Sinem Aksoy
Atiye Tuğrul
Murat Yilmaz
Selman Er
View as PDF
ABSTRACT: The neccesity of natural resource gradually increases with engineering projects which are currently beingcarried out at the present time. For meeting the requirements, basaltic rocks are preferred due to their high strengthand durability. In this context, it is important to know the mineralogical and petrographic characteristics of basalts,which used in engineering applications and when required different sectors, that affect their crack initiating, failurethreshold and as well as the behavior under load. This study aimed to reveal the mechanical behavior of basaltic rockswhich have different mineralogical and petrographic features. Research was carried out on samples that have beencollected from the basalt quarries within Marmara Region and its surroundings. After mineralogical and chemicalcomposition analysis, petrographic properties of basalts were digitized with the help of the image processing. Atthe end of the laboratory studies, mechanic properties were obtained and load values of crack initiation and failurethreshold were determined with acoustic emission method. Obtained result show that load values of crack initiationvalue were found between 0.33σc and 0.54σc and the failure threshold value between 0.83σc and 0.98σc
Basalt
Acoustic emission
Mineralogic - petrographic
ASTM E 1316, 2002, Standard Terminology for NDT.
Aydan, Ö., Ulusay, R., Tuncay, E., Kumsar, H., Yılmazoğlu, M., Yüzer, E., 2001. Batı Anadolunun etkin gerilim ortamı. Jeoteknik III, İzmir ve Çevresinin Deprem ve Jeoteknik Sempozyumu, İzmir, Ö. Orhun ve Y. Tuner (eds.), Bildiriler CDsi, 14 s.
Brace, W.F., Paulding, B.R., Scholz, C., 1966. Dilatancy in fracture of crytalline rocks, Journal of Geophysical Research, 71 (16), 3939-3953.
Cai, M., Kaiser, P.K, Tasaka, Y., Maejima, T., Morioka, H., Minami, M., 2004. Generalized crack initiation and crack damage gerilims thresholds of brittle rock masses near underground excavations, International Journal of Rock Mechanics and Mining Sc
Chang, S.H., Lee, C.I., 2004. Estimation of cracking and damage mechanisms in rock under triaxial compression by moment tensor analysis of acoustic emission. International Journal of Rock Mechanics and Mining Sciences, 41, 10691086.
Diederichs, M.S., 2007. Mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunneling. Canadian Geotechnical Journal, 44, 1082-1116.
Eberhardt E., 1998. Brittle rock fracture and progressive damage in uniaxial compression. Ph.D Thesis, Department of Geological Sciences, University of Saskatchewan, Saskatoon.
Eberhardt, E., Stead, D., Read, R.S., 1998. Identifying crack initiation and propagation thresholds in brittle rock. Canadian Geotechnical Journal, 35 (2), 222-223.
Eberhardt, E., Stimpson, B., Stead, D., 1999a. Effects of grain size on the initiation and propagation thresholds of gerilims-induced brittle fractures. Rock Mechanics and Rock Engineering, 32(2), 81-99.
Eberhadt, E., Stead, D., Stimpson, B., 1999b. Quantifying progressive pre-peak brittle fracture damage in rock during uniaxial compression. International Journal of Rock Mechanics and Mining Sciences, 36, 361-380.
Hardy, H. R. Jr., 1972. Application of acoustic emission techniques to rock mechanics research. Acoustic Emission, ASTM STP 505, Philadelphia, R.G. Liptai, D.O. Harris, and C.A. Tatro (eds.), American Society for Testing and Materials, 41-83.
Hardy, H. R. Jr., 1981. Application of acoustic emission techniques to rock and rock structures: A state-of-the-art review. Acoustic Emission in Geotechnical Engineering Practice, STP 750, Philadelphia, V.P. Drnevich and R.E. Gray (eds.), American So
Kuno H. 1966. Lateral variation of basalt magma types across continental margins and island arcs. Bulletin of Volcanology, 29, 195-222.
Lajtai, E.Z., 1974. Brittle fracture in compression. International Journal of Fraction, 10(4), 525-536.
Le Bas, M.J., Le Maitre, R.W., Streckeisen, A., Zanettin, B., 1986. A chemical classification of volcanic rocks based on the total alkali silica diagram. Journal of Petrology, 27, 745-750.
Nicksiar, M., Martin, C. D., 2012. Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks. Rock Mechanics and Rock Engineering, 45, 607617.
Park, P., Park, N., Hong, C., Jeon, S., 2001. The influence of delay time and confining pressure on in-situ stress measurement using AE and DRA. Proceedings of the 38th US Symposium, Rock Mechanics in the National Interest, Washington, D. Elsworth, J
Stacey, T.R., 1981. A simple extension strain criterion for fracture of brittle rock. International Journal of Rock Mechanics and Mining Sciences Geomechanics Abstracts, 18 (6), 469 474.
Srinivasan, C., Nair, G.J., Raju, N.M., 1995. Microseismic precursor analysis prior to seismic events in Kolar gold mine fields: A case study. Proceedings of the 5th Conference on Acoustic Emission / Microseismic Activity in Geologic Structures and M
Suzuki, T., Hikita, S., Hashimoto, S., 1998. Measurement of landslide behaviour by an acoustic emission method. Proceedings of the 8th International IAEG Congress, A.A. Balkema, Rotterdam, 1733-1739.
Seto, M., Nag, D.K., Vutukuri, V.S., 1999. In-situ rock stress measurement from rock cores using the acoustic emission method and deformation rate analysis. Geotechnical and Geological Engineering, 17, 241-266.
Tuğrul, A., Zarif, I.H., 1999. Correlation of mineralogical and textural characteristics with engineering properties of selected granitic rocks from Turkey. Engineering Geology, 51, 303317.
Tuncay, E., Ulusay, R., 2002. Acoustic Emission (AE) technique: 1- Basic principles and its areas of application in rock engineering, Yerbilimleri, Bulletin of Earth Sciences Application and Research Center of Hacettepe University, 25, 65-82.
Tuncay, E., Ulusay, R., 2008. Relation between Kaiser Effect (KE) levels and prestresses applied in laboratory. International Journal of Rock Mechanics and Mining Science, 45(4), 524-537.
Tuncay, E., Obara, Y., 2012. Comparison of stresses obtained from acoustic emission and compact conical-ended borehole overcoring techniques and an evaluation of Kaiser Effect level. Bulletin of Engineering Geology and the Environment. 71(2), 367-377
Ündül, Ö., Amann, F., Aysal, N., Plötze, M., 2015. Micro - textural effects on crack initiation and crack propagation of andesitic rocks. Engineering Geology, 1-9.
Wang, H.T., Xian, X.F., Yin, G.Z., Xu, J., 2000. A new method of determining geostresses by the acoustic emission Kaiser Effect. International Journal of Rock Mechanics and Mining Sciences, 37, 543-547.
Erişiş, S , Tuğrul, A , Yılmaz, M , Er, S . (2019). Bazaltik Kayaçların Mineralojik ve Petrografik Özelliklerinin Akustik Emisyon Üzerindeki Etkilerinin Araştırılması . Jeoloji Mühendisliği Dergisi , 43 (1) , 1-22 . DOI: 10.24232/jmd.572450
Erişiş, S , Tuğrul, A , Yılmaz, M , Er, S . Bazaltik Kayaçların Mineralojik ve Petrografik Özelliklerinin Akustik Emisyon Üzerindeki Etkilerinin Araştırılması. Jeoloji Mühendisliği Dergisi 43 (2019 ): 1-22
ABSTRACT: The most important soil behaviour in order to consider in foundation designs of specially light structures builton clay soils is swelling properties of the soil and accordingly soils heave which occurs on soil surface. For thisreason, in surveys related to this kind of soils, it is quite important to determine the swelling properties of soils andappropriate stabilisation methods. Literature contains a vast number of stabilising techniques such as; lime, cement,fly ash, bitume and resin for treatment of expansive soils. Financial perspective of these techniques is very important.Therefore, the primary purpose is low cost for the best treatment. In this study, a laboratory model study wasconducted in order to determine the performance of gypsum column technique on treatment of clay soils. For thispurpose, gypsum column was built in a field model which built in the laboratory and the changes on swelling of thesoil was determined depending on the distance from the column. By using the obtained model data, the performanceof gypsum column technique was analyzed and discussed
Clay Soils
Stabilization
Swelling
Gypsum Column
Laboratory Model
Abiodun, A.A., Nalbantoglu, Z., 2015. Lime pile techniques for the improvement of clay soils. Canadian Geotechnical Journal, 52, 760-768.
Akawwi, E., Kharabsheh, A., 2000. Lime stabilization effects on geotechnical properties of expansive soils in Amman, Jordan. Journal of Geotechnical Engineering, 5, 201-210.
Al-Mukhtar, M., Khattab, S., Alcover, J.S., 2012. Microstructure and Geotechnical Properties of Lime-Treated Expansive Clayey Soil. Engineering Geology, 139-140, 1727.
Ameta, N.K., Prohit, D.G.M., Wayal, A.S., Sandeep, D., 2007. Economics of stabilizing bentonite soil with lime-gypsum. Electronic Journal of Geotechnical Engineering, Volume 12, Bundle E.
Amu, O.O., Fajobi, A.B., Afekhuai, S.O., 2005. Stabilizing potential of cement and fly ash mixture on expansive clay soils. Journal of Applied Sciences, 5, 1669-1673.
ASTM D-698, 1994. Soil and Rock: Sec. 4, V. 04.08. American Society for Testing and Materials. Designation: D-4546.
ASTM D-4546, 1994. Soil and Rock: Sec. 4, V. 04.08. American Society for Testing and Materials. Designation: D-4546.
ASTM- D 2166, 1994. Soil and Rock: Sec. 4, V. 04.08. American Society for Testing and Materials. Designation: D-4546.
Basma, A.A., Al-Rawas, A., Al-Saadi, S.N., Al- Zadjalı, T.F., 1998. Stabilization of expansive clay in Oman. Environmental and Engineering Geoscience, 4, 503-510.
Bell, F.G., Maud, R.R., 1995. Expansive clays and construction, especially of low-rise structures: a viewpoint from Natal, South Africa. Environmental and Engineering Geoscience, 1, 41-59.
BS 1377, 1975. Methods of Test for Soils for Civil Engineering Purposes. British Standards Institution, London.
Brandl, H., 1981. Alteration of soil parameters by stabilization with lime. Proceedings, 10th International Conference on Soil Mechanics and Foundation Engineering, Stockholm, 587-594.
Broms, B., Boman, P., 1979. Lime columns-a new foundation method. Journal of Geotechnical Engineering Division, ASCE, 105, 539-556.
Çetiner, S.I., 2004. Şişen zeminlerin Çayırhan uçucu külü ve desülfojips ile stabilizasyonu, yüksek lisans tezi, Orta Doğu Teknik Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 107 s.
El-Rawi, M.N., Awad, A.A.A., 1981. Permeability of lime stabilized soils. Journal of Transportation Engineering Division, ASCE, 107, 25-35.
Ferguson, G., 1993. Use of self-cementing fly ashes as a soil stabilization agent, fly ash for soil improvement. Geotechnical Special Publication, 36, 1-15.
FIPR (Florida Institute of Phosphate Research), 1988. Stabilization of phosphatic clay with lime columns. Report prepared by Bromwell and Carrier Inc. under a grant sponsored by the Florida Institute of Phosphate Research, Bartow- Florida, 102 p.
Garzón, E., Cano, M., O`Kelly, B.C., Sánchez-Soto, P., 2016. Effect of lime on stabilization of phyllite clays. Applied Clay Science, 123, 329334.
Gillson, J.L., 1960. Industrial Minerals and Rocks. The American Institute of Mining. Metalurgical and Petroleum Engineers, New York.
Grim, R.E., 1968. Clay Mineralogy. McGraw-Hill, 596 p.
Gyanen, T., Savitha, A.L., Gudi, K., 2013. Laboratory study on soil stabilization using fly ash mixtures. International Journal of Engineering Science and Innovative Technology (IJESIT). Volume 2, Issue 1.
Handy, R.L., Williams, N.W., 1967. Chemical stabilization of an active landslide. Civil Engineering, 37, 62-65.
Holm, G., Broms, B.B., 1981. Lime columns as foundation for light structures.Proceedings of the 10th International Conference on Soil Mechanics and Foundation Engineering. Stockholm, 3, 687- 694.
Ji-ru, Z., Xing, C., 2002. Stabilization of expansive soil by lime and fly ash. Journal of Wuhan University of Technology - Materials Science Edition, 17, 73-77.
Jones, D.E., Holtz, W.G., 1987. The prediction and performance of structures on expansive soils. ASCE, Civil Engineering, 43, 87-89.
Kitsugi, K., Azakami, H., 1982. Lime-column techniques for the improvement of clay ground. Proceedings of the Symposium on recent Developments in Ground İmprovement Techniques, Bangkok, 1982, 105-115.
Küçükali, Ö., 2011. Kireç ve Jipsin, Üst Pliyosen Yaşlı Yüksek Plastisiteli Killerin (Ankara) Şişme ve Dayanım Özelliklerine Etkisi. Yüksek Lisans Tezi, Ankara Üniversitesi Fen Bilimleri Enstitüsü, Ankara, 75 s.
Locat, J., Berube, M.A., Choquette, M., 1990. Laboratory investigations on the lime stabilization of sensitive clays: shear strength development. Canadian Geotechnical Journal, 27, 294-304.
Mathew, P.K., Narasimha, R.S., 1997. Effect of lime on cation exchange capacity of marine clay. Journal of Geotechnical and Geoenvironmental Engineering, ASCE, 123, 183-185.
Nalbantoğlu, Z., Güçbilmez, E., 2001. Improvement of calcareous expansive soils in semi-arid environments. Journal of Arid Environments, 47, 453463.
Okagbue, C.O., Onyeobi, T.U.S., 1999. Potential of marble dust to stabilise red tropical soils for road construction. Engineering Geology, 53, 371380.
Popescu, M.E., Constantinescu, T., Ferrando C., Quintavalle, F., 1997. Treatment of subgrade expansion soil at the extention of Bucharest- Otopeni International Airport. Proceedings of the International Symposium on Engineering Geology and the Enviro
Singh, S. P., Roy, N. Sangita, S., 2017. Strength and hydraulic conductivity of sedimented ash deposits treated with lime column. International Journal of Geotechnical Engineering, 11, 3-15.
Tystovich, N.A., Abelev, M.Yu, Takhirov, I., 1971. Compacting saturated loeses soils by means of lime piles. Proceedings of the 4th Conference on Soil Mechanics, Budapest, 837-842.
Terashi, M., Tanaka, H., Niidome, Y., Sakanoi, H., 1980. Permeability of treated soils. Proceedings, 15th Japan Conference on Soil Mechanics and Foundation Engineering, 773-776.
Townsend, D.C., Kylm, T.W., 1966. Durability of lime-stabilized soils. Highway Research Board Bulletin, 139, 25-41.
Transportation Research Board, 1987. Lime stabilization: reaction, properties, design and construction. Committee on Lime and Lime-fly ash Stabilization, State-of-the-Art-Report, 5, Washington, D.C., 1-59.
Transportation Research Board, 1987. Lime stabilization: reaction, properties, design and construction. Committee on Lime and Lime-fly ash Stabilization, State-of-the-Art-Report, 5, Washington, D.C., 1-59.
Van Impe, W.F., 1989. Soil Improvement Techniques and Their Evolution. A.A. Balkema, Rotterdam, 125 pp.
Vitale, E., Deneele D., Paris, M., Russo, G., 2017. Multi-scale analysis and time evolution of pozzolanic activity of lime treated clays. Applied Clay Science, 141, 3645.
Yılmaz, I., Karacan, E., 1997. Geotechnical properties of alluvial soils: an example from south of Sivas (Turkey). IAEG Bulletin of the International Association of Engineering Geology, 55, 159- 165.
Yılmaz, I., 2007a. Mühendislik Jeolojisi İlkeler ve Temel Kavramlar, Teknik Yayınevi, Ankara, 490 s.
Yılmaz, I., 2007b. The effect of swelling clays on a water transport canal between Köklüce HPP and Erbaa HPP (Turkey). Bulletin of Engineering Geology and the Environment, 66, 467-472.
Yılmaz, I., Civelekoğlu, B., 2009. Gypsum: An additive for stabilization for swelling clay soils. Applied Clay Science, 44, 166-172.
Zhu, F., Li, Z., Dong, W., Ou, Y., 2018. Geotechnical properties and microstructure of lime-stabilized silt clay. Bulletin of Engineering Geology and the Environment. Doi: 10.1007/s10064-018- 1307-5.
ABSTRACT: Soil liquefaction is one of the ground deformations occurred during an earthquake which may cause serious damages such as settlement and tilting of structures due to loss of bearing capacity of foundations. Düzce and its surrounding settle on a plain which consists of silty and sandy layers with shallow groundwater level. Besides, the North Anatolian Fault Zone is a major seismic source which is capable of producing large magnitude earthquakes. All these data point out that the ground deformations like liquefaction and lateral spreading may occur during a probable large earthquake around Düzce and its close vicinity. In this study, the geotechnical data of 40 boreholes drilled to determine the local ground conditions and the groundwater level in Düzce were considered. Based on the field studies, it was aimed to evaluate the liquefaction potential considering the fact that the groundwater level is shallow as well as the subsurface soil is composed of loose alluvium. Liquefaction Potential Index (LPI) and Liquefaction Severity Index (LSI) methods were taken in to account and the liquefaction potential of Düzce province was determined and mapped with respect to various earthquake scenarios in GIS environment. These maps are compared on the basis of different scenarios. Accordingly, it is concluded that the liquefaction potential is high-very high in the south and south-eastern sections of the study area where the construction of new residential buildings progressively continues.
Liquefaction
Düzce
Liquefaction Potential Index
Liquefaction Severity Index
North Anatolian Fault Zone
Earthquake
Akbaşlı Mühendislik Sondaj İnşaat Madencilik Taahhüt Ticaret Limited Şirketi. Aralık-2008, Düzce (Merkez) Belediyesi-İmar Planına Esas Jeolojik-Jeoteknik Etüt Raporu.
Akin M.K., Topal T., Kramer S.L., 2013. A newly developed seismic microzonation model of Erbaa (Tokat, Turkey) located on seismically active eastern segment of the north Anatolian fault zone (NAFZ). Natural Hazards. 65:14111442.
Andrus, R.D., Stokoe II, K.H., 1997. Liquefaction Resistance Based on Shear Wave Velocity. NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Technical Report NCEER-97-0022, T.L.Youd and I.M. Idriss, (Eds.), Held (1996), Salt Lake City
Andrus, R. D., Stokoe, K. H., 2000. Liquefaction Resistance of Soils from Shear-Wave Velocity. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 126, No. 11, pp. 1015-1025.
Ateş, A., Toprak, B., Yeşil, B., 2013. Düzce ilinde yapı hasarlarının zemin büyütme özellikleri ve yapı rezonans uyumu ile ilgisinin araştırılması. İleri Teknoloji Bilimleri Dergisi Cilt 2, Sayı 3, 76-86.
Çetin, K. O., 2000. Reliability-Based Assessment of Seismic Soil Liquefaction Initiation Hazard, Ph.D. dissertation, Univ. of California, Berkeley (unpublished).
Çetin K.O., Seed R.B., Der Kiureghian A., Tokimatsu K., Harder L.F. Jr., Kayen R.E., Moss R.E.S., 2004. Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential. Journal of Geotechnical and Geo
Çeken, U., 2000. Türkiyenin kuvvetli yer hareketi kayıt şebekesi ve 12 Kasım Düzce depreminin ivmesi. 12 Kasım 1999 Düzce Depremi Raporu. Bayındırlık ve İskan Bakanlığı, Afet İşleri Genel Müdürlüğü DAD, Editörler: B. Özmen ve G. Bağcı, 224 s., Ankar
Day, R., 2002. Geotechnical Earthquake Engineering Handbook. McGraw Hill Handbook. pp. 700.
Demirtaş, R., Erkmen, C., Yaman, M., 2000. 12 Kasım 1999 Düzce Depremi: Yüzey Kırık Geometrisi, Atım Miktarı Dağılımı ve Gelecek Deprem Potansiyeli s:61-99, 12 Kasım Düzce Depremi Raporu (Editör: Bülent Özmen ve Günruh Bağcı), Deprem Araştırma Daires
Emre, Ö. vd. (MTA), Varol, B. vd. (A.Ü.), 1999. 17 Ağustos 1999 Depremi Sonrası Düzce (Bolu) İlçesi Alternatif Yerleşim Alanlarının Jeolojik İncelemesi. TÜBİTAK (MTA Genel Müdürlüğü ve A.Ü. Ortak Araştırma Projesi).
Emre, Ö., Özalp, S., Doğan, A., Özaksoy, V., Yıldırım C., Göktaş F., 2005. Düzce ve çevresinin diri fayları ve deprem potansiyelleri. MTA Jeoloji Etüdleri Dairesi Rapor No: 10754.
Ergin, K., Güçlü Ü., Uz, Z., 1967. Türkiye ve civarının deprem kataloğu (M.S. 11 1964): İTÜ Arz Fiziği Enst. Yay. 28, 74 s.
Erdik, M., 2000. Report on 1999 Kocaeli and Düzce (Turkey) Earthquakes. Boğaziçi University Departmant of Earthquake Engineering, İstanbul.
Erdik, M., 2001. Report on 1999 Kocaeli And Düzce (Turkey) Earthquakes. Structural Control for Civil and Infrastructure Engineering, pp. 149- 186.
ESRI, 2009. ArcGIS Desktop: Release 9.3. Redlands, CA: Environmental Systems Research Institute.
Idriss, I. M., R. W. Boulanger, 2006. Semi Empirical Procedures for Evaluating Liquefaction Potential During Earthquakes. Soil Dynamics Earthquake Engineering, Vol. 26, Iss. 2-4, pp. 115-130.
Iwasaki, T., Arakawa, T., Tokida, K., 1982. Simplified procedures for assessing soil liquefaction during earthquakes. Proceedings of the Conference on Soil Dynamics and Earthquake Engineering, Southampton, UK, pp. 925-939.
Juang, C.H., H., Yuan, D.H. Lee, P.S. Lin, 2003. Simplified Cone Penetration Test-based Method for Evaluating Liquefaction Resistance of Soils. Journal of Geotechnical and Geoenvironmental Engineering, Vol. 129, No. 1, pp. 66-80.
Kadirioğlu, F. T., Kartal, R. F., Kılıç, T., Kalafat, D., Duman, T. Y., Özalp, S., Emre, Ö., 2014. An Improved Earthquake Catalogue (M ? 4.0) For Turkey And Near Surrounding (1900-2012). 2nd European Conference on Earthquake Engineering and Seismolog
Moss, R.E.S., 2003. CPT-Based Probabilistic Assessment of Seismic Soil Liquefaction Initiation Ph.D. Dissertation, University of California, Berkeley.
Moss, R. E. S., Seed, R. B., Kayen, R. E. , Stewart, J. P., Der Kiureghian, A., Cetin, K.O., 2006. CPT-Based Probabilistic and Deterministic Assessment of in situ Seismic Soil Liquefaction Potential. Journal of Geotechnical and Geoenvironmental Engin
NCEER. 1997. Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils. Edited by T.L. Youd and I.M. Idriss. National Center for Earthquake Engineering Research (NCEER), N.Y. Technical Report NCEER-97-022.
Olsen, R. S., 1984. Liquefaction analysis using the cone penetrometer test. Proceedings 8th World Conference, on Earthquake Engineering EERI, San Francisco, 247254.
Olsen, R. S., 1997. Cyclic Liquefaction based on the Cone Penetrometer Test IN Proceedings of the NCEER Workshop on Evaluation of Liquefaction Resistance of Soils 1997. Edited by T.L. Youd and I.M. Idriss. Technical Report NCEER-97-0022, National Cen
Özaslan, M., Erşahin G., Akkahve D., Sabuncu, A., 2001. Düzce ili raporu. Başbakanlık DPT, Yayın No: 2578.
Özmen, B., 2000. Düzce-Bolu Bölgesinin Jeolojisi, Diri Fayları ve Hasar Yapan Depremleri s:1-14, 12 Kasım 1999 Düzce Depremi Raporu (Editör: Bülent ÖZMEN ve Günruh BAĞCI). Bayındırlık ve İskan Bakanlığı Afet İşleri Genel Müdürlüğü, Deprem Araştırma
Özden, S., Tatar, O., Mesci, B. L., Koçbulut, F., Tutkun, S. Z., Doğan, B., Tüvar, O., 2000. 12 Kasım 1999 Düzce Depremi ve Bölgesel Tektonik Anlamı. Türkiye Jeoloji Bülteni, C.43, Sayı:2.
Öztürk, E., 2016. 1999 Düzce Depreminde Zemin Büyütmesine Bağlı Gelişen Yapı Hasarlarının Araştırılması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi, 4, 264-277.
Poulos, S.J., G. Castro, J. W. France, 1985. Liquefaction Evaluation Procedure Journal of Geotechnical Engineering, Vol. 111, No. 6, pp. 772-792.
Resmi gazete, 2018. Afet ve Acil Durum Yönetimi Başkanlığı: Türkiye Bina Deprem Yönetmeliği, Sayı: 30364 (mükerrer). http://www.resmigazete. gov.tr/eskiler/2018/03/20180318M1-2.htm.
Robertson, P.K., Wride, C.E., 1998. Evaluating cyclic liquefaction potential using the cone penetration test. Canadian Geotechnical Journal, 35, 442- 459.
Seed, H. B., Idriss, I. M., 1971. Simplified procedure for evaluating soil liquefaction potential. Journal of Soil Mechanics and Foundations Division, ASCE 97(SM9), 1249273.
Seed, H. B., Idriss, I. M., 1982. Ground Motions and Soil Liquefaction During Earthquakes. Earthquake Engineering Research Institute, Oakland, CA, 134 pp.
Seed, H. B., Tokimatsu, K., Harder, L. F. Jr., Chung, R., 1985. Influence of SPT procedures in soil liquefaction resistance evaluations. Journal of Geotechnical Engineering ASCE, 111(12), 1425445.
Sonmez, H., 2003. Modification to the liquefaction potential index and liquefaction susceptibility mapping for a liquefaction-prone area (Inegol- Turkey). Environmental Geology, 44(7), 862 871.
Sonmez, H., Gokceoglu, C., 2005. A liquefaction severity index suggested for engineering practice. Environmental Geology, Volume 48, Issue 1, pp 8191.
Şaroğlu, F., Emre, Ö., Kuşçu, İ. 1987. Türkiyenin diri fayları ve deprem şekilleri. MTA, Der.no:8174.
Şaroğlu, F., Emre, Ö., Kuşçu, İ., 1992. Türkiye Diri Fay Haritası. MTA, Ankara.
Şengör, A.M.C., Yılmaz. Y., 1981. Tethyan evolution of Turkey: A plate tectonic approach. Tectonophysics, 75, 181-241.
Şimşek, O., Dalgıç, S., 1997. Düzce Ovası killerinin konsolidasyon özellikleri ve jeolojik evrim ile ilişkisi. Türkiye Jeoloji Bülteni, C:40 Sayı:22 Sayfa:29-38. https://tdth.afad.gov.tr/ erişim tarihi : 20.12.2018.
Tatar, Y., 2003. Düzce İl Gelişme Planı. Çevre ve Mekansal Gelişme Sektörü Raporu, Düzce, 103 s.
Toprak, S., Holzer, T. L., Bennett, M. J., Tinsley, J. C., 1999. CPT- and SPT-based probabilistic assessment of liquefaction potential. Proceedings of Seventh US Japan Workshop on Earthquake Resistant Design of Lifeline Facilities and Counter-measure
Uysal, K., Herece, E., 1999. 12 Kasım 1999 Düzce depremi ön değerlendirme MTA raporu.
Yılmaz, Y., Tüysüz, O., Yiğitbaş, E., Genç, C., Şengör, C., 1997. Geology and tectonic evolution of the pontides, in A. G. Robinson, ed., Regional ind petroleum geology of the Black Sea and surrounding region, AAPG Memoir, 68, p. 183-226.
Youd, T. L., Noble, S.K., 1997. Liquefaction criteria based on statistical and probabilistic analyses. Proceedings, NCEER Workshop on Evaluation of Liquefaction Resistance of Soils, Natural Center for Earthquake Engineering Research, State Univ. of N
Youd T.L., Idriss I.M., Andrus R.D., Arango I., Castro G., Christian J.T., et al., 2001. Liquefaction resistance of soils: summary report from the 1996 NCEER and 1998 NCEER/NSF workshops on evaluation of liquefaction resistance of soils. Journal of G
Akın, M . (2019). Düzce Kent Merkezi Zeminlerinin Sıvılaşma Potansiyelinin Değerlendirilmesi . Jeoloji Mühendisliği Dergisi , 43 (1) , 39-56 . DOI: 10.24232/jmd.572465
Akın, M . Düzce Kent Merkezi Zeminlerinin Sıvılaşma Potansiyelinin Değerlendirilmesi. Jeoloji Mühendisliği Dergisi 43 (2019 ): 39-56
ABSTRACT: A plant will be constructed between the Alipasa and Sarıkısık feldspar open-pit mines in Karpuzlu-Çine(Aydın) to conduct the works of crushing-grinding and flotation. An investigation was carried out to determineengineering geological conditions at and below the plant-site using scan-lines, geophysical measurements, and threeinclined borehole data. Geological structure and ground conditions including geotechnical data such as discontinuityfrequency and spacing, RQD% and CR% acquired from the drill hole exploration and geophysical survey aredetermined. Along the inclined drill holes, true discontinuity spacing values computed for each core run representthe most intersected discontinuities. In these calculations, determination of the acute angles between the axes ofdrill holes and strikes of the discontinuity sets are important as much as the investigation of fracture distributions inthe subsurface. For this reason, the stereographic projection techniques were used to determine the true acute anglein this work. The purpose of the investigation is to identify and mitigate difficulties caused by ground conditions.The rock conditions comprise heavily jointed and weathered metamorphic rocks and the ability of these to supportthe foundations is considered. It was determined that the bearing capacity values obtained from the geotechnicalcomputations considering RQD values agree with the ones acquired from the geophysical measurements, except theweakness zones (sheared zones). It was also determined that the values of allowable bearing pressure based on thegeotechnical works are more conservative than the ones from the geophysical measurements. When all results areconsidered, the ratio between the allowable bearing capacity (qa) values acquired from geotechnical and geophysicalmeasurements is close to 0.65.
Site Investigation
Inclined Borehole
Geotechnical Data
Stereographic Projection
Geophysics
Bearing Capacity
ASTM D 2113, 1990. Standard Practice for Rock Core Drilling and Sampling of Rock for Site Exploration. Vol: 04.08. American Society for Testing and Materials, Philadelphia, PA, pp. 2113-2114.
Bowles J. E., 1988. Foundation Analysis and Design. 4th Ed. McGraw-Hill Book Company, Singapore, p. 1175.
Bowles J. E., 2001. Foundation Analysis and Design. 5th Ed. Mc Graw-Hill Inc., US, p. 1181.
El-Naga A., 2004. A comparative review in regards to estimating bearing capacity in jointed rock masses in northeast Jordan. Bulletin of Geoenvironmental Engineering 63:233-245.
Haneberg W.C., 2009. Improved optimization and visualization of drilling directions for rock mass discontinuity characterization, Environmental Engineering Geology Vol. XV, No. 2, May 2009, 107-113.
Hoek, E. Carranza Torres, C. Corkum, B. 2002. Hoek & Brown criterion, 2002 Edition. North American Rock Mechanics Symposium, Toronto, Canada, 1, 267-273.
Hudson, J.A., Priest, S.D., 1979. Discontinuities and rock mass geometry, International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts 16, 339-362.
Hunt, R. E., 2005. Geotechnical Engineering Investigation Handbook. Second Ed., Taylor & Francis, New York, p. 1081.
International Society for Rock Mechanics (ISRM), 2007. The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974-2006, In: Ulusay R and Hudson JA (Editor), Ankara/Turkey.
Kadakci T., 2011. Slope Stability Assessment of the Open Pit Albite Mine in the Çine-Karpuzlu (Aydın) Area. Dissertation, Graduate School of Natural and Applied Sciences of Dokuz Eylül University.
Koca, M.Y., Özden G., Kıncal C., 2014. The Geotechnical Site Investigation Report For The Site of The Crushing, Grinding and Flotation Plant in Karpuzlu-Çine (Aydın). Dokuz Eylül University Research report, June-2014, p. 91, İzmir.
Martel, S.J., 1999. Analysis of fracture orientation data from boreholes, Environmental and Engineering Geoscience, Vol. V, No. 2, 213-233.
Merifield, R. S., Lyamin, A. V. Sloan, S.W. 2006. Limit analysis solutions for bearing capacity of rock masses using the generalized Hoek & Brown criterion, International Journal of Rock Mechanics and Mining Sciences 43, 920-937.
Palmer D., 2001. Imaging refractors with the convolution section. Geophysics. 66 (5):1582 1589.
Peck R.B., Hanson W.E., Thornburn T.H., 1974. Foundation Engineering. John Wiley & Sons Inc. New York.
Rocscience, 2010. Phase 2 version 7.0. Two dimensional finite element analysis program. Rocscience Inc.
Priest, S.D., 1994. Discontinuity Analysis for Rock Engineering, Chapman & Hall, London, 473 p.
Saada, Z., Maghous, S. Garnier, D., 2008. Bearing capacity of shallow foundation on rocks obeying a modified Hoek&Brown criterion, Computers and Geotechnics, 35, 144-154.
Stavropoulou, M., 2014. Discontinuity frequency and block volume distribution in rock masses. International Journal of Rock Mechanics and Mining Sciences, 65, 62-74.
Terzaghi R. D., 1965. Sources of error in joint surveys: Geotechnique, Vol. 15, pp. 287-304.
Tezcan S.S., Keçeli A., Özdemir Z., 2006. Allowable bearing capacity of shallow foundations based on shear wave velocity, Geotechnical and Geological Engineering 24:203218.
Zhou, W., Maerz, N.H., 2002. Identifying the optimum drilling direction for characterization of discontinuous rock. Environmental Engineering Geoscience, Vol. 8, No. 4, 295-307.
Karagöz, S , Koca, Y . (2019). Determination of Engineering Geological Conditions Of A Plant-Site: A Case Study in an Open Pit Mine in Çine, Aydın . Jeoloji Mühendisliği Dergisi , 43 (1) , 57-98 . DOI: 10.24232/jmd.572472
Karagöz, S , Koca, Y . Determination of Engineering Geological Conditions Of A Plant-Site: A Case Study in an Open Pit Mine in Çine, Aydın. Jeoloji Mühendisliği Dergisi 43 (2019 ): 57-98
ABSTRACT: Geothermal reservoirs are renewable energy resources and they are treated as very valuable due to their highpressure and high enthalpy contents. Geothermal fluid stored in the reservoir is used for electricity production,central heating, greenhouse heating and for balyneological purposes. Fluid production from such reservoirs triggershydrodynamic and hydrothermal mechanisms and causes fluid movement and heat transfer in the reservoirs. Modelingstudies start with defining these mechanisms by differential equations and help investigating response of reservoirsto alternative production scenarios and hence obtain sustainable management of such systems. Fundamental studiesfor geothermal reservoir simulation require formulation of the mechanisms and application of boundary and initialconditions and the physical parameters obtained from conceptual model of the geothermal system. Geothermalreservoir modeling studies date back to 1970s and several geothermal reservoirs in the world have been simulated todetermine optimum and sustainable production policies. This paper summarizes the basic principles of geothermal reservoir modeling and introduces basic differential equations and explains mysteries of the reservoir simulatorsnowadays widely used in the geothermal industry. The numerically simulated geothermal fields and the relatedcountries are also summarized together with the references.
Geothermal reservoirs
Numerical modeling/Simulation
Simulators
Abdelaziz, R., Komori, F.S., Carreno, M.N.P., 2016. Multiphase thermal-fluid flow through geothermal , International Scientific Conference - Environmental and Climate Technologies, Conect 2015, Riga, Latvia, Oct 14-15, 2015, Energy Procedia, 95, 22-2
Aboustit, B. L., Advani, S.H., Lee, J.K., 1985. Variational principles and finite element simulations for thermo-elastic consolidation. International Journal for Numerical and Analytical Methods in Geomechanics, 9, 45-69.
Absar, K.V., Bajpai,, I.P., Sinha, A.K., Ashwini, K., 1996. Reservuar modeling of Puga geothermal system, Iadakh, Jammua and Kashmir. Geological Survey, India, 69-74.
Ansari, E., Hughes, R., White, C.D., 2017. Statistical modeling of geopressured geothermal reservoirs. Computers and Geosciences, 103, 36-50.
Antics, M., 2000. Computer simulation of geothermal reservoirs in the Pannonian Basin, Eastern Europe. Proceedings World Geothermal Congress, Kyushu-Tohuku, Japan, May 28-June 10 2000, 2497-2502.
Antics, M.A., 1998. Computer modeling of an over pressured medium enthalpy geothermal reservoir located in deep sedimentary basin. Proceedings of the 23 rd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 26-28
Antics, M.A., 1997. Computer simulation of Oradea geothermal reservoir Proceedings of the 22nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 27-29 January 1997, 491-495.
Antunez, E.U., Menzies, A.J., Sanyal, S.K., 1991. Simulating a challenging water dominated geothermal system: the Cerro Prieto field, Baja, California, Mexico. Proceedings of 16th Workshop on Geothermal Reservoir Engineering, Stanford University, Sta
Antunez, E.U., Sanyal, S.K., Carella, R., Guidi, A., 1990. Quantitative verification of the hydrogeological model of the Mufete geothermal field, Campania, Italy. Transactions geothermal Resources Council 14, 1263-1270.
Antunez, E.U., Bodvarsson, G.S., Walters, M.A.,1994. Numerical-Simulation Study of the Northwest Geysers Geothermal-Field, a Case-Study of the Coldwater Creek Steamfield. Geothermics, 23, 2, 127-141.
Arellano, V., Garcia, A., Barragan, R., Izquierdo, G., Aragon, A., Nieva, D., 2003. An updated conceptual model of the Los Humeros geothermal reservoir (Mexico). Journal of Volcanology and Geothermal Research, 127, 67-88.
Arias, A., Dini, I., Cassini, M., Fiordelisi, A., Perticone, I., DellAiuto, P., 2010. Geoscientific feature update of the Larderello-Travale geothermal system (Italy) for a regional numerical modeling. In: Proc World geothermal congress 2010, Bali,
Arihara, N., Yoshida, H., Hanano, M., Ikeuchi, K., 1995. A simulation study on hydrothermal system of the Kakkonda geothermal field. Proceedings World Geothermal Congress95, Florence, 18-31 May 1995, 1715-1720.
Arnorsson, S., 1995. Geothermal systems in Iceland: structure and conceptual models-I. High temperature areas. Geothermics, 24, 561-602
Atmojo, J.P., Itoi, R., Tanaka, T., Fukuda, M., Sudarman, S., Widiyarso, A., 2000. Modeling studies of Sudayak geothermal reservoir Northern Sumatra, Indonesia. Proceedings of World Geothermal Congress, Kyushu-Tohuku, Japan, May 28-June 10 2000 2037-
Aunzo, Z., Steingrimsson, B., Bodvarsson, G.S., Escobar, C., Quintanilla, A., 1989. Modeling studies of the Ahuachapan geothermal field, El Salvador. Proceedings of the 14 th workshop on geothermal reservoir engineering report, Stanford University, S
Axelsson, G., Bjornsson, G., 1993. Detailed three dimensional modeling of the Btn hydrothermal system in N-Iceland. Proceedings of the 18 th workshop on geothermal reservoir engineering, Stanford, California (USA), 26-28 January 1993, 159-166.
Barelli, A., Ceccarelli, A., Dini, I., Fiordelisi, A., Giorgi, N., Lovari, F., 2010a. A review of the Mt. Amiata geothermal system, Italy. In: Proc World geothermal congress 2010, Bali, Indonesia.
Barelli, A., Cei, M., Lovari, F., Romagnoli, P., 2010b. Numerical modeling for the Larderello- Travale geothermal system, Italy. In: Proc World geothermal congress 2010, Bali, Indonesia.
Barmin, A.A., Kondrashov, A.V., 2000. Two-front mathematical model of water injection into a steam-saturated geothermal reservoir, Fluid Dynamics, 35, 3, 399.
Bataille, A., Genthon, P., Rabinowicz, M., Fritz, B., 2006. Modeling the coupling between free and forced convection in a vertical permeable slot: Implications for the heat production of an Enhanced Geothermal System. Geothermics, 35, 5-6, 654-683.
Battistelli, A., Calore, C., Pruess, K., 1997. The simulator TOUGH2/EWASG for modelling geothermal reservoirs with brines and noncondensible gas, Geothermics, 26, 4, 437-464.
Battistelli, A., Swenson, D., Alcott, A., 2017. Improved PetraSim-TOUGH2 capabilities for the simulation of Geothermal reservoirs, In: Proc of 42nd workshop on geothermal reservoir engineering, Stanford, California (USA)
Battistelli, A., Yiheyis, A., Calore, C., Ferragina, C., Abatneh, W., 2002. Reservoir engineering assessment of Dubti geothermal field, Northern Tendaho Rift, Ethiopia, Geothermics, 31, 381- 406.
Battistelli, A., Yiheyis, A., Calore, C., Ferragina, C., Abathneh, W., 1998. Tendaho geothermal project (Ethiopia): Reservoir engineering studies in the Dubti area. Proceedings of the World Renewabla Energy Congress V, Florence 1998, 2741-2745.
Battistelli, A., Calore, C., Rossi, R., Wu, F., 1992. Reservoir engineering study of Nagqu geothermal field (Tibet autonomous region, PRC). Presented at the High Temperature Geothermal Resources Workshop, Lhasa, 9-16 August 1992.
Bear, J., Çorapçıoğlu, M.Y., 1981. A mathematicalmodel for consolidation in a thermoelastic aquifer due to hot water ınjection or pumping, water resources research, 17, 3, 723-736.
Bertani, R., Capetti, G., 1995. Numerical simulation of the Monteverdi zone (western border of the Larderello geothermal field). Proceedings World Geothermal Congress95, Florence, 18-31 May 1995, 1735-1740.
Biagi, J., Agarwal, R., Zhang, Z.M., 2015. Simulation and optimization of enhanced geothermal systems using CO2 as a working fluid, Energy, 86, 627-637.
Bjornsson, G., 1999. Predicting future performance of a shallow steam zone in the Svartsengi geothermal field, Iceland. Proceedings of the 24th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 25-27 January 199
Blocher, M.G., Zimmermann, G., Moeck, I., Brandt, W., Hasanzadegan, A., Magri, F., 2010. 3D numerical modeling of hydrothermal processes during the lifetime of a deep geothermal reservoir, Geofluids, 10, 406-421.
Blocher, G., Cacace, M., Reinsch, T., Watanabe, N., 2015. Evaluation of three exploitation concepts for a deep geothermal system in the North Germain Basin, Computers and Geosciences, 82, 120-129.
Boardman, S., Ali Khan, M., Artunez, E., 1996. TOUGH/PC Application simulation project for Heber geothermal field, California, a progress report. Proceedings of the 21st workshop on geothermal reservoir engineering, Stanford, California (USA).
Bodvarsson, G.S., 1988. Model predictions of the Svartgensi reservoir, Iceland, water Resources Research, 24 (10), 1740-1746
Bodvarsson, G.S., Bjornsson, J., Gunnarsson, A., Gunnlaugsson, E., Sigurdsson, O., Stefansson, V., Steingrimsson, B., 1990a. The Nesjavellir geothermal field, Iceland: 1. Field characteristics and development of a three-dimensional numerical model. J
Bodvarsson, G.S., Pruess, K., Haukwa, C., Ojiambo, S.B., 1990b. Evaluation of model predictions for the Olkaria East Geothermal Field, Kenya, Geothermics, 19, (5), 399-414.
Bodvarsson, G.S., Pruess, K., Lippmann, M., Bjornsson, S., 1981. Improved Energy Recovery From Geothermal Reservoirs, 56th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers of AIME, San Antonio, Texas, USA.
Bodvarsson, G.S., Pruess, K., Lippmann, M., Bjornsson, S., 1982. Improved energy recovery from geothermal reservoirs. Journal of Petroleum Engineers Journal, 1920-1928.
Bodvarsson, G.S., Pruess, K., Stefansson, V., Bjornsson, S., Ojiambo, S.B., 1987a. East Olkaria Geothermal Field, Kenya: 1. History match with production and pressure decline data, Journal of Geophysical Research: Solid Earth,vol 92, issue B1, 521-53
Bodvarsson, G.S., Pruess, K., Stefansson, V., Bjornsson, S., Ojiambo, S.B., 1987b. East Olkaria Geothermal Field, Kenya: 2. Predictions of well performance and reservoir depletion Journal of Geophysical Research, 92 (B1), 541- 554.
Bodvarsson, G.S., Pruess, K., Lippmann, M.J., 1986, Modeling of geothermal systems, Journal of Petroleum Technology, 1007-1021.
Bromley, C., Brockbank, K., Glynn-Morris, T., Rosenberg, M., Pender, M., OSullivan, M., Currie, S., 2013. Geothermal subsidence study at Wairakei-Tauhara, New Zealand Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 166, 2
Brown, D., 2000. A hot dry rock geothermal energy concept utilizing CO2 instead of water. In: Proceedings of 25th workshop on geothermal reservoir engineering, Stanford CA, USA: Jan 2000. P. 233-8.
Brownell, D.H., Garg, S.K., Pritchett, J.W., 1977. Governing equations for geothermal reservoirs, Water Resources Research, 13, 929-934.
Bujakowski, W., Tomaszewska, B., Miecznik, M., 2016. The Podhale geothermal reservoir simulation for long-term sustainable production, Renewable Energy, 99, 420-430.
Burnell, J.G., 1992. Modeling mass, energy and chloride flows in the Rotorua geothermal system. Geothermics, 21(1/2), 261-280.
Butler, S.J., Sanyal, S.K., Henneberger, R.C., Klein, C.W., Gutierrez, H., de Leon, J.S., 2000. Numerical modeling of the Cerro Prieto geothermal field, Mexico. In: Proc of world geothermal congress, Kyushu, Japan.
Canet, C., Trillaud, F., Prol-Ledesma, R.M., Gonzalez- Hernandez, G., Pelaez, B., Hernandez-Cruz, B., Sanchez-Cordova, M.M., 2015. Thermal history of the Acoculco geothermal system, eastern Mexico: Insights from numerical modeling and radiocarbon dat
Can, I., Budak, A., 2008. Finite element modeling of the Kızıldere geothermal system, Turkey, Energy Sources Part A-Recovery Utilization and Environmental Effects, 30, 12, 1098-1107.
Cao, W.J., Huang, W.B., Jiang, F.M., 2016. Numerical study on variable thermophysical properties of heat transfer fluid affecting EGS heat extraction. International Journal of Heat and Mass Transfer, 92, 1205-1217.
Carlino, S., Toriano, A., Di Guiseppe, M.G., Tramelli, A., Troise, C., Somma, R., De Natale, G. 2016. Exploitation of geothermal energy in active volcanic areas: A numerical modeling applied to high temperature Mofete Geothermal field, at Campi Flegr
Carotenuto, A., Massarotti, N., Mauro, A., 2013. A new methodology for numerical simulation of geothermal down-hole heat exchangers. Applied Thermal Engineering, 48, 225-236.
Carradori, G., Peano, A., Voss, C.I., 1981. The geophase model for finite element simulation of multiphase geothermal reservoirs, in R.W. Lewis and Schrefler (Ed.) Numerical Methods in Thermal Problems, Proc. 2nd Int Conference in Venice, Pineridge P
Cerminara, M., Fasano, A., 2012. Modeling the dynamics of a geothermal reservoir fed by gravity driven flow through overstanding saturated rocks. Journal of Volcanology and Geothermal Research, 233-234, 37.
Chen, F., Falta, R.W., Murdoch, L.C., 2015. Numerical Analysis of Thermal Remediation in 3D Field- Scale Fractured Geologic Media, Groundwater, 4, 572-587.
Chen, J.L., Jiang, F.M., 2016. A numerical study of EGS heat extraction process based on a thermal non-equilibrium model for heat transfer in subsurface porous heat reservoir, Heat and Mass Transfer, 52, 2, 255-267.
Cherubini, Y., Cacace, M., Scheck-Wenderoth, M., Moeck, I., Lewerenz, B., 2013. Controls on the deep thermal field: implications from 3-D numerical simulations for the geothermal research site Gro Schonebeck, Environmental Earth Sciences, 70, 8, 3610
Croucher, A.E., OSullivan, M.J., 2008. Application of the computer code TOUGH2 to the simulation of supercritical conditions in geothermal systems. Geothermics, 37, 622-634.
Driesner, T., Geiger, S., 2007. Numerical simulation of multiphase fluid flow in hydrothermal systems, Fluid-Fluid Interactions, Reviews in Mineralogy & Geochemistry, Ed:Liebscher, A., Heinrich, C.A., 65, 187-212., A.E., OSullivan, M.J., 2008. Appli
Dou, B., Gao, H., Zhou, G., Ren, L., 2014. Numerical simulation of heat transfer from hot dry rock to water flowing through a circulation fracture, 3rd International Conference on Materials Science and Engineering (ICMSE 2014), Jiujiang, Peoples R Ch
Eckart, M., Kories, H., Ruterkamp, P., Kaul, V., Bems, C., 2011. Flow-and Heat-Transport- simulation with an optimized discretization of the geological structure model, International-Mine-Water- Association Congress on Mine Water - Managing the Chall
Emoricha, E.B., Omagbon, J.B., Malate, R.C.M., 2010. Three dimensional numerical modeling of Mindanao geothermal production field, Phillipines.In: Proc of the 35th Workshop on Geothermal reservoir engineering, Stanford, California (USA).
Ertekin T., 1978. Numerical simulation of the compaction-subsidence phenomena in a reservoir for two phase non-isothermal flow. PhD Thesis, The Pennsylvania State University, 227p.
Esberto, M.B., Sarmiento, Z.F., 1999. Numerical modeling of the Mt. Apo geothermal reservoir. In. Proc. of the 24th workshop on reservoir engineering, Stanford, California (USA).
Fabbri, P., Trevisani, S., 2005. Spatial distribution of temperature in the low-temperature geothermal Euganean field (NE Italy): a simulated annealing approach, Geothermics, 34, 5, 617-631.
Fairs, T.H., Younger, P.L., Parkin, G., 2015. Parsimonious numerical modelling of deep geothermal reservoirs, Proceedings of The Institution of Civil Engineers-Energy, 168, 4, 218-228.
Falta, R.W., Pruess, K., Finsterle, S., 1995. T2VOC Users Guide. Report LBLN-36400, Lawrence Berkeley Laboratory, Berkeley CA, 165 pp.
Farkhutdinov, A., Goblet, P., de Fouquet, C., Cherkasov, S., 2016. A case study of the modeling of a hydrothermal reservoir: Khankala deposit of geothermal waters. Geothermics, 59, 56-66, Part: A.
Farkhutdinov, A., Goblet, P., De Fouquet, C., Ismagilov, R., Farkhutdinov, I., Cherkasov, S., 2015. The Use of Computer Modelling to Forecast the Sustainability in the Development of Geothermal waters Resource: Khankala Deposit Example. International
Faust, C.R., Mercer, J.W., 1975. Mathematical modeling of geothermal systems. Proc 2nd UN Symposium on the Development and Use of Geothermal Resources, San Francisco, 3, 1633- 1642.
Faust, C.R., Mercer, J.W., 1979a. Geothermal Reservoir Simulation.1. Mathematical-Models For Liquid-Dominated and Vapor-Dominated Hydrothermal Systems, Water Resources Research, 15, 1, 23-30
Faust, C.R., Mercer, J.W., 1979b. Geothermal Reservoir Simulation. 2. Numerical Solution Techniques For Liquid-Dominated and Vapor- Dominated Hydrothermal Systems, Water Resources Research, 15, 1, 31-46.
Fendek, M., 2000. Reservoir modeling study of Galanta area. Proceedings World Geothermal Congress Kyushu-Tohuku, Japan, , May 28- June 10 2000, 2555-2560.
Fendekova, M., Fendek, M., 2000. Evaluation of Horna-Nitra geothermal reservoir (central part of Slovak Republic). Proceedings World Geothermal Congress Kyushu-Tohuku, Japan, , May 28- June 10 2000, 2561-2565.
Feng, G., Tianfu.G., Jiang, Z.J., Bellani, S., 2017. Geothermal assessment of the Pisa plain, Italy: Coupled thermal and hydraulic modeling, Renewable Energy, 111, 416-427
Finsterle, S., Kowalsky, MB., Pruess, K., 2012. TOUGH model use, calibration and validation, Transactions of the ASABE 55 (4), 1275-1290.
Finsterle, S., Sonnenthal, E.L., Spycher, N., 2014. Advances in subsurface modeling using the TOUGH suite of simulators, Computers & Geosciences, 65, 2-12, SI.
Finsterle, S., 1993. iTOUGH2 users guide version 2.2, Lawrence Berkeley Laboratory, University of California.
Franco, A., Vaccaro, M., 2014. Numerical simulation of geothermal reservoirs for the sustainable design of energy plants: A review, Renewable & Sustainable Energy Reviews, 30, 987- 1002.
Fusi, L., Rosso, F., Ceseri, M., Borsi, I., Speranza, A., 2013. Weak formulation for a two-phase nonlinear flow in an undeformable porous medium, Meccanica, 48, 1, 57-70.
Ganguly, S., Kumar, M.S.M., 2012. Geothermal reservoirs - A brief review, Journal of the Geological Society of India, 79, 6, 589-602.
Garg, S.K., Pritchett, J.W., Brownell Jr., D.H., 1975. Transport of mass and energy in porous media, Proc 2nd UN Symposium on the Development and Use of Geothermal Resources, San Francisco, 3, 1651-1656.
Geiger, S., Schmid, K.S., Zaretskiy, Y., 2012. Mathematical analysis and numerical simulation of multi-phase multi-component flow in heterogeneous porous media, Current Opinion in Colloid & Interface Science, 17, 3, 147-155.
Gelet, R.M., Loret, B., Khalili, N., 2015. The significance of local thermal non-equilibrium in simulations of enhanced geothermal recovery, Conference: Computer Methods and Recent Advances in Geomechanics, Kyoto, Japan, Sep 22-25, 2014, Ed:Oka, F.,
Gök, I.M., Sarak, H., Onur, M., Serpen, U., Satman, A., 2005. Numerical modeling of the Balçova Narlıdere geothermal field, Turkey, Proceedings World Geothermal Congress 2005, Antalya, Turkey.
Guerrero-Martinez, F.J., Verma, S.P., 2013. Three dimensional temperature simulation from cooling of two magma chambers in the Las Tres Virgenes geothermal field, Baja, California Sur, Mexico, Energy, 52, 110-118.
Gunnarsson, G., Arnaldsson, A., Oddsdottir, A.L., 2012. Model Simulations of the Hengill Area, Southwestern Iceland, Transport of Unsaturated Groundwater and Heat (TOUGH) Symposium, Berkeley, CA, Sep 14-16, 2009, Transport in Porous Media, 90, 1, 3-2
Gupta, M., Rao, G., Narain, H., 1974. Geothermal investigations in the Puga Valley hot spring region Ladakh, India, Geophysical Research Bulletin, 12, 119-136.
Gupta, M.L., Sharma, S., Singh, S., Drolia, R., 1979, Geophysical exploration and assessment of power potential of Puga Geothermal field. Geoviews, 6, 1-4.
Günay, E., Karahanoğlu, N., 2015. Finite element simulation of the Edremit geothermal field, Proc of 40th workshop on geothermal reservoir engineering, Stanford University, p:1-10
Hanano, M., 1998. A simple model of a two-layered high-temperature liquid-dominated geothermal as a part of a large-scale hydrothermal convection system, Transport in Porous Media, 33, 1-2, 3-27.
Hanano, M., 1992. Simulation Study of the Matsukawa Geothermal Reservoir - Natural State and its Response to Exploitation, Journal of Energy Resources Technology-Transactions of the ASME, 114, 4, 309-314.
Hathorn, D., Wu, Y.S., Chen, Z.Z., 2014. TOUGH2- PETSc: A Parallel Solver for TOUGH2, 2014. 15th International Conference on Parallel And Distributed Computing, Applications and Technologies (PDCAT 2014), Hong Kong, PEOPLES R CHINA, Dec 09-11, 2014,
Hayashi, K., Willis-Richards, J., Hopkirk, R.J., Niibori, Y., 1999. Numerical models of HDR geothermal reservoirs - a review of current thinking and progress, Geothermics, 28, 4-5, 507-518
Hu, B., 1995. Reservoir simulation of the Yangbajian geothermal field in Tibet, China. Proceedings World Geothermal Congress95, 18-31 May 1995 Florence, 1691-1695.
Hu, L.T., Winterfeld, P.H., Fakcharoenphol, P., Wu, Y.S., 2013. A novel fully-coupled flow and geomechanics model in enhanced geothermal reservoirs, Journal of Petroleum Science and Engineering, 107, 1-11.
Ingebritsen, S.E., Sorey, M.L., 1985. Quantitative analysis of the Lassen hydrothermal system, north-central California. Water Resourses research, 21 (6), 853-868
Ingebritsen, S.E., Geiger, S., Hurwitz, S., Driesner, T., 2010. Numerical Simulation of Magmatic Hydrothermal Systems, Reviews of Geophysics, 48.
Ishido, T., Tosha, T., 1998. Feasibility study of reservoir monitoring using repeat self potential measurements Transactions Geothermal Resources Council 22, 171-177
Itoi, R., Kumamoto, Y., Tanaka, T., Takayama, J., 2010. History matching simulation of the Ogiri geothermal field, Japan. In: Proc World geothermal congress 2010, Bali, Indonesia
Jha, S.K., Puppala, H., 2018. Conceptual modeling and characterization of Puga geothermal reservoir, Ladakh, India, Geothermics, 72, 326-33
Jiang, F.M., Luo, L., Chen, J.L., 2013. A novel threedimensional transient model for subsurface heat exchange in enhanced geothermal systems, International Communications in Heat and Mass Transfer, 41, 57-62.
Jiang, F.M., Chen, J.L., Huang, W.B., Luo, L., 2014. A three-dimensional transient model for EGS subsurface thermo-hydraulic process, Energy, 72, 300-310
Jing, Y.N., Jing, Z.Z., Willis-Richards, J., Hashida, T., 2014. A simple 3-D thermoplastic model for assessment of the long-term performance of the Hijiori deep geothermal reservoir, Journal of Volcanology and Geothermal Research, 269, 14- 22.
Karahanoğlu, N., Doyuran, V., Akkaş, N., 1984. Finite Element Simulation of Hot-Water type Geothermal Reservoirs, Journal of Volcanology and Geothermal Research, 23, 3-4, 357-382.
Karahanoğlu, N., 1983. Finite Element Simulation of Hot-Water type Geothermal Reservoirs, PhD Thesis, Middle East Technical University, Ankara Turkey
Karrech, A., Beltaief, O., Vincec, R., Poulet, T., Regenauer-Lieb, K., 2015. Coupling of thermalhydraulic-mechanical processes for geothermal reservoir modelling, Journal of Earth Science, 26, 1, 47-52.
Kiryukhin, A.V., Asaulova, N.P., Finsterle, S., 2008. Inverse modeling and forecasting for the exploitation of the Pauzhetsky geothermal field, Kamchatka, Russia. Geothermics, 37, 540-562.
Kiryukhin, A.V., Asaulova, N.P., Finsterle, S., Rychkova, T.V., Obora, N.V., 2006. Modeling the Pauzhetsky geothermal field, Kamchatka, Russia, using iTOUGH2. In: Proc TOUGH Symposium, Lawrence Berkeley National Laboratory, California (USA).
Kiryukhin, A.V., Asaulova, N.P., Manukhin, Y.F., Rychkova, T.V., Sugrobov, V.M., 2010. Using numerical modeling for assessing the recoverable reserves of a geothermal steam field: The Pauzhetka geothermal field, Journal of Volcanology and Seismology,
Kissling, W.M., Brown, K.L., OSullivan, M.J., White, S.P., Bullivant, D.P., 1996. Modeling chloride and CO2 chemistry in the Wairakei geothermal reservoir. Geothermics, 25, 285-305.
Kolditz, O., Clauser, C., 1998. Numerical simulation of flow and heat transfer in fractured crystalline rocks: Application to the hot dry rock site in Rosemanowes (UK). Geothermics, 27, 1-23.
Kolditz, O., Blöcher, M. G., Clauser, C., Diersch, H.-J. G., Kohl, T., Kühn, M., McDermott, C. I., Wang, W., Watanabe, N., Zimmermann, G. and Bruel, D., 2010. Geothermal Reservoir Simulation, in Geothermal Energy Systems: Exploration, Development, an
Köhn, M., Stöfen, H., 2005. A reactive flow model of the geothermal reservoir Waiwera, New Zealand, Hydrogeology Journal, 13, 4, 606-626
Kumamoto, Y., Itoi, R., Tanak, T., Hazama, Y., 2009. Modeling and numerical analysis of the two-phase geothermal reservoir at Ogiri, Kyushi, Japan. In: Proc of the 34th Workshop on Geothermal reservoir engineering, Stanford, California (USA).
Kuzevic, S., Kuzevicova, Z., Hojdova, M., Pusztai, A., 2011. A Computer-Based Simulation of Geothermal Energy Utilization in Conditions of Slovak Republic, 11th International Multidisciplinary Scientific Geoconference (SGEM 2011), VOL III, Albena, Bu
Lasseter, T.J., 1976. Numerical-Simulation of Heat and Mass-Transfer in Multi-dimensional 2-Phase Geothermal Reservoirs, Mechanical Engineering, 98, 5, 104-104
Lei, H.Y., Zhu, J.L., 2013. Numerical modeling of exploitation and reinjection of the Guantao geothermal reservoir in Tanggu District, Tianjin, China, Geothermics, 48, 60-68.
Lewis, R.W., Karahanoğlu, N., 1981. Simulation of Subsidence in Geothermal Reservoirs, Numerical Methods in Thermal Problems, 2, 326-335.
Lewis, R.W., Roberts, P.J., Schrefler, B.A., 1989. Finite element modeling of two phase heat and fluid flow through deforming porous media, Transport in Porous Media, 4, 319-334.
Lipmann, M.J., Narasimhan, T.N., Witherspoon, P.A., 1976. Numerical simulation of reservoir compaction in liquid dominated geothermal systems. Proc. 2nd Int Symposium on Land Subsidence, Anaheim, Ca.,157-166.
Llanos, E.M., Zarrouk, S.J., Hogarth, R.A., 2015. Numerical model of the Habanero geothermal reservoir, Australia, Geothermics, 53, 308-319
Magliocco, M.J., Glaser, S.D., Kneafsey, T.J., 2015. Laboratory and Numerical Studies of Heat Extraction from Hot Porous Media by Means of Supercritical CO2, TOUGH Symposium, Berkeley, CA,Sep 17-19, 2012, Transport in Porous Media, 108, 1, 85-104
Magnusdottir, L., Finsterle, S., 2015. An iTOUGH2 equation-of-state module for modeling supercritical conditions in geothermal reservoirs, Geothermics, 57, 8-17.
Magri, F., Akar, T., Gemici, U., Pekdeger, A., 2010. Deep geothermal groundwater flow in the Seferihisar-Balcova area, Turkey: results from transient numerical simulations of coupled fluid flow and heat transport processes, Geofluids, 10, 3, 388-405
Mannington, W., OSullivan, M., Bullivant, D., 2000. An air/water model of the Wairakei-Tauhara geothermal system. In: Proc of world geothermal congress, Kyushu, Japan.
Mannington, W., OSullivan, M., Bullivant, D., 2004. Computer modeling of the Wairakei-Tauhara geothermal system, New Zealand. Geothermics, 33, 4, 401-419.
Mc.Guinnes, M.J., White, S.P., Young, R.M., Izhisaki, H., Ikeuchi, K., Yoshida, Y., 1995. A model of the Kakkonda geothermal reservoir. Geothermics, 24, 1-48
Menzies, A.J., Granados, E.E., Sanyal, S.K., Merida-I, L., Caicedo-A., A., 1991.Numerical modeling of the initial state and matching well test data from the Zunil geothermal field Guatemala. Proceedings of the 16 th Workshop on Geothermal Reservoir E
Menzies, A.J., Pham, M., 1995. A field-wide numerical simulation model of The Geysers geothermal field, California, Proceedings World Geothermal Congress95, Florence, 18-31 May 1995, 1697-1702.
Mercer, J.W., Faust, C.R., 1979. Geothermal Reservoir Simulation.3. Application of Liquid-Dominated and Vapor-Dominated Hydrothermal Modeling Techniques to Wairakei, New-Zealand, Water Resources Research, 15, 3, 653-671.
Mercer, J.W., Faust, C.R., and Pinder, G.F.,1974. Geothermal reservoir simulation. Conference on research for the Development of Geothermal Energy Resources, Pasadena, California, 256- 267.
Morgan, K., Lewis, R.W., White, I.R., 1980. The mechanisms of ground surface subsidence above compacting multi phase reservoirs and their analysis by the finite element method, Applied Mathematical Modelling, 4, 217-234.
Moridis, G.J., 2003. Numerical studies of gas production from methane hydrates. Society of Petroleum Engineers Journal 32(8), 359-370.
Moridis, G.J., Freeman, C.M., 2015. The RealGas and RealGasH2O options of the TOUGH plus code for the simulation of coupled fluid and heat flow in tight/shale gas systems. Computers & Geosciences, 65, 56-71, SI.
Moridis, G.J., Kowalsky, M.B., Pruess, K., 2008. TOUGH+HYDRATE v1.0 Users Manuel: A code for the Simulation of System Behaviour in Hydrate-Bearing Geologic Media. Report LBNL-149E, Lawrence Berkeley national Laboratory, CA, 279 pp
Morris, C.W., Campbell, D.A., 1981. Geothermal Reservoir Energy recovery A 3-Dimensional Simulation Study of the East Mesa Field. Journal of Petroleum Technology, 33, 4, 735-742.
Mottaghy, D., Pechnig, R., Vogt, C., 2011.The geothermal project Den Haag: 3D numerical models for temperature prediction and reservoir simulation. Geothermics, 40, 3, 199-210
Nakanishi, S., Abe, M., Todaka, N., Yamada, M., Sierra, J.L., Gingins, M.O., Mass, L.C., Pedro, G.E., 1995. Copahue geothermal system, Argentina- study of a vapor dominated reservoir. Proceedings World Geothermal Congress 95, Florence, 18-31 May 199
Nakanishi S., Iwai, N., 2000. Reservoir simulation study of the Onikobe geothermal field, Japan. Proceedings World Geothermal Congress, Kyushu-Tohuku Japan, May 28June 10, 2000, 2159-2164.
Nguyen, V.V., Pinder, G.F., 1983. Geothermal Reservoir Simulation using, Non-Equilibrium Thermodynamics. Society of Petroleum Engineers Journal, 23, 4, 613-622.
Noorollahi, Y., Itoi, R., 2011. Production capacity estimation by reservoir numerical simulation of northwest (NW) Sabalan geothermal field, Iran, Energy, 36, 7, 4552-4569.
Ostermeyer, G.P., Srisupattarawanit, T., 2013. MultiScale Simulation of Heat and Flow in Geothermal Reservoirs, Oil Gas-European Magazine, 39, 1, 40-42.
OSullivan, M.J., 1985. Geothermal Reservoir Simulation. International Journal of Energy Research, 9, 3, 319-332.
OSullivan, M., Barnett, B., Razali, M., 1990. Numerical simulation of the Kamojang geothermal field, Indonesia, Trans Geotherm Resources Counc 1317-1324
OSullivan, M.J., Bullivant, D.P., Follows, S.E., Mannington, W.I., 1998. Modeling of the Wairakei-Tauhara geothermal system. Proceedings of the TOUGH Workshop98, Berkeley, California, 4-6 May 1998, 1-6.
OSullivan, M.J., Pruess, K., Lippmann, M.J., 2001. State of the art of geothermal reservoir simulation. Geothermics, 30, 4, 395-429.
OSullivan, M.J., Yeh, A., Mannington, W.I., 2009. A history of numerical modeling of the Wairakei geothermal field. Geothermics, 38, 1, 155-168.
Özkaya M., 2007. Numerical modeling of the Kızıldere Geothermal field. MSc Thesis, Middle East Technical University, Ankara, Turkey
Pan, L.H., Freifeld, B., Doughty, C., Zakem, S., Sheu, M., Cutright, B., Terrall, T., 2015. Fully coupled wellbore-reservoir modeling of geothermal heat extraction using CO2 as the working fluid, Geothermics, 53, 100-113.
Parini, M., Cappetti, G., Laudiano, M., Bertani, R., Monterrossa, M., 1995. Reservoir modeling study of the Ahuachapan geothermal field (El Salvador) in the frame of a generation stabilization project. Proceedings World Geothermal Congress 95, Flore
Parini, M., Acuna, J.A., Laudiano, M., 1996. Reinjected water return at Miravalles geothermal reservoir, Costa Rica: numerical modeling and observations. Proceedings of the 21st Workshop on Geothermal Reservoir Engineering, Stanford University, Stanf
Pearson, S.C.P., Alcaraz, S.A., Barber, J., 2014. Numerical simulations to assess thermal potential at Tauranga low-temperature geothermal system, New Zealand. Hydrogeology Journal, 22, 1, 163- 174
Pham, M., Sanyal, S.K., Menzies, A.J., Naka, T., Takeuchi, R., Iata, S., 1995. Numerical modeling of the high temperature two-phase reservoir at Uenotai geothermal field, Akita prefecture, Japan. Proceedings World Geothermal Congress95, Florence, 18
Pham, M., Menzies, A.j., Sanyal, S.K., Lima, E., Shimada, K., Juarez, J., Cuevas, A., 1996. Numerical modeling of the high temperature geothermal system of Amatitlan, Guatemala. Transactions Geothermal Resources Council 20, 833-838.
Pogacnik, J., Dempsey, D., Kelkar, S., Podgorney, R., OSullivan, M., OSullivan, J., 2014. The Effect of Sequential Solution Procedures in the Numerical Modeling of Stimulation in Engineered Geothermal Systems, 11th World Congress on Computational M
Porras, E.A., Tanaka, T., Fujii, H., Itoi, R., 2007. Numerical modeling of the Momotombo geothermal system, Nicaragua. Geothermics, 36, 4, 304-329
Porras, E.A., Tanaka, T., Fujii, H., Itoi, R., 2005. Numerical modeling of the Momotombo geothermal system, Proceedings World Geothermal Congress 2005, Antalya, Turkey
Portugal, E., Birkle, P., Tello, E., Tello, M., 2000. Hydrochemical-isotopic and hydrogeological conceptual model of the Las Tres Virgenes geothermal field, Baja, California Sur, Mexico. Journal of Volcanology and Geothermal Research, 101, 223-244
Pratama, H.B, Saptadji, N.M.,2016. Numerical Simulation for Natural State of Two-Phase Liquid Dominated Geothermal Reservoir with Steam Cap Underlying Brine Reservoir, 5th ITB International Geothermal Workshop (IIGW2016), Bandung, Indonesia, Mar 27-A
Pritchett, J.W., Garg, S.K., 1995. A modelling study of the Oguni geothermal field, Kyushu, Japan, Proceedings World Geothermal Congress95, Florence, 18-31 May 1995, pp 1703-1707
Pritchett, J.W., Garg, S.K., Ariki, K., Kawano, Y., 1991. Numerical simulation of the Sumikawa geothermal field in the natural state. In: Proc of the 16 th workshop on geothermal reservoir engineering, Stanford, California (USA).
Pruess, K., Batistelli, A., 2002. TMVOC A numerical simulator for Three-Phase Non-Isothermal flows of Multicomponent Hydrocarbon mixtures in saturated, unsaturated heterogeneous media. Report LBLN-49375E, Lawrence Berkeley National Laboratory, Berkel
Pruess, K., 2006. Enhanced geothermal systems (EGS) using CO2 as working fluid- a novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics, 35(4), 351-367
Pruess, K., 1983. Development of the general purpose simulator MULKOM, Annual Report 1982, Earth Sciences Division Report LBL-15500, Lawrence Berkeley Laboratory, Berkeley, CA, 103 pp.
Pruess, K., 1991. TOUGH2 A General Purpose Numerical Simulator for Multiphase Fluid and Heat Flow. Report LBL-29400. Lawrence Berkeley Laboratory, Berkeley, CA, 103 pp.
Pruess, K., Oldenburg, C., Moridis, G., 1999. TOUGH2 users guide version 2.1. Report LBLN-43134, Lawrence Berkeley National Laboratory, Berkeley CA, 204 pp.
Pruess, K., Zerzan, J.M., Schroeder, R.C., Witherspoon, P.A., 1979. Description of the three dimensional two phase simulator SHAFT78 for use in geothermal reservoir studies, paper SPE7699 presented at the SPE Fifth symposium on reservoir simulation,
Pruess, K., Bodvarsson, G.S., Schroeder, R.C., Witherspoon, P.A., 1982. Model Studies of the Depletion of Two-Phase Geothermal Reservoirs. Society of Petroleum Engineers Journal, 280- 290
Pruess, K., 1990. Modeling of geothermal reservoirs: Fundamental processes, computer simulation and field applications. Geothermics, 19, 1, 3.
Pruess, K., 1987. TOUGH Users Guide. Report LBL-20700. Lawrence Berkeley Laboratory, Berkeley, CA, 78 pp.
Pruess, K., 2011. ECO2M: A TOUGH2 fluid property module for Mixtures of Water, NaCl, and CO2 . Including Super- and Sub critical Conditions, and Phase change between liquid and gaseous CO2 . Report LBLN-4590E, Lawrence Berkeley National Laboratory, B
Pruess, K., 2003. The TOUGH codes - A family of simulation tools for multiphase flow and transport processes in permeable media, TOUGH Symposium 2003, La wrence Berkeley National Lab, Berkeley, Ca, May, 2003, Vadose Zone Journal, 3, 3, 738-746
Quiano, J.J.D., Zarrouk, S.J., 2018. Geothermal resource assessment using experimental design and response surface methods: The Ngatamariki geothermal field, New Zealand, Renewable Energy, 116, 325-334
Randi, A., Sterpenich, J., Thiery, D., Kervevan, C., Pironon, J., Morlot, C., 2017. Experimental And Numerical Simulation of the Injection of A CO2 Saturated Solution in a Carbonate Reservoir: Application to the CO2 -Dissolved Concept Combining CO2
Ratouis, T.M.P., OSullivan, M.J., OSullivan, J.P., 2016. A Numerical model of Rotorua Geothermal Field. Geothermics, 60, 105-125.
Ripperda, N., Bodvarsson, G.S., Lipmann, M.J., Cuellar, G., Escobar, C., 1991. An exploitation model and performance predictions of the Ahuachapan geothermal field, El Salvador. Geothermics, 20, 4, 181-196.
Romagnoli, P., Arias, A., Barelli, A., Cei, M., Casini, M., 2010. An updated numerical mıodeling of the Larderello-Travale geothermal system, Italy. Geothermics, 39, 292-313.
Rutqvist, J.,Wu, Y.-S., Tsang, J-F., Bodvarsson,G., 2002. A modeling approach for analsis of coupled multiphase flow, heat transfer and deformation in fractured porous rock. International Journal of Rock Mechanics and Mining Sciences 39, 429- 442.
Sakagawa, Y., Aoyama, K., Ikuechi, K., Takahashi, M., Kato, O., Doi, N., Tosha, T., Ominato, T., Koide, K., 2000. Natural state simulation of the Kakkonda geothermal field, Japan., Proceedings of World Geothermal Congress, Kyushu-Tohuku, Japan, May 2
Sakagawa, Y., Takahashi, M., Hanano, M., Ishido, T., Demboya, N., 1994. Numerical simulation of the Mori geothermal field, Japan. Proceedings of the 19th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 18-20 J
Sanchez, U.P., 1997. Los Humeros geothermal field, Mexico, Trans geothermal Resources Counc. 21, 435-439
Sanyal, S.K., Antunez, E.U., Abe, M., Nakanishi, S., 1990. Numerical modeling of a mature high temperature geothermal reservoir; a case history from the Onikobe field, Miyagi prefecture, Japan. Transactions Geothermal Resources Council 14, 1339-1345
Sanyal, S.K., Pham, M., Iwata, S., Suzuki, M., Inoue, T., Yamada, K., Futagoishi, M., 2000. Numerical simulation of the Wasabizawa geothermal field, Akita Prefecture, Japan, Proceedings of World Geothermal Congress, Kyushu-Tohuku, Japan, May 28-June
Seol, Y., Lee, K.K., 2007. Application of TOUGHREACT to performance evaluations of geothermal heat pump systems. Geosciences Journal, 11, 1, 83-91.
Sippel, J., Fuchs, S., Cacace, M., Braatz, A., Kastner, O., Huenges, E., Scheck-Wenderoth, M., 2013. Deep 3D thermal modelling for the city of Berlin (Germany). Environmental Earth Sciences, 70, 8, 3545-3566.
Soboleva, E., 2017. Numerical Simulation of Haline Convection in Geothermal Reservoirs, International Conference Problems of Thermal Physics and Power Engineering (Ptppe-2017), Journal of Physics Conference Series, 891, Natl Res Univ, Moscow Power En
Sonney, R., Vuataz, F.D., 2009. Numerical modelling of Alpine deep flow systems: a management and prediction tool for an exploited geothermal reservoir (Lavey-les-Bains, Switzerland). Hydrogeology Journal, 17, 3, 601-616.
Sta. Ana, F.X.M., Saw, V.S., Molina, P.O., Aleman, E.T., Canete, G.F., Hingoyon, C.S., Sarmiento, Z.F., 1999. Increased production load at Tngonan geothermal field, Philippines: Reservoi response and field management strategies. Proc of the 24 th wor
Strobel, C.J., 1993. Buffalo field, Philippines: Reservoir modeling for prediction of limits to sustainable generation. Proc of the 18 th workshop on geothermal reservoir engineering, Stanford, California (USA), 26-28 January 1993, 5-10.
Suarez, Arriaga, M.C., Samaniego, V. F., Rodrigez, F., 1996. Some mismathces occurred when simulating fractured reservoir as homogeneous porous media. Proceedings of the 21st Workshop on Geothermal Reservoir Engineering, Satnford University, Stanford
Suryadarma, D., T., Zuhro, A.A., Yani, A., 2010. Sustainable development of the Kamojang geothermal field. Geothermics, 39, 391-409.
Swenson, D., Schroeder, R., Shinohara, N., Okabe, T., 1999. Analyses of the Hijiori long term circulation test. Proceedings of the 24th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 25-27 January 1999, 344-3
Todesco, M., 1995. Modeling of the geothermal acticity at Vulcano (Aeolian Islands, Italy). Proceedings World Geothermal Congress95, Florence, 18-31 May 1995, 1309-1315.
Tokita, H., Yahara, T., Kitakoga, I., 1995. Cooling effect and fluid behavior due to reinjected hot water in the Hatchobaru geothermal field, Japan. Proceedings World Geothermal Congress 95, Florence, 18-31 May 1995, 1869-1874.
Thomas, L.K., Pierson, R.G., 1978. 3-Dimensional Geothermal Reservoir Simulation. Society of Petroleum Engineers Journal, 18, 2, 151-161.
Toronyi, R.M., Farouq Ali, S.M., 1977. Two-phase, two-dimensional simulation of a geothermal reservoir. Soc. Pet. Eng. J., 17, 171-183.
Turali, E.Y., Simsek, S., 2017. Conceptual and 3D simulation modeling of the Sorgun hydrothermal reservoir (Yozgat,Turkey). Geothermics, 66, 85- 100.
Vedova, D.B., Vecellio, C., Bellani, S., Tinivella, U, 2008. Thermal modeling of the Larderello geothermal field (Tuscany Italy). International Journal Earth Science (Geol Rundsch); 97, 317- 332.
Weijermars, R., Zuo, L., Warren, I., 2017. Modeling reservoir circulation and economic performance of the Neal Hot Springs geothermal power plant (Oregon, USA): An integrated case study, Geothermics, 70, 155-172
White, S.P., Kissling, W.M., McGuinnes, M.J., 1997. Models of the Kawerau geothermal reservoir. Transactions Geothermal Resources Council, 21, 33-40
Wijaya, I, Purqon, A., 2017. Simulation of Fluid Flow and Heat Transfer in Porous Medium Using Lattice Boltzmann Method, International Conference on Energy Sciences (Ices 2016), Bandung, Indonesia, Jul 25-27, 2016, Book Series: Journal of Physics Con
Williamson, K. H., 1990. Reservoir simulation of The Geysers geothermal field. Proceedings of the 15 th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 23-25 January 1990, 113-123
Xing, H.L., Liu, Y., Gao, J.F., Chen, S.J., 2015. Recent development in numerical simulation of enhanced geothermal reservoirs. Journal of Earth Science, 26, 1, 28-36
Xu, T.F., Feng, G.H., Hou, Z.Y., Tian, H.L., Shi, Y., Lei, H.W., 2015. Wellbore-reservoir coupled simulation to study thermal and fluid processes in a CO2 -based geothermal system: identifying favorable and unfavorable conditions in comparison with w
Xu; T., Pruess, K., 2001. Modeling multiphase nonisothermal fluid flow and reactive geochemical transport in variably saturate fractured rocks: 1. Methodology. American J. Sci. 301(1), 16-33.
Yahara, T., Tokita, H., 2010. Sustainability of the Hatchobaru geothermal field, Japan. Geothermics, 39, 382-390
Yano, Y., Ishido, T., 1995. Numerical modeling of the evolution of two phase zones under a fractured cap rock. Geothermics, 24, 4, 507-521
Yasukawa, K., Ishido, T., 1990. Numerical modeling of the Onikobe caldera hydrothermal system, northeastern Honshu, Japan. Transactions Geothermal Resources Council 14, 1347-1355.
Yeh, H.D., Yang, S.Y., Li, K.Y., 2012. Heat extraction from aquifer geothermal systems, International Journal for Numerical and Analytical Methods in Geomechanics, 36, 1, 85-99.
Yoğurtcuoğlu, A., 2016. Integrated 3-D finite element simulation of the Edremit Geothermal Field. Yüksek Lisans tezi Orta Doğu Teknik Üniversitesi, Ankara.
Zaher, M.A., Saibi, H., El Noubi, M., Ghamry, E., Ehara, S., 2011. A preliminary regional assessment of the Gulf of Suez, Egypt. Journal of African Earth Sciences, 60, 117-132.
Zaher, M.A., Saibi, H., Nishijima, J., Fujimitsu, Y., Mesbah, H., Ehara, S., 2012. Exploration and assessment of the geothermal resources in the Hammam Faraun hot spring, Sinai Peninsula, Egypt. Journal of Asian Earth Sciences, 45, 256- 267.
Zang, Y.J., Li, Z.W., Yu, Z.W., Guo, L.L., Lin, X.P., Xu, T.F., 2015. Evaluation of developing an enhanced geothermal heating system in northeast China: Field hydraulic stimulation and heat production forecast. Energy and Buildings, 88, 1-14.
Zang, Y.J., Li, Z.W., Yu, Z.W., Guo, L.L., Lin, X.P., Xu, T.F., 2015. Evaluation of developing an enhanced geothermal heating system in northeast China: Field hydraulic stimulation and heat production forecast. Energy and Buildings, 88, 1-14.
Zeng, Y., Tang, L., Wu, N.Y., Cao, Y.F., 2017. Analysis of influencing factors of production performance of enhanced geothermal system: A case study of Yangbajing geothermal field. Energy, 127, 218- 235
Zeng, Y.C., Su, Z., Wu, N.Y., 2013. Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field. Energy, 56, 92-107
Zhang, K., Wu, Y-S., Pruess, K., 2008. Users Guide for TOUGH2-MP- A massively parallel version of the TOUGH2 code. Report LBNL-315E, Lawrence Berkeley Laboratory, Berkeley CA, 108 pp.
Zhang, K., Lee, B.H., Ling, L.L., Guo, T.R., Liu, C.H., Ouyang, S., 2016. Modeling studies for production potential of Chingshui geothermal reservoir. Renewable Energy, 94, 568-578.
Zhao, Y.S., Feng, Z.J., Feng, Z.C., Yang, D., Liang, W.G., 2015. THM (Thermo-hydro-mechanical) coupled mathematical model of fractured media and numerical simulation of a 3D enhanced geothermal system at 573 K and buried depth 6000-7000 M. Energy, 82
Zyvoloski, G. 1983. Finite element methods for geothermal reservoir simulation. International Journal for Numerical and Analytical Methods in Geomechanics, 7: 7586.
Karahanoğlu, N . (2019). Jeotermal Rezervuarlarla İlgili Sayısal Modelleme/Benzeşim Çalışmaları . Jeoloji Mühendisliği Dergisi , 43 (1) , 99-130 . DOI: 10.24232/jmd.572481
Karahanoğlu, N . Jeotermal Rezervuarlarla İlgili Sayısal Modelleme/Benzeşim Çalışmaları. Jeoloji Mühendisliği Dergisi 43 (2019 ): 99-130
ABSTRACT: In this study research methods are assessed to determine the spatial distribution of petroleum hydrocarboncontamination in the coastal aquifers and to develop a groundwater flow and transport model that can be usedto evaluate the level of natural attenuation that has occurred. The stages of this study include: 1) preliminaryassessment and conceptual model including hydrogeologic characteristics of the site, the history of the site, and anypast or current remedial activities, 2) field and laboratory investigations including soil and groundwater samplingtechniques such as soil borings, multi-level monitoring well installation, aquifer tests and water quality sampling.Parameters to be measured, their measurement methods and use of these data should be explained in detail, 3)physical and geochemical characterization of the study area with the results of the field and laboratory investigations,4) development of the groundwater model with selected software, 5) evaluation of monitored natural attenuationaccording to primary and secondary lines of evidence established during the investigation. The primary linesof evidence, which is a stable or shrinking plume rather than an expanding plume, will be the benzene, toluene,ethylbenzene and xylene (BTEX) contour maps prepared as a result of the groundwater sampling. Secondary linesof evidence, which include geochemical data that serve as indicators of naturally occurring biodegradation andestimates of natural attenuation rates, will be based on electron acceptor/reduction product concentrations measuredwithin the BTEX plume. The results of the groundwater modeling are used to help decide whether the monitorednatural attenuation process results in BTEX contaminant levels declining to acceptable levels within a specified time.If projections of contaminated levels indicate that natural attenuation is not enough for remediation, then additionalremedial alternatives can be recommended for further investigation
BTEX
Groundwater
Monitored Natural Attenuation
Numerical Modeling
Petroleum contamination
Akbulut, C., 2009. Groundwater modelling of the Karaduvar (Mersin) aquifer and site selection of permeable reactive barrier for remediation of petroleum pollution. MSc Thesis, University of Mersin, Department of Geological Engineering, Institute of N
Anderson, R.T., Lovely, D.R., 1997. Ecology and biogeochemistry of in situ groundwater bioremediation. Advances in Microbial Ecology, 15, 289-350.
ASTM D-2216, 2010. Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass, American Society of Testing and Materials International, West Conshohocken, PA.
ASTM, 2010. Standard Guide for Remediation of Ground Water by Natural Attenuation at Petroleum Release Sites, E1943-98. American Society of Testing and Materials International, West Conshohocken, PA.
Azubuike, C.C., Chikere, C.B., Okpokwasili, G.C., 2016. Bioremediation techniques-classification based on site of application: principles, advantages, limitations and prospects.World Journal of Microbiology and Biotechnology, 32 (11), 1-18.
Babaarslan, C., 2001. Bioremediation of Petroleum Hydrocarbons, Ankara University, Graduate School of Natural and Applied Sciences, MSc Thesis, 91p. (unpublished, Turkish with English Abstract).
Banerjee, A., Roy, A., Dutta, S., Mondal, S., 2016. Bioremediation of hydrocarbon - A Review. International Journal of Advanced Research 4 (6), 1303-1313.
Bauer, R.D., Maloszewski, P., Zhang, Y., Meckenstock, R.U., Griebler, C., 2008. Mixing-controlled aerobic and anaerobic biodegradation of toluene in porous media - results from two-dimensional laboratory experiments. Journal of Contaminant Hydrology,
Bear, J., 1972. Dynamics of Fluids in Porous Media. Dover Publications, Inc., New York, 764 pp.
Beck, P., Mann, B., 2010. A technical quide for demonstrating monitored natural attenuation of petroleum hydrocarbos in groundwater. Technical Report, No: 15, CRC Care, Australia
Caetano, M.O., Schneider, I.A.H., Gomes, L.P., Kieling A.G., Miranda L.A.S., 2017. A compact remediation system for the treatment of groundwater contaminated with BTEX and TPH. Environmental Technology, 38 (11), 1408-1420.
Cassidy, D.P., Srivastava, V.J., Dombrowski, F.J., Lingle J.W., 2015. Combining in situ chemical oxidation, stabilization, and anaerobic bioremediation in a single application to reduce contaminant mass and leachability in soil. Journal of Hazardous
Chen, C.S., Hseu, Y.C., Liang, S.H., Kuo, J.Y., Chen, S.C., 2008. Assessment of genotoxicity of methyl-tert-butyl ether, benzene, toluene, ethylbenzene, and xylene to human lymphocytes using comet assay. Journal of Hazardous Materials, 153, 351-356.
Chen, K.F., Kao, C.M., Chen, C.W., 2010. 13th IWA International Specialist Conference on Diffuse Pollution and Integrated Watershed Management Location: Seoul, South Korea Date: OCT 12-15, Journal of Environmental Sciences 22(6), 864- 871.
Chen, K.F., Kao, C.M., Wang, J.Y., 2005. Natural Attenuation of Mtbe at Two Petroleum- Hydrocarbon Spill Sites. Journal of Hazardous Materials 125(1-3), 10-16.
Chiu, H.Y., Hong, A., Lin, S.L., Surampalli, R.Y., Kao, C.M., 2013. Application of natural attenuation for the control of petroleum hydrocarbon plume: Mechanisms and effectiveness evaluation. Journal of Hydrology, 505, 126-137.
Chiu, H.Y., Verpoort, F., Liu, J.K., Chang Y.M., Kao, C.M., 2017. Using intrinsic bioremediation for petroleum-hydrocarbon contaminated groundwater clean up and migration containment: Effectiveness and mechanism evaluation. Journal of the Taiwan Inst
Clement, T.P., Johnson, C.D., Sun, Y., Klecka, G. M., Bartlett, C., 2000. Natural Attenuation of Chlorinated Ethane Compounds: Model Development and Field-Scale Application at the Dover Site. Journal of Contaminant Hydrology, 42 (2000), 113-140.
Clement, T.P., 1997. RT3D (Version1.0): A Modular Computer Code for Simulating Reactive Multispecies Transport in 3-Dimensional Groundwater Systems. Report PNNL-11720, Pacific Northwest National Laboratory, Richland, Washington, 59 pp.
Clement, T.P., Sun, Y., Hooker, B.S., Petersen, J.N., 1998. Modeling Multispecies Reactive Transport in Ground Water. Ground Water Monitoring and Remediation, 18 (2), 79-92.
Çobaner, M., Yurtal, R., Doğan, A., Motz, L.H., 2012. Three dimensional simulation of seawater intrusion in coastal aquifers: A case study in the Goksu Deltaic Plain. Journal of Hydrology, 464, 262-280.
Coresuil, et al., H.X., Monier, A.L., Gomes, A.P.N., Chiaranda, H.S., Rosaria, M., Alvarez, P.J.J., 2011. Biodegradation of Soybean and Castor Oil Biodiesel: Implications on the Natural Attenuation of Monoaromatic Hydrocarbons in Groundwater. Ground
Da Silva, M.L.B., Corseuil, H.X., 2012. Groundwater microbial analysis to assess enhanced BTEX biodegradation by nitrate injection at a gasoholcontaminated site. International Biodeterioration and Biodegradation, 67, 21-27.
Davis, G.B., Patterson, B.M., Trefry, M.G., 2009. Evidence for instantaneous oxygen-limited biodegradation of petroleum hydrocarbon vapors in the subsurface. Groundwater Monitoring and Remediation, 29(1), 126-137.
Declercq, I., Cappuyns, V., Duclos, Y., 2012. Monitored natural attenuation (MNA) of contaminated soils: State of the art in Europe, A critical evaluation. Science of the Total Environment, 426, 393-405.
Department of Environmental Protection, 2004. Use of monitored natural attenuation for groundwater remediation, Land and Water Quality Branch, Environmental Regulation Division, Department of Environmental Protection, Perth.
Dobson, R., Schroth, M.H., Zeyer, J., 2007. Effect of water-table fluctuation on dissolution and biodegradation of a multi-component, light nonaqueous-phase liquid. Journal of Contaminant Hydrology, 94 (3), 235-248.
Domenico, P.A., 1987. An analytical model for multidimensional transport of a decaying contaminant species. Journal of Hydrology, 91, 49-58.
Dyer, M., 2003. Field investigation into the biodegradation of TCE and BTEX at a former metal plating works. Engineering Geology,70 (3-4), 321-329.
El-Naas M.H., Acio J.A., El Telib A.E., 2014. Aerobic biodegradation of BTEX: progresses and prospects. Journal of Environmental Chemical Engineering, 2, 1104-1122.
Fernandes A.N., Gouveia C.D., Grassi M.T., Crespo, J.S, Giovanela, M. 2014. Determination of Monoaromatic Hydrocarbons (BTEX) in Surface Waters from a Brazilian Subtropical Hydrographic Basin. Bulletin Environmental Contamination Toxicology, 92, 455-
Fiori, S.M., Zalba, S.M., 2003. Potential impacts of petroleum exploration and exploitation on biodiversity in a Patagonian Nature Reserve, Argentina Biodiversity and Conservation, 12(6), 1261-1270.
Guerin, T.F., Horner, S., McGovern, T, Davey B., 2002. An application of permeable reactive barrier technology to petroleum hydrocarbon contaminated groundwater. Water Research, 36 (1) 15-24.
Guo, W., Langevin, C.D., 2002. Users Guide to SEAWAT: A Computer Program for Simulation of Three-Dimensional Variable-Density Groundwater Flow. U.S. Geological Survey Techniques of Water-resources, Investigations Book 6, USA
Hunkeler, D., Hohn, E., Hohener, P., Zeyer, J., 1997. 222Rn as a Partioning tracer to detect mineral oil contaminations: Laboratory Experiments and preliminary field measurements. Environmental Science and Technology 31, 3180-3187.
Indumathi, M.N., Bokam, R., Vijay, L., Ravi, K., 2017. An assessment of subsurface contamination of an urban coastal aquifer due to oil spill. Environmental Monitoring and Assessment, 189 (4), 148.
Kamath, R., Connor J.A., McHugh, T.E., Nemir, A., Le, M.P., Ryan, A.J., 2011. Use of long-term monitoring data to evaluate benzene, MTBE, and TBA plume behavior in groundwater at retail gasoline sites. Journal of Environmental Engineering, 138, 458-6
Kao C.M., Wang, C.C, 2000. Control of BTEX migration by intrinsic bioremediation at a gasoline spill site. Water Resources, 34(13), 3413-3423
Kao, C.M., Chen, C.Y., Chen, S.C., Chien, H.Y., Chen, Y.L., 2008. Application of in situ biosparging to remediate a petroleum-hydrocarbon spill site: field and microbial evaluation. Chemosphere, 70, 1492-1499.
Kao, C.H., Chen, C.S., Tsa, F.Y., Yang, K.H., Chien, C.C., Liang, S.H., Yang, C.A., Chen, S.C., 2010. Application of real-time PCR, DGGE fingerprinting, and culture-based method to evaluate the effectiveness of intrinsic bioremediation on the control
Kara, A., 2006. Modelling soluble petroleum hydrocarbons in groundwater in Batman. Gebze Technical University, Institute of Science and Technology, Gebze, Turkey, MSc. Thesis, 85 p (unpublished)
Khan F.I., Husain T., 2003. Evaluation of a petroleum hydrocarbon contaminated site for natural attenuation using RBMNA methodology, Environmental Modelling and Software 18, 179- 194.
Khan F.I., Husain, T., Hejazi, R., 2004. An overview and analysis of site remediation technologies. Journal of Environmental Management, 71, 95 122.
Konecny, F., Bohacek, Z., Müller, M., Kovarova, M., Sedlackova, I., 2003. Contamination of soil sand ground water by petroleum hydrocarbons and volatile organic compounds-Case study: Elslav Brno, Bulletin of Geosciences, 78 (3), 225-239.
Lu, G., Clement, T.P., Zheng, C., Wiedemeier, T.H., 1999. Natural Attenuation of BTEX Compounds: Model Development and Field- Scale Application. Groundwater, 37(5), 707-717.
Mao, X., Prommer, H., Barry, D.A., Langevin, C.D., Panteleit, B., Li, L., 2006. Three-Dimensional Model for Multi-Component Reactive Transport with Variable Density Groundwater Flow. Environmental Modelling Software, 21, 615- 628.
Margesin, R., Schinner, F., 2001. Bioremediation (natural attenuation and biostimulation) of dieseloil- contaminated soil in an Alpine glacierskiing area. Applied and Environmental Microbiology, 67, 3127-3133.
Maric, N., Ilic M., Miletic S., Gojgic-Cvijovic, G., C., Beskoski V., Vrvic M.M., Papic P., 2015. Enhanced in situ bioremediation of groundwater contaminated by petroleum hydrocarbons at the location of the Nitex textiles. Serbia Environmental Earth
McMurty, D.C., Elton R.O., 1985. New approach to in situ treatment of contaminated groundwaters. Environmental Progress, 4(3), 168-70.
Mirzaee, E., Gitipour, S., Mousavi, M., Amini, S., 2017. Optimization of total petroleum hydrocarbons removal from Mahshahr contaminated soil using magnetite nanoparticle catalyzed Fenton-like oxidation. Environmental Earth Sciences, 76 (165), 1-13.
Moreels, D., Bastiaens, L., Ollevier, F., Merckx, R., Diels, L., Springael, D., 2004. Evaluation of the intrinsic methyltert-butylether (MTBE) biodegradation potential of hydrocarbon contaminated subsurface soils in batch microcosm systems. FEMS Micr
Motz, L.H., Sedighi, A., 2009. Representing the Coastal Boundary Condition in Regional Groundwater Flow Models. Journal of Hydrologic Engineering, 14(8), 821-831.
Motz, L.H., Sedighi, A., 2013. Saltwater Intrusion and Recirculation of Seawater at a Coastal Boundary. Journal of Hydrologic Engineering, 18(1), 10-18.
Mukhopadhyay, A., Quinn, M., Al-Haddad A., Al- Khalid, A., Al-Qallaf, H., Rashed, T., Bhandary, H., Al-Salman, B., Bushehri, A., Boota A, Bhatt, M., 2017. Pollution of fresh groundwater from damaged oil wells, North Kuwait. Environmental Earth Scienc
Naidu, R., Nandy, S., Megharaj, M., Kumar R.P., Chadalavada, S., Chen Z., Bowman, M., 2012. Monitored natural attenuation of a long-term petroleum hydrocarbon contaminated sites: a case study. Biodegradation, 23, 881-895.
Neuhauser, E.F., Ripp, J.A., Azzolina, N.A., Madsen, E.L., Mauro, D.M., Taylor, T., 2009.Monitored natural attenuation of manufactured gas plant tar mono and polycyclicaromatic hydrocarbons in groundwater: a 14-year field study. Ground Water Monitori
Parkhurst, D.L., Appelo, C.A.J., 1999. Version 2: Users Guide to PHREEQC-A Computer Code for Speciation, Reaction-path, 1D-transport, and Inverse Geochemical Calculations. Technical Report, 99-4259, U.S. Geological Survey, USA.
Prommer, H., Davis, G.B., Barry, D.A., 1999. Geochemical changes during biodegradation of petroleum hydrocarbons: field investigations and biogeochemical modelling. Organic Geochemistry, 30 (6), 423-435.
Prommer, H., Davis, G.B., Barry, D.A., Miller, C.T., 2003a. Modelling the fate of petroleum hydrocarbons in groundwater. In: Healthand Environmental Assessment of Site Contamination (Langley, A., Gilbey, M. and Kennedy, B. Eds), (Proceedings of the F
Prommer, H., Barry, D.A., C. Zheng, C. 2003b. MODFLOW/MT3DMS based reactive multicomponent transport model. Ground Water, 41 (2), 247-257.
Raynauld, M., Peel, M., Lefebvre, R., Molson, J.W., Crow, H., Ahad, J.M.E., Ouellet, M., Aquilina, L., 2016. Understanding shallow and deep flow for assessing the risk of hydrocarbon development to ground waterquality. Marine and Petroleum Geology, 7
Rifai, H.S., Newell, C.J., Gonzales, J.R., Dendrou, S., Dendrou, B., Kennedy L., Wilson, J., 1996. BIOPLUME III -Natural Attenuation Decision Support System, Users Manual,Version 1.0, Air Force Center For Environmental Excellence, San Antonio, TX, 2
Robertson, W.D., Moore, T.A., Spoelstra, J., Li, L., Elgood, R.J., Clark, I.D., Schiff, S.L., Aravena, R., Neufeld, J.D., 2012. Natural attenuation of septic system nitrogen by anammox. Ground Water, 50, 541-553.
Ruggieri, R., Forti, P., Antoci, M.L., Waele, J.D., 2017. Accidental contamination during hydrocarbon exploitation and the rapid transfer of heavymineral fines through an overlying highly karstified aquifer (Paradiso Spring, SE Sicily). Journal of Hy
Skubal, K.L., Barcelona, M.J., Adriaens, P., 2001. An assessment of natural biotransformation of petroleum hydrocarbons and chlorinated solvents at an aquifer plume transect. Journal of Contaminant Hydrology, 49, 151-169.
Stasik, S., Wick L.Y., Wendt-Potthoff, K., 2015. Anaerobic BTEX degradation in oils and stailings ponds: impact of labile organic carbon and sulfate-reducing bacteria. Chemosphere, 138, 133-9.
Su, X.S., Lv, H., Zhang, W.J., Zhang, Y.L., 2013. Evaluation of petroleum hydrocarbon biodegradation in shallow groundwater by hydrogeochemical indicators and C S-isotopes. Environmental Earth Science, 69, 2091-2101.
Suarez, M.P., Rifai, H.S. 2004. Modeling natural attenuation of total BTEX and benzene plumes with different kinetics. Groundwater Monitoringand Remediation, 24 (3), 53-68.
Teng, Y., Feng, D., Song, L., Wang, J., Li, J., 2013. Total petroleumhydrocarbon distribution in soils and groundwater in Songyuan oil field, Northeast China. Environmental Monitoring and Assessment, 185 (11), 9559-9569.
Thapa, B., Kumar, K.C.A., Ghimire, A., 2012. A Review on bioremediation of petroleum hydrocarbon contaminants in soil. Kathmandu University Journal of Science, Engineering and Technology 8(I).
Uçankuş, T., Ünlü, K., 2008. Theeffect of aquifer heterogeneity on natural attenuation rate of BTEX. Environmental Geology, 54 (4), 759-776.
UK, EA, 2000. Guidance on the assessment and monitoring of naturalattenuation of contaminants in groundwater, R&D Publication 95, prepared by Enviros Aspinwalland LGC plc, Environment Agency, Bristol.
U.S. EPA, 1999. Use of monitored natural attenuation at superfund, RCRA corrective action, and underground storage tank sites. EPA (United States Environmental Protection Agency), Washington, D.C.
U.S. EPA, 2012. Petroleum Hydrocarbons and Chlorinated Solvents Differ In Their Potential For Vapor Intrusion. (United States Environmental Protection Agency) Office of Underground Storage Tanks, Washington, D.C.
Van Genuchten, M., Th. Alves, W.J., 1982. Analytical Solutions of the One-Dimensional Convective- Dispersive Solute Transport Equation: U.S. Department of Agriculture, Technical Bulletin Number, 1661, 151 p.
Van Stempvoort D., Biggar, K., 2008. Potential for bioremediation of petroleum hydrocarbons in groundwater under cold climate conditions: a review. Cold Regions Science and Technology, 53 (1), 16-41.
Van Stempvoort, D.R., Armstrong, J., Mayer, B., 2007. Microbial reduction of sulfate injected to gas condensate plumes in cold groundwater. Journal of Contaminant Hydrology, 92, 184-207.
Wallis, I., Prommer, H., Pichler, T., Post, V., Norton, S.B., Annable, M.D., Simmons, C.T., 2011. Process-Based Reactive Transport Model to Quantify Arsenic Mobility duringAquifer Storage and Recovery of Potable Water. Environmental Science&Technolog
Washington State Department of Ecology, 2005. Guidance on Remediation of Petroleum- Contaminated Ground Water By Natural Attenuation. Toxics Cleanup Program. Publication 05-09-091, 143 p.
Weaver, J.M.C., Cave, L., Talma, A.S., 2007. Groundwater Sampling, a Comprehensive Guide for Sampling Methods (Second Edition). Water Research Commission, Groundwater Sciences, The Council for Scientific and Industrial Research, South Africa, TT 303/
Wexler, E.J., 1992. Analytical solutions for one-, two- and three-dimensional solute transport in ground-water systems with uniform flow: United States Geological Survey, Techniques of Water- Resources Investigations of the United States Geological S
Wiedemeier, T.H., Rifai, H.S., Newell, C.J., Wilson, J.T., 1999a. Natural Attenuation of Fuels and Chlorinated Solvents in the Subsurface: John Wiley and Sons, New York, 617 p.
Wiedemeier, T.H., Wilson, J.T., Kampbell, D.H., Miller, R.N., Hansen, J.E. 1999b. Technical Protocol for Implementing Intrinsic Remediation with Long-Term Monitoring for Natural Attenuation of Fuel Contamination Dissolved in Ground Water, Air Force C
Wilson, J.T., 2011. An Approach for Evaluating the Progress of Natural Attenuation in Groundwater. EPA 600-R-11-204.
Wilson, J.L., Miller, P.J., 1978. Two-dimensional plume in uniform ground-water flow. American Society of Civil Engineers, Journal of Hydraulic Division, 104, no. HY4, 503-514.
Wisconsin Department of Natural Resources, 2014. Guidance on Natural Attenuation for Petroleum Releases. Remediation and Redevelopment Program. Report RR-614.
Yeung, C.W., Van Stempvoort, D.R., Spoelstra, J., Bickerton, G., Voralek, J., Greer, C.W., 2013. Bacterial community evidence for anaerobic degradation of petroleum hydro- carbons in cold climate groundwater. Cold Regions Science and Technology, 86,
Yu, S.P., Lu, J.F., Sun, G.Y., 2003. Impact of oil field exploitation on eco-environment of the Daqing lakes. Chinese Geographical Science, 13(2), 175-181.
Zeeb, P., Wiedemeier, T.H., 2007. Technical Protocol for Evaluating the Natural Attenuation of MTBE. American Petroleum Institute Publishing Services, Washington D.C., Publication No: API 4761.
Zhang, Y., Qian, H., Wang, J., Si, C., Chen, Z., Dang, J., Zheng, Z., 2017. Variations in the environmental characteristics of groundwater slightly contaminated with petroleum: effects of enhanced bioremediation in northeast China. Environmental Eart
Zheng, Z., Zhang Y., Su, X, Cui, X., 2016. Responses of hydrochemical parameters, community structures, and microbial activities to the natural biodegradation of petroleum hydrocarbons in a groundwater-soil environment. Environmental Earth Sciences,
Hatipoğlu-bağcı, Z , Motz, L . (2019). Kıyı Akiferlerinde Petrol Hidrokarbon Kirliliğinin Doğal Gideriminin Araştırılması ve Modellenmesi Yöntemleri . Jeoloji Mühendisliği Dergisi , 43 (1) , 131-154 . DOI: 10.24232/jmd.572505
Hatipoğlu-bağcı, Z , Motz, L . Kıyı Akiferlerinde Petrol Hidrokarbon Kirliliğinin Doğal Gideriminin Araştırılması ve Modellenmesi Yöntemleri. Jeoloji Mühendisliği Dergisi 43 (2019 ): 131-154