ABSTRACT:The changes in physical, chemical, and mineralogical properties of topsoil after forest fires, and their effect on erosion risk, have been previously studied in different geographical regions and ecosystems. It is well known that the risk of erosion increases after fire due to the loss of shear strength and the changes in hydraulic properties.Consistency limits are strongly related to the shear strength of the soil. Nevertheless, few studies have evaluated the consistency limits of naturally burned soils. In addition, determining the consistency limits of sandy soils can be very challenging due to their low plasticity. The temperatures produced by the forest fire that occurred on the left flank of an irrigation dam in Muğla, Kozağaç village, affected the topsoil. Therefore grain size distribution, soil organic content (SOM), and Atterberg limits of 24 soil specimens collected from the burned and unburned locations were studied. It was found that the grain size distribution of the burned soil did not significantly change, whereas clay content and Atterberg limits increased, and SOM decreased. The methodology followed in this study and the results can serve as a base for future studies of the effect of fire on sandy soils.
Atterberg limits
Sandy soil
Forest fire
Clay content
Organic matter
AASHTO T89 (2022). Standard method of test for determining the liquid limit of soils method B. American Association of State Highway and Transportation Officials, US.
Agbeshi, A.A., Abugre, S., Atta-Darkwa, T., Awuah, R. (2022). A review of the effects of forest fire on soil properties. Journal of Forestry Research, 33, 1419-1441.
ASTM D248717e1 (2017). Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM International, West Conshohocken, PA.
ASTM D4318-17e1 (2018). Standard test methods for liquid limit, plastic limit and plasticity index of soils. ASTM International, West Conshohocken, PA
ASTM D6913/D6913M-17 (2021). Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM International, West Conshohocken, PA.
Badía, D., Martí, C. (2008). Fire and rainfall energy effects on soil erosion and runoff generation in semi-arid forested lands. Arid Land Research and Management, 22, 93-108. https://doi. org/10.1080/15324980801957721
Campbell, G.S., Jungbauer, J.D., Bristow, K.L., Hungerford, R.D. (1995). Soil temperature and water content beneath a surface fire. Soil Science, 159(6), 363-374. https://doi. org/10.1097/00010694-199506000-00001
Cerdà, A., Doerr & S.H. (2008). The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74, 256263. https://doi.org/10.1016/j.catena.2008.03.010
Certini, G. (2005). Effects of fire on properties of forest soils: A review. Oecologia, 143, 1-10. https://doi.org/10.1007/s00442-004-1788-8
Chase, A. (2022). Using soil testing data to examine organic carbon changes during the past 27 years in Maine agricultural soils [PhD thesis]. University of Maine, USA.
Countryman, C. M. (1964). Mass fires and fire behavior. USDA Forest Service, Research Paper PSW-19. https://www.fs.usda.gov/psw/ publications/documents/psw_rp019/psw_rp019. pdf .
Das, B.M., Sobhan, K. (2017). Principles of Geotechnical Engineering. Cengage Learning, USA, 766 p.
DeBano, L.F., Rice, R.M., Conrad, C.E. (1979). Soil heating in chaparral fires: effects on soil properties, plant nutrients, erosion, and runoff. USDA Forest Service Research Paper PSW145. https://www.fs.usda.gov/psw/publications/ documents/psw_rp145/psw_rp145.pdf.
Deng, Y., Cai, C., Xia, D., Ding, S., Chen, J., Wang, T. (2017). Soil Atterberg limits of different weathering profiles of the collapsing gullies in the hilly granitic region of southern China. Solid Earth, 8(2), 499-513. https://doi.org/10.5194/se8-499-2017.
Dipova, N. (2011). Determination of liquid limit of soils using one point fall cone method. Journal of Geological Engineering, 35(1), 27-42.
Dlapa, P., Bodi, M.B., Mataix-Solera, J., Cerdà, A., Doerr, S.H. (2015). Organic matter and wettability characteristics of wildfire ash from Mediterranean conifer forests. Catena, 135, 369-376. https://doi.org/10.1016/j. catena.2014.06.018.
Dunn, P. H., DeBano, L.F., (1977). Fires effect on biological and chemical properties of chaparral soils. Proceedings of Symposium on Environmental Conservation: Fire and Fuel Management in Mediterranean Ecosystems, H.A. Mooney & C.E. Conrad (eds.), USDA Forest Service WO-3, Palo Alto, CA.Washington D.C., USA, pp. 75-84.
FAO (2015). World Reference Base for Soil Resources International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. http:// www.fao.org/3/a-i3794e.pdf.
Fernández, I., Cabaneiro, A., Carballas, T. (1997). Organic matter changes immediately after a wildfire in an Atlantic forest soil and comparison with laboratory soil heating. Soil Biology and Biochemistry, 29, 1-11. https://doi.org/10.1016/ S0038-0717(96)00289-1
Fox, D.M., Darboux, F., Carrega, P. (2007). Effects of fire-induced water repellency on aggregate stability, splash erosion, and saturated hydraulic conductivity for different size fractions. Hydrological Processes, 21, 2377-2384. https:// doi.org/10.1002/hyp.6758
General Directorate of Forestry (2022). GIS based e-map application. https://cbs.ogm.gov.tr/ vatandas/
Göktaş, F. (1998). Stratigraphy and sedimentology of Neogene sedimentation around Mugla (SW Anatolia). Mineral and Research Institute of Turkey Report No: 10225, Ankara, Turkey, 181 p.
Grim, R.E. (1968). Clay mineralogy, 2nd edition. McGraw-Hill, 596 p
Gül, M. (2015). Lithological properties and environmental importance of the Quaternary colluviums (Muğla, SW Turkey). Environmental Earth Sciences, 74, 4089-4108. https://doi. org/10.1007/s12665-015-4506-4
Gündüz, Z., Dağdeviren, U. (2009). The effects of sand particles on the determination of consistency limits. İMO Technical Journal, 4701-4715.
Gürer, Ö.F., Sanğu, E., Özburan, M., Gürbüz, A., Sarıca-Filoreau N. (2013). Complex basin evolution in the Gökova Gulf region: implications on the Late Cenozoic tectonics of southwest Turkey. International Journal of Earth Sciences, 102, 2199-2221. https://doi.org/10.1007/s00531- 013-0909-1
Haake, S. (2020). Burn severity and its impact on soil properties: a study of the 2016 Erskine fire in the southern Sierra Nevada [MSc. Thesis]. California State University, Bakersfield.
Haigh, S.K. (2012). Mechanics of the Casagrande liquid limit test. Canadian Geotechnical Journal, 49(9), 1015-1023. Corrigenda, 49(9), 1116 and 49(11), 1329. https://doi.org/10.1139/t2012-066
Hoogsteen, M.J.J., Lantinga, E.A., Bakker, E.J., Groot, C.J., Tittonell, P.A. (2015). Estimating soil organic carbon through loss on ignition: effects of ignition conditions and structural water loss. European Journal of Soil Science, 66, 320- 328. https://doi.org/10.1111/ejss.12224
Inbar, M., Wittenberg, L., Tamir, M. (1997). Soil erosion and forestry management after wildfire in a Mediterranean woodland, Mt. Carmel, Israel. International Journal of Wildland Fire, 7, 285-294.
Jordán, A., Zavala, L.M., Mataix-Solera, J., Nava, A.L., Alanís, N. (2011). Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils. Catena, 84, 721-726. https://doi.org/10.1016/j.catena.2010.10.007
Kavdir, Y., Ekinci, H., Yüksel, O., Mermut, A.R. (2005). Soil aggregate stability and 13C CP/ MAS-NMR assessment of organic matter in soils influenced by forest wildfires in Çanakkale, Turkey. Geoderma, 129, 219-229. https://doi. org/10.1016/j.geoderma.2005.01.013
Khoirullah, N., Mufti, I.J., Sophian, I., Yan, T., Iskandarsyah, W.M., Muslim, D. (2019). Erosion potential based on erodibility and plasticity index data on Cilengkrang, Bandung, west Java, Indonesia. IOP Conference Series: Earth and Environmental Science, 396, 012035. https://doi. org/10.1088/1755-1315/396/1/012035
Konare, H., Yost, R.S., Doumbia, M., McCarty, G.W., Jarju, A., Kablan, R. (2010). Loss on ignition: Measuring soil organic carbon in soils of the Sahel, West Africa. African Journal of Agricultural Research, 5(22), 3088-3095.
Lalitha, M., Anil Kumar, K.S., Nair, K.M., Dharumarajan, S., Koyal, A., Khandal, S., Kaliraj, S., Hegde, R. (2021). Evaluating pedogenesis and soil Atterberg limits for inducing landslides in the Western Ghats, Idukki District of Kerala, South India. Natural Hazards, 106, 487-507. https://doi.org/10.1007/s11069-020-04472-0
Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., Martínez-Zavala, L. (2011). Fire effects on soil aggregation: a review. Earth Science Reviews, 109(12), 44-60. https://doi.org/10.1016/j. earscirev.2011.08.002
Mitchell, J.K., Soga, K., (2005). Fundamentals of Soil Behavior, 3rd edition. John Wiley & Sons Inc., New York, 592 p.
Moreno-Maroto, J.M., Alonso-Azcàrate, J. (2018). What is clay? A new definition of clay based on plasticity and its impact on the most widespread soil classification systems. Applied Clay Science, 161, 57-63. https://doi.org/10.1016/j. clay.2018.04.011
Moreno-Maroto, J.M., Alonso-Azcàrate, J. (2022). Evaluation of the USDA soil texture triangle through Atterberg limits and an alternative classification system. Applied Clay Science, 229, 106689. https://doi.org/10.1016/j. clay.2022.106689
Ngezahayo, E., Burrow, M.P.N., Ghataora, G.S. (2019). The advances in understanding erodibility of soils in unpaved roads. Avestia Publishing International Journal of Civil Infrastructure, 2, 18-29. https://doi.org/10.11159/ijci.2019.002
Orhan, M., Özer, M., Işık, N.S. (2005). Comparison of Casagrande and cone penetration tests for the determination of the liquid limit of natural soils. Journal of the Faculty of Engineering and Architecture of Gazi University, 21(4), 711-720
Peltier, L.C. (1950). The geographic cycle in periglacial regions as it is related to climatic geomorphology. Annals of the Association of American Geographers, 40, 214-236. https://doi. org/10.2307/2561059
Robichaud, P.R., Hungerford, R.D., (2000). Water repellency by laboratory burning of four northern Rocky Mountain forest soils. Journal of Hydrology, 231-232, 207-219. https://doi. org/10.1016/S0022-1694(00)00195-5
Schulte, E.E., Hopkins, B.G. (1996). Estimation of soil organic matter by weight loss-on-ignition. SSSA Special Publication; Soil Organic Matter: Analysis and Interpretation, F.R. Magdoff, M.A. Tabatabai, E.A. Hanlon (eds.) Soil Science Society of America, USA, 21-31.
Soto, B., Benito, E., Diaz-Fierros, F. (1991). Heatinduced degradation processes in forest soils. International Journal of Wildland Fire, 1, 147- 152. https://doi.org/10.1071/WF9910147
Stanchi, S., Freppaz, M., Godone, D., Zanini, E. (2013). Assessing the susceptibility of alpine soils to erosion using soil physical and site indicators. Soil Use and Management, 29, 586- 596. https://doi.org/10.1111/sum.12063
Terzaghi, K., Peck, R. B., Mesri, G. (1996). Soil mechanics in engineering practice, 3rd edition. Wiley, New York, NY, USA, 592 p.
Thomaz, E.L. (2021). Effects of fire on the aggregate stability of clayey soils: A meta-analysis. EarthScience Reviews, 221, 103802. https://doi. org/10.1016/j.earscirev.2021.103802
Turkish State Meteorological Service (TSMS) (2022). Statistical precipitation and temperature records. https://www.mgm.gov.tr/veridegerlendirme/ilve-ilceler-istatistik.aspx?m=MUGLA.
USDA (2017). Soil survey manual. Soil Survey Division Staff; Soil Conservation Service Volume Handbook 18. U.S. Department of Agriculture, 639 p.
Vacchiano, G., Stanchi, S., Marinari, G., Ascoli, D., Zanini, E., Motta, R. (2014). Fire severity, residuals and soil legacies affect regeneration of Scots pine in the Southern Alps. Science of the Total Environment, 472, 778-788. https://doi. org/10.1016/j.scitotenv.2013.11.101
Varela, M.E., Benito, E., Keizer, J.J. (2010a). Effects of wildfire and laboratory heating on soil aggregate stability of pine forest in Galicia: the role of lithology, soil organic matter content and water repellency. Catena, 83, 127-134. https:// doi.org/10.1016/j.catena.2010.08.001
Varela, M.E., Benito, E., Keizer, J. (2010b). Wildfire effects on soil erodibility of woodlands in NW Spain. Land Degradation & Development, 21, 75-82. https://doi.org/10.1002/ldr.896
Wagner, J.F. (2013). Mechanical properties of clays and clay minerals. Developments in Clay Science, 5, 347-381. https://doi.org/10.1016/ B978-0-08-098258-8.00011-0
Wang, Q., Zhou, P., Fan, J., Qiu, S. (2021). Study on parameters of two widely used cohesive soils erosion models. Water, 13, 3621. https://doi. org/10.3390/w13243621
Zavala, L.M., Granged, A.J.P., Jordan, A., BarcenasMoreno, G. (2010). Effect of burning temperature on water repellency and aggregate stability in forest soils under laboratory conditions. Geoderma, 158 (34), 366-374. https://doi. org/10.1016/j.geoderma.2010.06.004
Kadakci Koca, T. (2023). Studying The Effects of Forest Fire on Consistency Limits of Sandy Soils: A Case Study, Kozağaç, Muğla . Jeoloji Mühendisliği Dergisi , 46 (2) , 81-97 . DOI: 10.24232/jmd.1221946
Kadakci Koca, T. `Studying The Effects of Forest Fire on Consistency Limits of Sandy Soils: A Case Study, Kozağaç, Muğla`. Jeoloji Mühendisliği Dergisi 46 (2023 ): 81-97
Hasan Kolayli
Muhammet Oğuz Sünnetci
Murat Karahan
Hakan Ersoy
View as PDF
ABSTRACT: This study investigated the effects of different post-fire cooling types. Heated rocks were cooled (1) at room temperature to represent natural environmental conditions, (2) below zero to represent cold seasons, and (3) in water to mimic fire fighting scenarios. The study used, 3 different carbonate rocks frequently used as building material; travertine, marble, and limestone. Thin section studies and XRD analyzes were carried out to determine the mineralogical composition of the rocks and the mineralogical changes after the heating-cooling processes; SEM images were used to reveal the microfracture development; and geo-mechanical experiments were conducted to determine the changes in physical and strength properties. After cooling, it was observed that, rather than the formation of new micro- cracks, existing micro-cracks grew. The strength properties of the rocks were more affected by cooling processes than the physical properties, and the lowest strength values were observed after cooling in water. While the tensile strength of travertine and marble decreased 70-80% after sudden cooling, this value did not exceed 30% in limestone containing clay. The results show that rapid cooling generally causes more thermal damage than slow cooling due to the growth of existing micro-cracks; and that cooling has a greater impact on the thermal degradation of rocks than heating, and this effect increases depending on the clay content.
Cooling type
Carbonate rocks
Thermal damage
Post-fire
Building stones
Abdulagatova, Z.Z., Kallaev, S.N., Omarov, Z.M., Bakmaev, A.G., GrigorEv, B.A., Abdulagatov, I.M., (2020). Temperature effect on thermal- diffusivity and heat-capacity and derived values of thermal-conductivity of reservoir rock materials. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6, 1-23. https:// doi.org/10.1007/s40948-019-00131-2
ASTM, (2008). D284508 standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock. West Conshohocken: ASTM International
Biró, A., Hlavićka, V., Lublóy, É., (2019). Effect of fire-related temperatures on natural stones. Construction and Building Materials, 212, 92-101. https://doi.org/10.1016/j. conbuildmat.2019.03.333
Browning, J., Meredith, P., Gudmundsson, A., (2016). Cooling-dominated cracking in thermally stressed volcanic rocks. Geophysical Research Letters, 43, 8417-8425. https://doi. org/10.1002/2016GL070532
Chen, Y., Zhang, C., Zhao, Z., Zhao, X., (2020). Shear behavior of artificial and natural granite fractures after heating and water-cooling treatment. Rock Mechanics and Rock Engineering, 53, 5429- 5449. https://doi.org/10.1007/s00603-020- 02221-0
Crosby, Z.K., Gullett, P.M., Akers, S.A., Graham, S.S., (2018). Characterization of the mechanical behavior of Salem limestone containing thermally-induced microcracks. International Journal of Rock Mechanics and Mining Sciences, 101, 5462. https://doi.org/10.1016/j. ijrmms.2017.11.002
Emirov, S.N., Aliverdiev, A.A., Zarichnyak, Y.P., Emirov, R.M., (2021). Studies of the effective thermal conductivity of sandstone under high pressure and temperature. Rock Mechanics and Rock Engineering, 54, 3165-3174. https://doi. org/10.1007/s00603-020-02353-3
EN 1991-1-2, (2002). Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire. The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC
Ersoy, H., Acar, S., (2016). Influences of petrographic and textural properties on the strength of very strong granitic rocks. Environmental Earth Sciences, 75, 1461. https://doi.org/10.1007/ s1266 5-016-6277-y
Ersoy, H., Atalar, C., Sünnetci, M.O., Kolaylı, H., Karahan, M., Ersoy, A.F., (2021). Assessment of damage on geo-mechanical and micro-structural properties of weak calcareous rocks exposed to fires using thermal treatment coefficient. Engineering Geology, 284, 106046. https://doi. org/10.1016/j.enggeo.2021.106046
Ersoy, H., Karahan, M., Kolaylı, H., Sünnetci, M.O., (2021). Influence of mineralogical and micro- structural changes on the physical and strength properties of post-thermal-treatment clayey rocks. Rock Mechanics and Rock Engineering, 54, 679-694. https://doi.org/10.1007/s00603- 020-02282-1
Ersoy, H., Kolaylı, H., Karahan, M., Harputlu Karahan, H., Sünnetci, M.O., (2019). Effect of thermal damage on mineralogical and strength properties of basic volcanic rocks exposed to high temperatures. Bulletin of Engineering Geology and the Environment, 78, 15151525. https://doi.org/10.1007/s10064-017-1208-z
Feng, G., Wang, X., Kang, Y., Zhang, Z., (2020). Effect of thermal cycling-dependent cracks on physical and mechanical properties of granite for enhanced geothermal system. International Journal of Rock Mechanics and Mining Sciences, 134, 104476. https://doi.org/10.1016/j. ijrmms.2020.104476
Han, G., Jing, H., Su, H., Liu, R., Yin, Q., Wu, J., (2019). Effects of thermal shock due to rapid cooling on the mechanical properties of sandstone. Environmental Earth Sciences, 78, 146. https://doi.org/10.1007/s12665-019-8151-1
ISO, (1999). ISO 834: Fire resistance tests-elements of building construction. International Organization for Standardization, Geneva, Switzerland
ISRM, (1978). Suggested methods for determining tensile strength of rock materials. Suggested method for determining indirect tensile strength by Brazilian test. Commission on Standardization of Laboratory and Field Tests. Z.T. Bieniawski and I. Haweks. International Journal of Rock Mechanics and Mining Sciences, 15, 102103
ISRM, (2007). The complete ISRM suggested methods for rock characterization, testing and monitoring: 19742006. Suggested methods prepared by the commission on testing methods. In: Ulusay R, Hudson JA, eds. Compilation arranged by the ISRM Turkish National Group. Ankara, Turkey
Johnston, J., (1910). The Thermal Dissociation of Calcium Carbonate. Journal of the American Chemical Society, 32, 938-946
Kara, I.B., (2021). Effects of cooling regimes on limestone rock and concrete with limestone aggregates at elevated temperatures. International Journal of Rock Mechanics and Mining Sciences, 138, 104618. https://doi.org/10.1016/j. ijrmms.2021.104618
Kim, K., Kemeny, J., Nickerson, M., (2019). Effect of rapid thermal cooling on mechanical rock properties. Rock Mechanics and Rock Engineering, 47, 2005-2019. https://doi. org/10.1007/s00603-013-0523-3
Kumari, W.G.P., Ranjith, P.G., Perera, M.S.A., Chen, B.K., Abdulagatov, I.M., (2017). Temperature- dependent mechanical behaviour of Australian Strathbogie granite with different cooling treatments. Engineering Geology, 229, 31-44. https://doi.org/10.1016/j.enggeo.2017.09.012
Kunze, G.W., (1965). Pretreatment for mineralogical analysis. In: Black CA, ed. Methods of Soil Analysis, Part I. Physical and Mineralogical Properties Including Statistics of Measurement and Sampling. American Society of Agronomy, Madison WI; 568577
Li, Q., Yin, T., Li, X., Zhang, S., (2020). Effects of rapid cooling treatment on heated sandstone: a comparison between water and liquid nitrogen cooling. Bulletin of Engineering Geology and the Environment, 79, 313327. https://doi. org/10.1007/s10064-019-01571-6
Li, Z., Fortin, J., Nicolas, A., Deldicque, D., Gueguen, Y., (2019). Physical and mechanical properties of thermally cracked andesite under pressure. Rock Mechanics and Rock Engineering, 52, 35093529. https://doi.org/10.1007/s0060 3-019-01785-w
Li, Z.W., Long, M.C., Feng, X.T., Zhang, Y.J., (2021). Thermal damage effect on the thermal conductivity inhomogeneity of granite. International Journal of Rock Mechanics and Mining Sciences, 138, 104583. https://doi. org/10.1016/j.ijrmms.2020.104583
Liu, S., Xu, J., (2015). An experimental study on the physico-mechanical properties of two post-high-temperature rocks. Engineering Geology, 185, 63-70. https://doi.org/10.1016/j. enggeo.2014.11.013
Meng, Q.B., Zhang, M.W., Han, L.J., Pu, H., Chen, Y.L., (2019). Experimental research on influence of loading rate on mechanical properties of limestone in high temperature state. Bulletin of Engineering Geology and the Environment, 78, 34793492. https://doi.org/10.1007/s10064- 018-1332-4
Meng, T., Yongbing, X., Ma, J., Yue, Y., Liu, W., Zhang, J., Erbing, L., (2021). Evolution of permeability and microscopic pore structure of sandstone and its weakening mechanism under coupled thermo- hydro-mechanical environment subjected to real-time high temperature. Engineering Geology, 280, 105955. https://doi.org/10.1016/j. enggeo.2020.105955
Nasseri, M.H.B., Goodfellow, S.D., Wanne, T., Young, R.P., (2013). Thermo-hydro-mechanical properties of Cobourg limestone. International Journal of Rock Mechanics and Mining Sciences, 61, 212-222. https://doi.org/10.1016/j. ijrmms.2013.03.004
Pei, L., Blöcher, G., Milsch, H., Zimmermann, G., Sass, I., Huenges, E., (2018). Thermo- mechanical Properties of Upper Jurassic (Malm) Carbonate Rock Under Drained Conditions. Rock Mechanics and Rock Engineering, 51, 23 45. https://doi.org/10.1007/s00603-017- 1313-0
Popov, Y., Beardsmore, G., Clauser, C., Roy, S., (2016). ISRM suggested methods for determining thermal properties of rocks from laboratory tests at atmospheric pressure. Rock Mechanics and Rock Engineering, 49, 4179-4207. https://doi. org/10.1007/s00603-016-1070-5
Rong, G., Sha, S., Li, B., Chen, Z., Zhang, Z., (2021). Experimental investigation on physical and mechanical properties of granite subjected to cyclic heating and liquid nitrogen cooling. Rock Mechanics and Rock Engineering, 54, 2383- 2403. https://doi.org/10.1007/s00603-021- 02390-6
Rosenholtz, J.L., Smith, D.T., (1949). Linear thermal expansion of calcite, var. Iceland spar, and Yule Marble. American Mineralogist, 34, 846-854
Sha, S., Rong, G., Chen, Z., Li, B., Zhang, Z., (2020). Experimental evaluation of physical and mechanical properties of geothermal reservoir rock after different cooling treatments Rock Mechanics and Rock Engineering, 53, 4967- 4991. https://doi.org/10.1007/s00603-020- 02200-5
Sha, S., Rong, G., Peng, J., Li, B., Wu, Z., (2019). Effect of open-fire-induced damage on Brazilian tensile strength and microstructure of granite. Rock Mechanics and Rock Engineering, 52, 4189-4202. https://doi.org/10.1007/s00603- 019-01871-z
Shao, Z., Wang, Y., Tang, X., (2020. The influences of heating and uniaxial loading on granite subjected to liquid nitrogen cooling. Engineering Geology, 271, 105614. https://doi.org/10.1016/j. enggeo.2020.105614
Shen, Y., Hou, X., Yuan, J., Xu, Z., Hao, J., Gu, L., Liu, Z., (2020). Thermal deterioration of high- temperature granite after cooling shock: multiple- identification and damage mechanism. Bulletin of Engineering Geology and the Environment, 79, 5385-5398. https://doi.org/10.1007/s10064- 020-01888-7
Villarraga, C.J., Gasc-Barbier, M., Vaunat, J., Darrozes, J., (2018). The effect of thermal cycles on limestone mechanical degradation. International Journal of Rock Mechanics and Mining Sciences, 109, 115-123. https://doi. org/10.1016/j.ijrmms.2018.06.017.
Wang, F., Konietzky, H., Frühwirt, T., Li, Y., Dai, Y., (2019). Impact of cooling on fracturing process of granite after high-speed heating. International Journal of Rock Mechanics and Mining Sciences, 125, 104155. https://doi.org/10.1016/j. ijrmms.2019.104155
Wang, P., Xu, J., Liu, S., (2015). Staged moduli: a quantitative method to analyze the complete compressive stressstrain response for thermally damaged rock. Rock Mechanics and Rock Engineering, 48, 15051514. https://doi. org/10.1007/s00603-014-0648-z
Wang, Z., Zhang, W., Shi, Z., Zhang, S., (2022). Changes of physical properties of thermal damaged sandstone with time lapse. Acta Geophysica, 2022, 1-10. https://doi.org/10.1007/ s11600-022-00782-y
Whitney, D., Evans, B., (2010). Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95, 185-187. https://doi. org/10.2138/am.2010.3371
Wu, X., Huang, Z., Song, H., Zhang, S., Cheng, Z., Li, R., Wen, H.T., Huang, P.P., Dai, X.W., (2019). Variations of physical and mechanical properties of heated granite after rapid cooling with liquid nitrogen. Rock Mechanics and Rock Engineering, 52, 2123-2139. https://doi. org/10.1007/s00603-018-1727-3
Wu, X., Huang, Z., Zhang, S., Cheng, Z., Li, R., Song, H., Wen, H.T., Huang, P., (2019). Damage analysis of high-temperature rocks subjected to LN2 thermal shock. Rock Mechanics and Rock Engineering, 52, 2585-2603. https://doi. org/10.1007/s00603-018-1711-y
Zhang, F., Zhang, Y., Yu, Y., Hu, D., Shao, J., (2020). Influence of cooling rate on thermal degradation of physical and mechanical properties of granite. International Journal of Rock Mechanics and Mining Sciences, 129, 104285. https://doi. org/10.1016/j.ijrmms.2020.104285
Zhang, F., Zhao, J., Hu, D., Skoczylas, F., Shao, J., (2018). Laboratory investigation on physical and mechanical properties of granite after heating and water-cooling treatment. Rock Mechanics and Rock Engineering, 51, 677-694. https://doi. org/10.1007/s00603-017-1350-8
Zhang, W., Qian, H., Sun, Q., Chen, Y., (2015). Experimental study of the effect of high temperature on primary wave velocity and microstructure of limestone. Environmental Earth Sciences, 74, 57395748. https://doi. org/10.1007/s12665-015-4591-4
Zhu, D., Jing, H., Yin, Q., Ding, S., Zhang, J., (2020). Mechanical characteristics of granite after heating and water-cooling cycles. Rock Mechanics and Rock Engineering, 53, 2015-2025. https://doi. org/10.1007/s00603-019-01991-6
Kolaylı, H. , Sünnetci, M. O. , Ersoy, H. & Karahan, M. (2023). Yangın Sonrası Soğuma Koşullarında Karbonat Yapı Taşlarındaki Mineralojik ve Mikro-Yapısal Değişimlerin Değerlendirilmesi . Jeoloji Mühendisliği Dergisi , 46 (2) , 99-119 . DOI: 10.24232/jmd.1226600
Kolaylı, H. , Sünnetci, M. O. , Ersoy, H. , Karahan, M. `Yangın Sonrası Soğuma Koşullarında Karbonat Yapı Taşlarındaki Mineralojik ve Mikro-Yapısal Değişimlerin Değerlendirilmesi`. Jeoloji Mühendisliği Dergisi 46 (2023 ): 99-119
Onur Güven
Cüneyt Güler
Mehmet Ali Kurt
Ümit Yildirim
View as PDF
ABSTRACT: This study investigated the causes of the salinization occurring in the Tarsus Coastal Aquifer (Mersin) located in the Eastern Mediterranean region of Turkey. Groundwater salinization, which is a critical problem, especially in the Mediterranean basin, occurs as a result of processes and mechanisms such as seawater intrusion, climate change, geogenic effects and anthropogenic activities (pollution and hydrological interventions). In this context, samples were collected from 87 groundwater wells and seawater (Mediterranean) during a field study conducted in September 2020. The temperature, electrical conductivity, pH, salinity, reduction-oxidation (redox) potential, dissolved oxygen, and total dissolved solid values of collected water samples were measured in the field. The major ion and trace element contents (Ca+2, Mg+2, Na+, K+, HCO3-, CO3-2, Cl-, SO4-2, NO3-, NO2-, B, Br, Sr ve Li) of the water samples were analyzed in a laboratory by spectrometric (ICP-MS), spectrophotometric, and volumetric (titration) methods. Thematic distribution maps of the analyzed parameters were created using a Geographic Information System (GIS) software. The hydrochemical facies of the water samples were determined using Piper and HFE diagrams. In order to explain the salinization mechanisms occurring in the region, binary (x-y) graphs were created using the ratios of various major ions and/or trace elements. According to the results obtained, it was revealed that the salinization phenomenon affecting the Tarsus Coastal Aquifer occurred as a result of seawater intrusion, the dissolution of Messinian evaporites (anhydrite, gypsum and halite) and anthropogenic (agricultural and industrial) activities.
Salinization
Ionic Ratios
HFE-Diagram
Hydrogeochemistry
Tarsus Coastal Aquifer
Abu-alnaeem, M. F., Yusoff, I., Fatt Ng, T., Alias, Y., Raksmey, M., (2018). Assessment of groundwater salinity and quality in Gaza coastal aquifer, Gaza Strip, Palestine: An integrated statistical,geostatistical and hydrogeochemical approaches study. Science of the Total Environment, 615, 972-989.
Alcala, F. J., Custodio E., (2008). Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. Journal of Hydrology, 359 (1-2), 189-207.
Antonioli, F., De Falco, G., Lo Presti, V., Moretti, L., Scardino, G., Anzidei, M. ve diğerleri. (2020). Relative sea-level rise and potential submersion risk for 2100 on 16 Coastal Plains of the Mediterranean Sea. Water, 12 (8), 2173-2198.
Appelo, C. A. J., Postma, D., (2005). Geochemistry, Groundwater and Pollution (2nd edition). A. A. Balkema Publishers, Amsterdam, 634 s.
Davis, S. N., Whittemore, D. O., Fabryka-Martin, J., (1998). Use of chloride/bromide ratios in studies of potable water. Ground Water, 36 (2), 338-350.
Demirel, Z., (2004). The history and evaluation of saltwater intrusion into a coastal aquifer in Mersin, Turkey. Journal of Environmental Management, 70, 275-282.
DSİ, (1978). Mersin, Berdan ve Efrenk Ovaları hidrojeolojik etüd raporu. DSİ, 60 s.
Freeze, R. A., Cherry, J. A., (1979. Groundwater. Prentice-Hall, New Jersey, 604 s.
Fidelibus, M. D., Pulido-Bosch, A., (2018). Groundwater temperature as an indicator of the vulnerability of karst coastal aquifers. Geosciences, 9 (1), 2-22.
Giménez, E., Morell, I., (1997). Hydrogeochemical analysis of salinization processes in the coastal aquifer of Oropesa (Castellón, Spain). Environmental Geology, 29 (1), 118-131.
Giménez-Forcada, E., (2010). Dynamic of seawater interface using Hydrochemical Facies Evolution Diagram. Ground Water, 48 (2), 212-216.
Göney, S. (1976). Adana Ovaları. İstanbul Üniversitesi yayınları, İstanbul, 179 s.
Güler, C., (2009). Site characterization and monitoring of natural attenuation indicator parameters in a fuel contaminated coastal aquifer: Karaduvar (Mersin, SE Turkey). Environmental Earth Sciences, 59 (3), 631-643.
Güler, C., Kurt, M. A., Alpaslan, M., Akbulut, C., (2012). Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus Coastal Plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques. Journal of Hydrology, 414-415, 435-451.
Güler, C., Kurt, M. A., Korkut, R. N., (2013). Assessment of groundwater vulnerability to nonpoint source pollution in a Mediterranean Coastal Zone (Mersin, Turkey) under conflicting land use practices. Ocean&Coastal Management, 71, 141-152.
Hatipoğlu, Z., Bayarı S., (2005). Mersin-Tarsus kıyı ve yamaç akiferlerinin hidrojeokimyası. Türkiye Jeoloji Bülteni, 48 (2), 59-72.
Hem, J. D., (1985). Study and Interpretation of the Chemical Characteristics of Natural Water. U. S. Geological Survey Water Supply Paper 2254, Virginia, 264 s.
Ilgar, A., (2015. Messiniyen Tuzluluk Krizi Akdenizin kurumasına ilişkin bir derleme. Doğal Kaynaklar ve Ekonomi Bülteni, 20, 73-80.
Jones, B. F., Vengosh, A., Rosenthal, E., Yechieli, Y., (1999). Geochemical investigations. Bear (Ed.), Seawater Intrusion in Coastal Aquifers- Concepts, Methods and Practices. Springer Science+Business Media, Israel, 51-69 ss.
Khadra, W. M., Stuyfzand, P. J., Breukelen van, B. M., (2017). Hydrochemical effects of saltwater intrusion in a limestone and dolomitic limestone aquifer in Lebanon. Applied Geochemistry, 79, 36-51.
Korkut, R. N., (2009). Deliçay-Tarsus Çayı (Mersin) arasındaki bölgedeki yeraltı sularında nitrat ve nitrit kirliliğinin araştırılması. Mersin Üniversitesi Fen Bilimleri Enstitüsü, Mersin, Yüksek Lisans Tezi, 67 s (yayımlanmamış).
Kurt, M. A., (2010). Deliçay ve Tarsus Çayı (Mersin) arasında kalan alandaki toprak profillerinin mineralojisi, toprak ve su kirliliğinin araştırılması. Mersin Üniversitesi Fen Bilimleri Enstitüsü, Mersin, Doktora Tezi, 424 s (yayımlanmamış).
Lebid, H., Errih, M., Boudjemline, D., (2016). Contribution of strontium to the study of groundwater salinity. Case of the alluvial plain of Sidi Bel Abbes (Northwestern Algeria). Environmental Earth Sciences, 75:947.
Menz, C. (2016). Oxygen delivering processes in groundwater and their relevance for iron- related well clogging processesa case study on the Quaternary aquifers of Berlin. Freien Üniversitesi, Berlin, Doktora tezi, 185 s (yayımlanmamış).
National Aeronautics and Space Administration (NASA) (2022). Sea Level. 27 Kasım 2022 tarihinde https://climate.nasa.gov/vital-signs/ sea-level/ adresinden erişildi.
Park, S. C., Yun, S. T., Chaea, G. T., Yoo, I. S., Shin, K. S., Heoa, C. H. ve diğerleri, (2005). Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. Journal of Hydrology. 313 (3-4), 182-194.
Piper, A. M., (1944). A Graphic Procedure in the Geochemical Interpretation of Water Analyses. Transactions, American Geophysical Union, 25 (6), 914-928.
Pulido-Leboeuf, P., Pulido-Bosch, A., Calvache, M. L., Vallejos, A., Andreu, J. M., (2003). Strontium, SO4-2/Cl- and Mg+2/Ca+2 ratios as tracers for the evolution of seawater into coastal aquifers: the example of Castell de Ferro aquifer (SE Spain). Comptes Rendus Geoscience, 335 (14), 1039- 1048.
Ranjan, P., Kazama, S., Sawamoto, M., (2006). Effects of climate change on coastal fresh groundwater resources. Global Environmental Change, 16, 388-399.
Sanchez-Martos, F., Pulido-Bosch, A., Molina- Sanchez, L., Vallejos-Izquierdo, A., (2002). Identification of the origin of salinization in groundwater using minor ions (Lower Andarax, Southeast Spain). The Science of the Total Environment, 297 (1-3), 43-58.
Sandal, E. K., Gürbüz, M., (2003). Mersin şehrinin mekansal gelişimi ve çevresindeki tarım alanlarının amaç dışı kullanımı. Coğrafi Bilimler Dergisi, 1, 117-130.
Schmidt, G., (1961). VII. Adana Petrol Bölgesinin Stratigrafik Nomenklatürü. Petrol Dergisi, 6, 47- 63.
Somay, M. A., Gemici, Ü., (2009). Assessment of the salinization process at the coastal area with hydrogeochemical tools and Geographical Information Systems (GIS): Selçuk Plain, Izmir, Turkey. Water, Air, & Soil Pollution, 201 (1), 55- 74.
Şenol, M., Şahin Ş., Duman, T. Y., (1998). Adana- Mersin dolayının jeoloji etüd raporu. MTA, Ankara, 46 s.
Telahigue, F., Agoubi, B., Souid, F., Kharroubi, A., (2018). Assessment of seawater intrusion in an arid coastal aquifer, south-eastern Tunisia, using multivariate statistical analysis and chloride mass balance. Physics and Chemistry of the Earth, 106, 37-46.
United Nations Water, (2022). Groundwater making the invisible visible. UNESCO, Paris, 225 s.
Ünlügenç, U. C. (1986). Kızıldağ Yayla (Adana) dolayının jeoloji incelemesi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, Yüksek Lisans Tezi, 76 s (yayımlanmamış).
Vengosh, A., Rosenthal E., (1994). Saline groundwater in Israel: its bearing on the water crisis in the country. Journal of Hydrology, 156 (1-4), 389- 430.
Vengosh, A., (2014). Salinization and Saline Environments. Holland ve Turekian (Ed.) Treatise on Geochemistry Second Edition. Elsevier, USA, ss. 325-378.
Wetzelhuetter, C., (2015). Groundwater in the Coastal Zones of Asia-Pacific. Springer, Netherlands, 110 s.
Zghibi, A., Tarhouni J., Zouhri, L., (2013). Assessment of seawater intrusion and nitrate contamination on the groundwater quality in the Korba coastal plain of Cap-Bon (North-east of Tunisia). Journal of African Earth Sciences, 87, 1-12.
Güven, O. , Güler, C. , Kurt, M. A. & Yıldırım, Ü. (2023). Tarsus Kıyı Akiferinde (Mersin) Meydana Gelen Tuzlanmanın Nedenlerinin Araştırılması . Jeoloji Mühendisliği Dergisi , 46 (2) , 121-138 . DOI: 10.24232/jmd.1232826
Güven, O. , Güler, C. , Kurt, M. A. , Yıldırım, Ü. `Tarsus Kıyı Akiferinde (Mersin) Meydana Gelen Tuzlanmanın Nedenlerinin Araştırılması`. Jeoloji Mühendisliği Dergisi 46 (2023 ): 121-138
ABSTRACT:This study evaluates, the mass movement that occurred after heavy rains on January 8, 2020 in the Kargıcak district between Km 31+300 and 31+500 of the D-715 highway connecting Silifke and Mut districts. For this purpose, a 2 cm resolution digital surface model and an engineering geological map were first made, using photogrammetric methods from the photographs taken by the unmanned aerial vehicle (UAV). The index and geomechanical parameters of the units were determined by taking disturbed and undisturbed samples obtained from nine boreholes in the area where the landslide occurred. The depth of the sliding surface and velocity of movement were determined using the data acquired from the inclinometers placed on the boreholes. The heavy rains that occurred in the region before January 8, 2020 increased the pore water pressure in the weathered claystone-clay unit outcropping in the landslide area, which in turn caused a decrease in the shear strength of the unit. The Kargicak Landslide started rotationally and developed planarly on the claystone-marl surface with the weathered claystone-clay unit.
Silifke-Mut Highway
Kargıcak Landslide
UAV
İnclinometer
Heavy Rainfall.
Anonim, 2020. 1968 yılı yağışları sonrasında Kargıcak ve civarında oluşan kütle hareketi konulu görüşme, Silifke Kargıcak Mahallesi.
ASTM D-2487, (2020). Classification of soils for engineering purposes unified soil classification system. 22 Aralık 2022 tarihinde https://www. studocu.com/row/document/ege-universitesi/ electronics-ii/astm-d-2487-classification-of- soils-for-engineering-purposes-unified-soil- classification-system/8266235.
ASTM D-7012, (2017). Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures Atabey, E., Atabey, N., Hakyemez, A., İslamoğlu, Y., Sözeri, Ş., Özçelik, N.N. ve diğerleri. (2000). Mut-Karaman arası Miyosen Havzasının Litostratigrafisi ve Sedimantolojisi (Orta Toroslar). Maden Tetkik ve Arama Dergisi. 122, 53-72.
Atabey, E., Atabey, N., Hakyemez, A., İslamoğlu, Y., Sözeri, Ş., Özçelik, N.N., Saraç, G., Ünay, E., Babayiğit, S., (2000). Mut-Karaman arası Miyosen Havzasının Litostratigrafisi ve Sedimantolojisi (Orta Toroslar). Maden Tetkik ve Arama Dergisi. 122, 53-72.
Bishop, A.W., (1955). The use of the slip circle in the stability analysis of slopes. Geotechnique 5:77.
Chen, W.F, Mizuno, E., 1990. Nonlinear Analysis in Soil Mechanics: Theory and Implementation. Elsevier, Amsterdam.
Chowdhury, R., (2010). Geotechnical slope analysis. Taylor & Francis Group, London
Clough, R.W., WoodwardIII, R.J., (1967). Analysis of Embankment Stresses and Deformations. Journal of the Soil Mechanics and Foundations Division, 93(4), 529549. https://doi.org/10.1061/ JSFEAQ.0001005
Dounias, G. T, Potts, D. M., Vaughan, P. R., (1988). Finite element analysis of progressive failure: two case studies. Comput Geotech, 6(2), 155175. https://doi.org/10.1016/0266-352x(88)90078-x.
Duman, T.Y., Çan, T., Emre, Ö., (2011). 1/1.500.000 ölçekli Türkiye Heyelan Envanteri Haritası. Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayınlar Serisi-27, Ankara, Türkiye. ISBN: 978- 605-4075-84-3.
Finlay, P.J., Fell. R, Maguire, P.K., (1997). The relationship between the probability of landslide occurrence and rainfall. Can Geotech J, 34:811 824.
Fernández-Merodo, J.A., García-Davalillo, J.C., Herrera, G., Mira, P., Pastor, M., (2014). 2D viscoplastic finite element modelling of slow landslides: The Portalet case study (Spain). Landslides, 11(1), 2942.
Gedik, A., Birgili, Ş., Yılmaz, H., Yoldaş, R., (1979). Mut-Ermenek-Silifke Yöresinin Jeolojisi ve Petrol Olanakları. Türkiye Jeoloji Kurumu Bülteni. 22, 726.
Haberler.com, (2020). Mersinde çökme meydana gelen yol ulaşıma kapatıldı. 03 Ocak 2023 tarihinde https://www.haberler.com/mersin-de- cokme-meydana-gelen-yol-ulasima-12797878- haberi.
EMAS Mühendislik, (2020). Silifke-Mut 3. Bölge Hudut 2. Kısım Yolu Km:31+100-31+650 Arası Heyelan Önleme Projesi.
ISRM, (1981). Rock Characterization, Testing and Monitoring: ISRM Suggested Methods. E.T.Brown (ed.), Pergamon Press, 211 p.
Lee, M.L., Gofar, N., Rahardjo, H., (2009). A simple model for preliminary evaluation of rainfall- induced slope instability. Eng Geol, 108: 272 285.
Meteoblue, (2021). Kargıcak Hava Durumu. 22 Kasım 2021 tarihinde https://www.meteoblue. com/tr/hava/hafta/kargıcak_türkiye_309126
MGM, (2021). Meteoroloji Genel Müdürlüğü, Meteorolojik Hadiselerin Şiddetlerine ait Sınıflandırma. 22 Kasım 2021 tarihinde https://www.mgm.gov. tr/site/yardim1.aspx?=HadSid adresinden erişildi.
MGM, (2022). Meteoroloji Genel Müdürlüğü, İllere ait mevsim normalleri. 30 Kasım 2022 tarihinde https://www.mgm.gov.tr/veridegerlendirme/il- ve-ilceler-istatistik.aspx?m=MERSIN.
Nurduhan, M., (2022). Silifke-Mut (Mersin) Karayolu Kargıcak Civarındaki Kütle Hareketinin Değerlendirilmesi., Mersin Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 101 s, Mersin.
Ocakoğlu, F., Gökçeoğlu, C., Ercanoglu, M., (2002). Dynamics of a complex mass movement triggered by heavy rainfall: a case study from NW Turkey. Geomorphology, 42(329341):330.
Pain, A, Kanungo, D.P., Sarkar, S., (2014). Rock slope stability assessment using finite element based modelling - examples from the Indian Himalayas. Geomechanics and Geoengineering, 9(3), 215230. https://doi.org/10.1080/1748602 5.2014.883465.
Reis, S., Bayrak, T., Yalçın, A., Atasoy, M., Nişancı, R., Ekercin, S., (2008). Rize Bölgesinde Yağış Heyelan İlişkisi. Jeodezi, Jeoinformasyon ve Arazi Yönetimi Dergisi. 2008/2 99.
Rocscience, (2011). Phase 2-2D Finite element program for calculating stresses and estimating support around underground excavation. (v8.14). Rocscience. https://www.rocscience.com/ documents/pdfs/ rocnews/spring2011/Phase2-8. pdf.
Tekin, S., (2019). Göksu nehri havzasının coğrafi bilgi sistemleri tabanlı jeomorfometrik analizi ve niceliksel heyelan olası tehlike değerlendirmesi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 244 s, Adana.
Tağa, H., Turkmen, S., Kacka, N., (2015). Assessment of stability problems at southern engineered slopes along Mersin-Tarsus Motorway in Turkey. Bulletin of Engineering Geology and the Environment, 74 (2), 379-391.
Tağa, H., (2017). Mersin-Tarsus Otoyolunun Kuzey Şevlerindeki Duraysızlıkların Değerlendirilmesi. MühJeo2017: Ulusal Mühendislik Jeolojisi ve Jeoteknik Sempozyumu, Adana, Türkiye.
Tağa, H., Yalçın, E., (2019). Tarsus Çamlıyayla Yolu Kütle Hareketinin Değerlendirilmesi. Mühjeo 2019 Mühendislik Jeolojisi ve Jeoteknik Sempozyumu bildiriler kitabı (ss. 309-316). Denizli, Türkiye.
TS EN 1926, (2022). Doğal taşlar- Deney metotları- Basınç dayanımı tayini. Ankara.
TS EN ISO 17892-1, (2014). Geoteknik etüt ve deneyler - Zemin laboratuvar deneyleri - Bölüm 1: Su içeriğinin belirlenmesi. Türk Standardları Enstitüsü, Ankara.
TS EN ISO 17892-2, (2014). Geoteknik etüt ve deneyler - Zemin laboratuvar deneyleri - Bölüm 2: Birim hacim kütlenin belirlenmesi. Türk Standardları Enstitüsü, Ankara.
TS EN ISO 17892-3, (2016). Geoteknik etüt ve deneyler - Zemin laboratuvar deneyleri - Bölüm 3: Tane yoğunluğunun belirlenmesi. Türk Standardları Enstitüsü, Ankara.
TS EN ISO 17892-4, (2016). Geoteknik Etüt ve Deneyler - Zemin Laboratuvar Deneyleri - Bölüm 4: Tane Büyüklüğü Dağılımının Belirlenmesi. Türk Standardları Enstitüsü, Ankara.
TS 1900-1, (2006). İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri - Bölüm 1: Fiziksel Özelliklerin Tayini. Türk Standardları Enstitüsü, Ankara.
TS 1900-2, (2006). İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri - Bölüm 2: Mekanik Özelliklerin Tayini. Türk Standardları Enstitüsü, Ankara.
Ugai, K., Leshchinsky, D., (1995). Three-dimensional limit equilibrium and finite element analysis: a comparison of results. Soils Foundations, 35(4), 17. https://doi.org/10.3208/sandf.35.4_1.
Von Mises, R., (1913). Mechanik der festen Körper im plastisch-deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse. (1): 582592.
Zezere, J.L., Ferreira, A.B., Rodrigues, M.L., (1999). Landslides in the North of Lisbon Region (Portugal): conditioning and triggering factors. Phys Chem Earth A 24(10),925934.
Zienkiewicz, O.C., Taylor, R.L., (1989). The Finite Element Method. Vol.1, 4th Edition, McGraw- Hill, New York.
Zhu, H., Randolph, M.F., (2009). Large Deformation Finite-Element Analysis of Submarine Landslide Interaction with Embedded Pipelines. International Journal of Geomechanics, 10(4), 145152. https://doi.org/10.1061/(ASCE) GM.1943-5622.0000054.
Nurduhan, M. & Taga, H. (2023). Silifke‐Mut (Mersin) Karayolunda Meydana Gelen Kargıcak Heyelanının Değerlendirilmesi . Jeoloji Mühendisliği Dergisi , 46 (2) , 139-156 . DOI: 10.24232/jmd.1230612
Nurduhan, M. , Taga, H. `Silifke‐Mut (Mersin) Karayolunda Meydana Gelen Kargıcak Heyelanının Değerlendirilmesi`. Jeoloji Mühendisliği Dergisi 46 (2023 ): 139-156