aggregates for construction purposes. 3rd Edition. The Geological Society, London, 199-224.

  • UEPG (Union Européenne des Producteurs de Granulats, European Aggregates Association). 2016. A sustainable industry for a sustainable europe annual review 2016. http://www.uepg,eu/ uploads/Modules/Publications/uepg-ar2016- 17_32pages_v04_small.pdf. A

  • EN 12620:2002+A1:2008, 2008. Aggregates for concrete. CEN.

  • USGS, 2010. Mineral production year book of Ethiopia. New York, USA.

  • Wakizaka, Y., 2000. Alkali-silica reactivity of Japanese rocks. Engineering Geology, 56(1-2), 211-221. DOI: 10.1016/S0013-7952(99)00144- 1.

  • Wu, Y., Parker, F., Kandhal, K., 1998. Aggregate toughness/abrasion resistance and durability/ soundness tests related to asphalt concrete performance in pavements. National Centre for Asphalt Technology, Report No. 98-4, Auburn University, Alabama.

  • Zerdi, T.A., 2015. Effects of using washed basalt coarse aggregates on strength characteristics of concrete. Global journal for research analysis, 4(12), 64-65.



  • Al-akhaly, İ . (2018). Engineering Properties of Basalt Coarse Aggregates in Hamdan Area, NW Sana’a, Yemen . Jeoloji Mühendisliği Dergisi , 42 (2) , 159-174 . DOI: 10.24232/jmd.486021

  • Al-akhaly, İ . Engineering Properties of Basalt Coarse Aggregates in Hamdan Area, NW Sana’a, Yemen. Jeoloji Mühendisliği Dergisi 42 (2018 ): 159-174

  • Some Criteria For Creating GIS Based Coal Mine Information System (CMIS) in Turkey
    Cevdet Bertan Güllüdağ Mehmet Altunsoy
    View as PDF

    ABSTRACT: Mine Information Systems contain both metalic and non – metalic mines. Amog fossil fuels, coal is commonlyused one in Turkey and creating a different information system for the coal will provide important contribution frommining standpoint. For creating a Coal Mine Information System (CMIS), the first step is to establish potential coalfields and process reserve data of these fields. After the classification of the fields for management, coordinate, detailreserve, company and mining license should be added as data sets. These coal areas must have other data sets whichare geological factors (primary and secondary), environmental factors, laboratory analysis results, risk of humanhealth and occupational diseases. All of these data sets help to create thematic maps and the thematic maps can beused for access and analysis by different users. For the effective usage of the systems, these data must be current atall time.

  • Information System

  • GIS

  • Coal

  • Mine

  • Acı, Z., 2010. CBS tabanlı maden ruhsat bilgi sistemi oluşturulması. Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir, Yüksek Lisans Tezi, 98 s

  • Baba, A., 2000. Muğla-Yeniköy termik santral katı atıklarının çevre jeolojisi açısından incelenmesi. Türkiye 8. Enerji Kongresi, Ankara, 247-258.

  • Baran, H.A., Sever, T., Ermin, M.V., Değirmenci, A. 2016. Coğrafi Bilgi Sistemleri ile maden haritalarının oluşturulması: Güneydoğu Anadolu örneği. Batman Üniv. Yaşam Bilimleri Dergisi, 6(1), 13-26.

  • Dereli, M.A., Yalçın, M., Erdoğan, S. 2010. Madencilik faaliyetlerinde Coğrafi Bilgi Sisteminin kullanımı. Harita Teknolojileri Elektronik Dergisi, 2(3) 28-34.

  • Doğan, T., Özkan, M., Özer, Ü., Kapar, K., Kahriman, A., Erçelebi, S., 2007. Coğrafi Bilgi Sistemlerinin (CBS) rezerv tespitinde kullanılabilirliği. İstanbul Üniv. Müh. Fak. Yerbilimleri Dergisi, 20(2), 81-91.

  • Ketris, M.P., Yudovich, Y.E., 2009. Estimations of clarkes for carbonaceous biolithes: world averages for trace element contents in black shales and coals. International Journal of Coal Geology, 78, 135-148.

  • Malkoç, C., 2010. Tunçbilek ve Soma maden kömürü sahalarında çalışan işçilerde iş kazaları ve meslek hastalıkları görülme sıklığı ve ilişkili etmenler. Gazi Üniversitesi Sağlık Bilimleri Enstitüsü, Ankara, Yüksek Lisans Tezi, 119 s. http://www.enerji

  • Özkan, G., Yılmaz, O.S., Yalpır, Ş., 2007. Maden Bilgi Sistemi oluşturma çalışmaları. TMMOB Harita Mühendisleri Odası Ulusal Coğrafi Bilgi Sistemleri Kongresi Bildirileri, 30 Ekim-2 Kasım 2007, KTÜ, Trabzon.

  • Palmer, C.A., Tuncalı, E., Dennen, K.O., Coburn, T.C., Finkelman R.B. 2004. Characterization of Turkish coals: a nationwide perspective. International Journal of Coal Geology, 60, 85- 115.

  • Seyis, C., Yalçın, N.K., İnan, S., 2002. Coğrafi Bilgi Sistemine dayalı jeolojik veri tabanı yönetimine Zonguldak bölgesinden bir örnek. Türkiye 13 Kömür Kongresi Bildiriler Kitabı, 29-31 Mayıs 2002, Zonguldak, 335-346

  • Sütçü, E., Paker, S., Nurlu, P., Kumtepe, P., Cengiz, T., 2009. Tekirdağ-Malkara havzasında CBS yöntemleriyle potansiyel kömür sahalarının belirlenmesine yönelik iki değişkenli istatistiksel yaklaşım. TMMOB Coğrafi Bilgi Sistemleri Kongresi Bildirile

  • Şalap, S., Karslıoğlu, M.O., Demirel, N., 2009. Development of a GIS-based monitoring and management system for underground coal mining safety. International Journal of Coal Geology, 80(2), 105-112.

  • Türkiye Linyit Envanteri, 2010. Maden Tetkik Arama Enstitüsü envanter eserisi – 202, Ankara, 371 s.

  • Ülger, N.E., Güneş, T.K., Akkaya, U.G., Kahriman, A., 2006. İstanbul bölgesi taşocakları bilgi sisteminin oluşturulması. İstanbul Üniv. Mühendislik Fakültesi Yerbilimleri Dergisi, 19(1), 51-61.

  • Ülger, N.E., Güneş, T.K., Akkaya, U.G., Kahriman, A., 2006. İstanbul bölgesi taşocakları bilgi sisteminin oluşturulması. İstanbul Üniv. Mühendislik Fakültesi Yerbilimleri Dergisi, 19(1), 51-61.

  • Yomralıoğlu, T., 2000. Coğrafi Bilgi Sistemleri: temel kavramlar ve uygulamalar. Seçil Ofset: İstanbul. 480 s.



  • Güllüdağ, C , Altunsoy, M . (2018). Türkiye’de CBS Tabanlı Kömür Maden Bilgi Sistemi (KMBS) Kurulmasında Kullanılacak Bazı Kriterler . Jeoloji Mühendisliği Dergisi , 42 (2) , 175-190 . DOI: 10.24232/jmd.486025

  • Güllüdağ, C , Altunsoy, M . Türkiye’de CBS Tabanlı Kömür Maden Bilgi Sistemi (KMBS) Kurulmasında Kullanılacak Bazı Kriterler. Jeoloji Mühendisliği Dergisi 42 (2018 ): 175-190

  • Recommendations for Kula Volcanic Geopark Management Plan
    Hasibe Körbalta
    View as PDF

    ABSTRACT: Kula Volcanic Geopark is the one of the areas that are rarely seen in Turkey’s young volcanics. Kula Volcanic Geopark is distinguished from other areas in the geopark nature in Turkey with its membership of the Global Geoparks Network. Although the geopark has a global visibility on the World, it isn’t well known in Turkey. The lack of a legislation covering the entire area and a planning work to provide field management have prevented the sustainable use of Kula Volcanic Geopark. The geo-park, which is in a position to provide the conditions required for the network to become a member of the Global Geoparks Network, will be able to fulfill these requirements with this planned management. In this study, some proposals will be brought in order to ensure the planned management and sustainability of the Kula Volcanic Geopark’s in protection-use bala

  • Kula

  • Geopark

  • European Geoparks Network

  • Global Geoparks Network

  • Çiftçi, Y., Güngör Y., 2016. Jeopark projeleri kapsamındaki doğal ve kültürel miras unsurları için standart gösterim önerileri. Maden Tetkik ve Arama Dergisi, 153, 223-238.

  • Çevre ve Orman Bakanlığı, 2017. Korunan Alan Planlaması ve Yönetimi, Biyolojik Çeşitlilik ve Doğal Kaynak Yönetimi Projesi Deneyimi, TŞOF Trafik Matbaacılık A.Ş., Ankara, 26.

  • Devlet Planlama Teşkilatı, 2004. İlçelerin SosyoEkonomik Gelişmişlik Sıralaması Araştırması. Ankara

  • English Riviera Geopark Management Plan, 2016. Torbay Coast and Countryside Trust. Cockington Court, 5

  • Ercan, T., 1981. Kula Yöresinin Jeolojisi ve Volkanitlerin Petrolojisi, İstanbul Yerbilimleri Dergisi, 3 (1-2), 77-124.

  • Ercan, T., Öztunalı, Ö., 1982. Kula Volkanizmasinin Özellikleri ve İçerdiği «Base Surge» Tabaka Şekilleri, Türkiye Jeoloji Kurumu Bülteni, 25, 117 -125.

  • Erdem, N.Ö., 2015. Jeoparklar ve Küresel Ağlar ile Bütünleşmenin Önemi, TMMOB Jeoloji Mühendisleri Odası, Haber Bülteni, 2, Ankara, 5.

  • Erinç, S., 1970. Kula ve Adala Arası Genç Volkan Reliefi. İstanbul Üniversitesi Coğrafya Enstitüsü Dergisi, 9 (17), İstanbul, 20.

  • Farsani, H.T., Coelho, C., Costa, C., 2012. Geoparks and Geotourism: New Approaches to Sustainability for the 21st Century, Brown Walker Press, ISBN-10:1-61233-552-7, USA, 26-27

  • Göksu, Y., 1977. Fosil İnsan Ayak İzleri Taşıyan Volkanik Tabakaların Termoluminesans Özellikleri ve İzlerin Tarihlendirilmesi. ODTÜ Fizik Bölümü. Ankara, Doçentlik Tezi.

  • Güngör, Y., 2012. Turizmde Yükselen Eğilim: Jeoturizm, TMMOB Jeoloji Mühendisleri Odası Haber Bülteni, 2012 (2), Ankara. 227

  • Kayan, İ., 2015. Demirköprü Baraj Gölü Batı Kıyısında Çakallar Volkanizması ve Fosil İnsan Ayak İzleri, Ege Coğrafya Dergisi, 6 (1).

  • Kazancı, N., 2001. Jeolojik Miras üzerine. Mavi Gezegen, 2001(4), 4-9.

  • Koçan, N., 2013. Kızılcahamam-Çamlıdere (Ankara) Bölgesi, Jeolojik Mirasının Koruma Kullanma Potansiyeli, Kastamonu Üniversitesi, Orman Fakültesi Dergisi, 2013, 13 (1), 36-47.

  • Madonie Bildirgesi, 2004. (http://www. europeangeoparks.org/wp-content/ uploads/2012/03/THE-MADONIEDECLARATION.pdf).

  • MTA, 2015. Jeopark Alanları Ulusal Listesine Öneri Sunma Çalıştayı Raporu, Ankara

  • Ozansoy, F., 1969. Türkiye Pleistosen fosil insan ayak izleri. Maden Tetkik ve Arama Enstitüsü Dergisi, Ankara.72, 204-208

  • Sanver, M., 1968. A paleomagnetic study of Quaternary volcanic rocks from Turkey. Phys. Earth Planet. Interiors. North Holland Pub. Com. Co. Amsterdam, 1, 403-421

  • Tekkaya, İ., 1976. İnsanlara Ait Fosil Ayak İzleri. Yeryuvarı ve İnsan, Türkiye Jeoloji Kurumu. Ankara, 1.2. 8-10. , 2016. Adrese Dayalı Nüfus Kayıt Sistemi.

  • TUİK, 2016. Adrese Dayalı Nüfus Kayıt Sistemi.



  • Körbalta, H . (2018). Kula Volkanik Jeoparkı Yönetim Planı” İçin Öneriler . Jeoloji Mühendisliği Dergisi , 42 (2) , 191-214 . DOI: 10.24232/jmd.486026

  • Körbalta, H . Kula Volkanik Jeoparkı Yönetim Planı İçin Öneriler. Jeoloji Mühendisliği Dergisi 42 (2018 ): 191-214

  • Turkey`s Asbestos Profile and Safety Problem of Asbestos
    Bahattin Murat Demir Sami Ercan Mustafa Aktan Harun Öztaşkin
    View as PDF

    ABSTRACT: The use of asbestos has been banned in many countries following the recognition of the direct relation betweenmesothelioma (pleurarcancer), throat cancer, ovary cancer and asbestosis and exposure to asbestos. In our country,too, the commercial utilisation of the asbestos mineral has been banned as of 31.12.2010. Despite this ban, the risksposed by anthropogenic (industrial) asbestos exposure is still relevant due to the presence of asbestos in products thathave been released to the market before the above-mentioned date and the continuing circulation of these products in daily life. On another note, as research on medical geologic and other epidemiologic in our country shows, anotherfactor threatening asbestos safety is geogenic (environmental) exposure to asbestos. Asbestos continues to pose athreat to the environment and public health as the steps necessary to strengthen asbestos safety have not been takendespite the presence of these two decisive factors. The goal of this study is the elaboration of the problem of asbestossafety within the framework of the national asbestos profile in a historical perspective and to assess the future of thisproblem. Our study shows that our country is not only an important importer of asbestos, but also a producer. Eventhough Turkey is exposed to both anthropogenic and geogenic asbestos, awaraness regarding this issue is low onnot only the individual, but also the public level. In our country, where there is need for a strategy different from theone that has so far been followed in the face of the risks we are exposed to, a participatory (society-based) asbestosrisk management strategy that makes the reduction of the harms of asbestos a matter of state policy, that closes thegap between the laws and regulations regarding the issue and the institutional infrastructure and thereby takes as abasis the complete and systematic fight against both anthropogenic and geogenic exposure, must rapidly be devisedand adopted.

  • Asbestos

  • National Asbestos Profile

  • Geogenic (Environmental) Asbestos Exposure

  • Anthropogenic (Industrial) Asbestos Exposure

  • Asbestos Risk Management

  • Aksu, F., Emri, S., 2015. Türkiye’de malign plevral mezotelyoma sorunu, güncel göğüs hastalıkları serisi, 3. 273-277.

  • Atabey, E., 2005. Tıbbi Jeoloji. TMMOB-JMO yayınları, yayın no:88, 210 s

  • Atabey, E., 2015. Türkiye asbest haritası (çevresel asbest maruziyeti-akciğer kanseri-mezotelyoma). Tuberk Toraks; 63(3), 199-219.

  • ATERMİT A.Ş., http://www.atermit.com/Urunler/ atermit-lifli-cimento-oluklu-levha (Son Erişim: 02.02.2018)

  • Barbalace, R. C., 2004. A brief history of asbestos use and associated health risk. https://EnvironmentalChemistry.com/yogi/ environmental/asbestoshistory2004.html (Son Erişim: 01.02.2018)

  • Barış, Y. İ., Artvinli, M., Şahin, A. A., 1979. Enviromental mesothelioma in Turkey. Annals of the NY academy of sci, vol:330, 423–432.

  • British Geological Survey World Mineral Statistics (BGS-WMS; electronic archive), https://www. bgs.ac.uk/mineralsUk/statistics/worldArchive. html (Son Erişim: 02.02.2018)

  • Bulut, G., Arslan, S., Berk, S., Gümüş, C., Yalçın, H., Akkurt, İ., 2013. Sivas kırsalındaki iki ayrı bölgede asbeste maruz kalma sonucunda gelişen çevresel hastalıklar, Türkiye klinikleri Journal of Medical Sciences, Cilt:33, Sayı:3, 613-620

  • Çalışma ve Sosyal Güvenlik Bakanlığı, 2011. Meslek hastalıkları rehberi (ÇSGB-MHR), Ankara.

  • Deniz Ticareti Dergisi Gemi Geri Dönüşüm Eki, 2016. İstanbul ve Marmara, Ege, Akdeniz, Karadeniz bölgeleri Deniz Ticaret Odası. Şubat 2016.

  • Donovan, E. P., Donovan, B. L., Mckinley, M. A., Cowan, D. M., Paustenbach, D. F., 2012. Evaluation of take home (paraoccupational) exposure to asbestos and disease: a Review of The Literature. https://doi. org/10.3109/1408444.2012.709821

  • Erdinç, M., Erdinç, E., Çok, G., Polatlı, M., 2003. Respiratory impairment due to asbestos exposure in brake-lining workers. Environmental research, 92(3), 151-156.

  • European Environment Agency (EEA), 2001. Late lessons from early warnings: The precautionary principle 1896–2000, Environmental i̇ssue report No:22.

  • Gemalmayan, N., 1987. Ankara’da pilot bölge seçilen Kızılay kavşağında taşıtların fren sistemlerinden atmosfere atılan tozlarda asbest analizi ve sonuçları. Gazi Üni. Müh. Mim. Fak. Dergisi, Cilt 2, Sayı 1, 79-81.

  • Gövercin, M., 2011. Çevresel asbeste maruz kalmış kişilerde mikronükleus sıklığının araştırılması. Pamukkale Üniversitesi-Tıbbi Biyoloji Anabilim Dalı, Denizli, Yüksek Lisans Tezi, 59 s (yayımlanmamış).

  • Healty and Safety Executive (HSE), 2012. Control of asbestos regulations 2012.

  • International Agency for Research on Cancer (IARC), 2012. Monographs on evaluation of cancinogenic risks to humans, list of classifications, volumes 1-20. http://monographs.iarc.fr/ ENG/Classification/latest_classif.php (Son Erişim:01.02.2018)

  • International Ban Asbestos Secretariat (IBAS), 2018. Current asbestos bans. http://ibasecretariat.org/ alpha_ban_list.php (Son Erişim:02.02.2018)

  • International Chrysotile Association (ICA), 2017. Asbestos amphıboles must be banned, chrysotile must be controlled scıence must prevail. http:// www.chrysotileassociation.com/en/news/n_list. php (Son Erişim: 30.01.2018)

  • International Labour Organization (ILO) and World Health Organization (WHO), 2007. Outline for the development of national programmes for elimination of asbestos-related diseases.

  • International Labour Organizasyon (ILO), 1986. C162 - Asbestos Convention, (No. 162; R172 - Asbestos Recommendation, 1986 (No. 172); C187 - Promotional Framework for Occupational Safety and Health Convention, 2006 (No. 187). http://www.ilo.org/global

  • İLBANK Yıllık Faaliyet Raporları (İLBANKFR), 2018. http://www.ilbank.gov.tr/index. php?Sayfa=iceriksayfa&icId=193 (Son Erişim: 01.02.2018)

  • Kale, Ö. A., Gürcanlı, G. E., Baradan, S., 2017. Kentsel dönüşüm sürecinde asbest maruziyeti ve korunma yöntemleri. Pamukkale Üni. Müh. Bilim Dergisi, 23(6), 694-706.

  • Kazan-Allen, L., 2005. Asbestos and Mesothelioma: worldwide trends. Elsevier, lung cancer, volume: 49, 3-8

  • Kurt, M. A., Yıldırım, Ü., 2016. Türkiye’de asbest yasağı ve bazı ithal ürünlerde asbest minerallerinin araştırılması. Niğde Üniversitesi Mühendislik Bilimleri Dergisi, Cilt 5, Sayı 2, 90-96

  • Metintaş, S., Batırel, F.B., Bayram, H., Yılmaz, Ü., Karadağ, M., Ak, G., Metintaş, M., 2017. Turkey national mesothelioma surveillance and environmental asbestos exposure control program. Int. J. Environ. Res. Public health, 14, 1293; doi:10.3390/ij

  • Nelson, G., Murray, J., Phillips, J. I., 2011. The risk of asbestos exposure in south african diamond mine workers. The annals of occupational hygiene, volume 55, issue 6, 569–577

  • Occupational Saftey and Health Administration (OSHA), 1994. Occupational exposure to asbestos final rule

  • Sosyal Güvenlik Kurumu İstatistik Yıllıkları (SGKİY), 2018. http://www.sgk.gov.tr/wps/portal/sgk/ tr/kurumsal/istatistik/sgk_istatistik_yilliklari (Son Erişim: 01.02.2018).

  • Şenyiğit, A., Tanrıkulu A. Ç., Dağlı, C. E., 2004. Güneydoğu Anadolu Bölgesi’nde halen asbestli toprak kullanan ailelerin asbest konusundaki bilgileri ve asbeste bakışları. Solunum hastalıkları, cilt 15, sayı 3, 76-80.

  • Taşbaşı, A., Sarıca, Y. P., Sabah, S., 2017. Uluslararası Asbest Ticareti, İş Sağlığı ve Türkiye. DİSK Birleşik Metal Sendikası Çalışma ve Toplum Ekonomi ve Hukuk Dergisi, 2017/4, 2003-2040.

  • T.C. Kalkınma Bakanlığı Özel İhtisas Komisyonu Raporları (TCKB-ÖİKR), 1977-1992-2001- 2014. http://www.kalkinma.gov.tr/Pages/Ozel IhtisasKomisyonuRaporlari.aspx (Son Erişim: 29.01.2018)

  • T.C. Kalkınma Bakanlığı Kalkınma Planları, 2. Beş yıllık kalkınma planı 1968-1972 (TCKB-2. BYKP).

  • T.C. Kalkınma Bakanlığı Kalkınma Planları, 3. Beş yıllık kalkınma planı 1973-1977 (TCKB-3. BYKP).

  • Türkiye Asbest Kontrolü Stratejik Planı (TAKSP), 2012. http://kanser.gov.tr/Dosya/ar-ge/asbest.pdf (Son Erişim: 30.01.2018)

  • Türkiye İstatistik Kurumu Başkanlığı (TÜİK). https:// biruni.tuik.gov.tr/disticaretapp/menu.zul

  • U.N. Office for Disaster Risk Reduction (UNISDR), 2016. Terminology on disaster risk reduction

  • U.S. Environment Protection Agency (EPA), 1990. Asbestos/NESHAP regulated asbestos containing materials guidance.

  • U.S. Geological Survey (USGS), 2002. Asbestos: Geology, mineralogy, mining, and uses, openfile report 02-149.

  • U.S. Geological Survey (USGS), 2005. Mineral commodity profiles-asbestos.Circular 1255-KK.

  • U.S. Geological Survey (USGS), 2006. Worldwide asbestos supply and consumption trends from 1900 through 2003, circular 1298.

  • World Health Organization (WHO), 2016. The public health impact of chemicals: knowns and unknowns,

  • World Health Organization (WHO) (United Nations Environment Programme), 1998. International programme on chemical safety- environmental health criteria.

  • Yazıcıoğlu, S., 1976. Pleural calcification associated with exposure to chrysotile asbestos in southeast Turkey. Chest journal,volume 70, issue 1, 43–47

  • Yiğitbaş, E., Mirici. A., Gönlügür, U., Bakar, Ç., Tunç, İ. O., Şengün, F., Işıkoğlu, Ö., 2015. Dumanlı köyünde (Çanakkale - Türkiye) asbest maruziyetinin tıbbi jeoloji açısından değerlendirilmesi; disiplinler arası bir çalışma. MTA Dergisi (2015) 15



  • Demir, B , Ercan, S , Aktan, M , Öztaşkın, H . (2018). Türkiye’nin Asbest Profili ve Asbest Güvenliği Sorunu . Jeoloji Mühendisliği Dergisi , 42 (2) , 215-232 . DOI: 10.24232/jmd.486031

  • Demir, B , Ercan, S , Aktan, M , Öztaşkın, H . Türkiye’nin Asbest Profili ve Asbest Güvenliği Sorunu. Jeoloji Mühendisliği Dergisi 42 (2018 ): 215-232

  • ISSUE FULL FİLE
    View as PDF