Jeoloji Münendisliği Dergisi
Jeoloji Mühendisliği Dergisi

Jeoloji Mühendisliği Dergisi

2014 ARALIK Cilt 38 Sayı 2
COVER
View as PDF
COPYRİHT PAGE
View as PDF
CONTENTS
View as PDF
Evaluation of the Deformations Occured in the Run-Off Mine Road and Open-Pit Slopes Due to the Subsidence: A Case Study for Soma-Kısrakdere Coal-Field
Cem Kincal Doğan Karakuş Ahmet Hakan Onur Mehmet Yalçin Koca
View as PDF

ABSTRACT: KM2 and KM3-lignite seams occur in the Kısrakdere coal zone of Miocene aged Soma formation. Thethickness of the KM2 coal seam varies between 1 and 25 meters above the contact with the underlying mudstonesat the base of the Neogene sequence in the Soma-Eynez coal field. This field is one of the major coal productionareas in Turkey. Underground coal production has been conducted in the KM2-coal seam located above theM2-marl unit with Miocene in age. Subsurface openings in Işıklar longwall-panels is located at 291 m depthfrom the ground-surface level created due to the underground coal mining. Limestone (M3) and marl (M2)layers deformed and formed a jointed structure due to the subsidence. Thus, these voids fractured and collapsedinto the openings, with resultant lowering of the ground surface on the run-off mine road. The boundary of thesurface area affected from the subsidence is defined by the angle of influence. Subsidence caused differentialsettlement, with the greatest amount on a fault zone which vertically cuts the longwall panels, not near thecenter of the opening. As a result, asymmetrical subsidence profile developed in the area. The extend and size ofground surface cracks are expected to increase until the subsidence is completed in the area. The developmentof ground-crack patterns on the run-away mine showed some differences along the subsidence profile. Differentcrack patterns were observed in the extraction and the gap zones (subsided zone) of this profile. These patternswere used in the constitution of subsidence profile in this work. Subsidence was investigated in the cross-sectionsconstructed by either vertical or parallel to the run-off mine road. Different break angles were determined onthese sections. The causes obtained different break angles are due to the preparation of the cross-sections bothparallel and vertical to the fault zone and the coal seam, and different topography. Because the cross-sectionconstructed in N-S direction has a topography with slope. The angle of influence (limit angle) about the coalproduction panels were investigated in two different cross-sections. In the cross-section with N-S direction, limitangles for both sides of the longwall panel were determined by using the finite element method. In the crosssection with E-W direction, limit angles were determined on the cross-section produced with the help of thedifferent subsidence crack patterns developed on the ground surface and the measurements of deformation onthe survey points along the run-off mine road. The results obtained from the two methods were correlated witheach other. It was determined that angular differences acquired from the two methods have a range changingbetween 7° and 10°. 

  • Coal

  • Deformation

  • Kısrakdere (Soma)

  • Subsidence

  • Aksoy, C. O., Köse, H., Onargan, T., Koca, M.Y., Heasley, K., 2004. Estimation of limit angle using laminated displacement discontinuity analysis in the Soma coal field, Western Turkey. International Journal of Rock Mechanics and Mining Sciences, 41,

  • Goodman, R. E., 1976. Methods of Geological Engineering in Discontinuous Rocks. West Publishing Company, St. Paul, MN, 170-207.

  • Kıncal, C., Koca, M. Y., 2009. A proposed method for drawing the great circle representing dip angle and strike changes. The Geological Society of America (AEG), Vol. XV, No.2, 145-165.

  • Koca, M. Y., Kıncal, C., 2004. Abandoned stone quarries in and around the Izmir city centre and their geo-environmental impacts-Turkey. Engineering Geology, 75 (1), 49-67.

  • National Coal Board (NCB), 1975. Subsidence Engineer′s Handbook. National Coal Board, London, 111 p.

  • Onargan, T., Koca, M. Y., Köse, H., 2000. Determination of “Break Angle” from subsidence cracks in Soma-Eynez coal field of Turkey. 7th National Mine Surveying Conference with International Participation, 189-201.

  • Oncioiu, G., Onica, I., 1999. Ground deformation in the case of underground mining of thick and dip coal seams in the Jiu Valley Basin. 18th Conference on Ground Control in Mining West Virginia, 334 p.

  • Phase2.v.7, 2014. Phase2 software, https://www. rocscience.com/products/3/updates/1

  • Singh, K. B., Dhar, B. B., 1997. Sinkhole subsidence due to mining. Geotechnical and Geological Engineering, 15, 327-341.

  • Whittaker, B. N., Reddish, D. J., 1989. Subsidence Occurrence, Prediction and Control. Elsevier, 528 p.



  • Kıncal, C , Karakuş, D , Onur, A , Koca, M . (2014). Sübsidans Nedeniyle Elek Yolu ve Açık Ocak Şevlerinde Meydana Gelen Deformasyonların Değerlendirilmesi: Soma-Kısrakdere Kömür Sahası için Örnek Bir Çalışma . Jeoloji Mühendisliği Dergisi , 38 (2) ,

  • Kıncal, C , Karakuş, D , Onur, A , Koca, M . Sübsidans Nedeniyle Elek Yolu ve Açık Ocak Şevlerinde Meydana Gelen Deformasyonların Değerlendirilmesi: Soma-Kısrakdere Kömür Sahası için Örnek Bir Çalışma. Jeoloji Mühendisliği Dergisi 38 (2014 ): 53-72

  • Application of the Menard Pressuremeter Test for the Bearing Capacity and Settlement Analysis: A Case Study at Kuloğlu Hydro-Electric Central (HEC) Regulator Site (Kars, Turkey)
    Ali Kayabaşi
    View as PDF

    ABSTRACT: This paper deals with the short description of Menard pressuremeter and the evaluation of Menardpressuremeter tests carried out in two boreholes drilled at Kuloğlu Hydroelectric Power Plant (HPP)regulator which is one of the HPP Projects planned at Aşağı Aras basin. 8 pressuremeter tests in SK-1borehole and 12 pressuremeter tests in SK-2 borehole were carried out at alluvium unit in the foundationsite. Menard pressuremeter tests could not be carried out due to the collapsing and enlarging of thedrillholes after 20 and 24 meter depths of boreholes. Two group of settlement and bearing capacity analysiswere performed with the assumption of alluvium made up of homogeneous and heterogeneous. Immediatesettlement computation and stress distribution analysis were also performed beside the pressuremeteranalysis. The amount of settlement and bearing capacity of the alluvium are in acceptable limits in thedepths of which the test could be applied. The stress from regulator load decreases to % 10 at a depth ofgreater than 48 m. Due to the collapsing-enlarging of the boreholes after 20 and 24 m depths and theload-related stress increase acting greater depths, the excavation of the all alluvial soils is suggested. Atthe end of this study, the problems arisen from application of Menard pressuremeter test for the hydraulicstructures are outlined.

  • Aras River

  • Kuloğlu

  • Menard Pressuremeter

  • Settlement

  • Bearing capacity

  • Agan, C., 2011. Investigation of bearing capacity changes of different clays by using the Menard pressuremeter tests. International Journal of the Physical Sciences, 6 (23), 5454-5461.

  • Apageo., 2006. Menard Pressuremeter (G Type) operating instructions, 2006 edition.

  • ASTM (American society for testing and materials)., 1994. Annual book of ASTM Standarts-Section 4, Construction, V. 0408 Soil and Rock; Building Stones. ASTM Publication, 978 p.

  • Baquelin, F., Jezequel, J.F., Shields, D. H., 1978. The Pressuremeter and Foundation Engineering. Trans Tech Publications, Clausthal-Zellerfeld, Germany, 617 p.

  • Bozbey, İ., Togrol, E., 2009. Correlation of standart penetration test and pressuremeter data:a case study from Istanbul, Turkey. Bulletin of Engineering Geology and the Environment, 69, 505-515.

  • Centre d’Etudes Mėnard, 1971. La mėthode des volumes relatifs. Notice D22-A71.

  • Coduto, D.P., 1999. Geotechnical Engineering Principles and Practices. Prentice-Hall, USA.

  • Erdoğan, H., 1980. Zemin ve Kaya Mekaniği Arazi Deneyleri. Mühendislik Jeolojisi Toplantısı-5.,9-14 Haziran 1980, Yalova Tesisleri, 98 s.

  • Gambin, M.P., Rousseau, J., 1998. The Menard Pressuremeter Interpretation and application of pressuremeter test results to foundation design. United Kingdom: ISSMFE, 50 p.

  • Hansen, J.B., 1961. The Bearing Capacity of Sand Tested by Loading Circular Plates. 5 th International Conference on Soil Mechanic Foundation. England:Vol 1, 659-664, Paris.

  • Harr, M.E., 1966. Fundamentals of Theoretical Soil Mechanics. Mc Graw-Hill-New York.

  • ISRM, 1981. ISRM Suggested Methods: Rock Characterization, Testing and Monitoring. E.T. Brown (ed.); Pergamon Pres, London, 211 p.

  • Isik, N.S., Ulusay, R., Doyuran, V., 2008. Deformation modulus of heavily jointed-sheared and blocky greywackes by pressuremeter tests: Numerical, experimental and empirical assessments. Eng. Geol., 101, 269-282.

  • Jézéquel, J.F., Lemėe, E., Saintilan, D., 1974. Exploitation de I2essai pressomėtriquenormal par mėthode numėrique. Bulletin de Liaison des Laboratories des Ponts et Chaussėes. No. 69 Janvier-Fėvrier, ref. 1375, 105-114.

  • Kayabaşı, A., 2012. Prediction of pressuremeter modulus and limit pressure of clayey soils by simple and non linear multiple regression techniques: a case study from Mersin, Turkey. Environmental Earth Science, 66, 2171-2183.

  • Kayabaşı, A., Gökceoğlu, C., 2012. Taşıma Kapasitesi ve Oturma Miktarının hesaplanmasında Yaygın Kullanılan Yöntemlerin Mersin Arıtma Tesisi Temeli Örneğinde Uygulanması.TMMOB Jeoloji Mühendisleri Odası, Jeoloji Mühendisliği Dergisi, 36 (1), 1-22.

  • Kumbasar, V., Kip, F., 1992. Zemin Mekaniği Problemleri (5. Baskı). Çağlayan Basımevi, İstanbul, 614 s.

  • Marnawski M., 2004. The Perfect Menard pressuremeter curve. Archives of Hydroengineering and Environmental Mechanics, 51 (4), 387-402.

  • Meyerof, G.G., 1963. Some recent research on the bearing capacity of foundations. Canadian Geotechnical Journal, 1 (1), 16-26.

  • MTA., 2003. 1/500000 ölçekli Türkiye Jeoloji Haritaları; Kars Paftası. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.

  • Terzaghi, K., 1943. Theoretical Soil Mechanics. John Wiley&Sons, New York.

  • Türk Standartları Enstitüsü (TSE)., 1997. Jeoteknik Tasarım Bölüm 3, Arazi Deneyleri Yardımıyla Tasarım (TS ENV 1997-3, Eurocode 7).

  • Özüdoğru, K., Tan, O., Aksoy, İ.H., 1988. Çözümlü problemlerler Zemin mekaniği.Birsen Yayınevi, İstanbul,160 s.

  • Van Wambeke, A., D’Henricourt, J., 1971. Courbes pressiomėtriques inverse. Mėthode d2interprėtation de Pessai pressiomėtrique. Royal Military School Publication. Bruxelles.

  • Yağız, S., Akyol, E., Sen, G., 2008. Relationship between the standart penetration test and the pressuremeter test on sandy silty clays:a case study from Denizli. Bulletin of Engineering Geology and the Environment, 67, 405-410.



  • Kayabaşı, A . (2014). Taşıma Gücü ve Oturma İncelemelerinde Menard Pressiyometre Deneyinin Uygulanması: Kuloğlu HES Regülatörü Yerinde Bir Örnek Çalışma (Kars, Türkiye) . Jeoloji Mühendisliği Dergisi , 38 (2) , 73-102 . DOI: 10.24232/jeoloji-muhendis

  • Kayabaşı, A . Taşıma Gücü ve Oturma İncelemelerinde Menard Pressiyometre Deneyinin Uygulanması: Kuloğlu HES Regülatörü Yerinde Bir Örnek Çalışma (Kars, Türkiye). Jeoloji Mühendisliği Dergisi 38 (2014 ): 73-102

  • Evaluation of Different Limestones as Concrete Aggregate in İzmir Karaburun Peninsula
    Hakan Elçi Necdet Türk İsmail İşintek
    View as PDF

    ABSTRACT: Izmir is the third biggest metropolitan city in Turkey with a population more than 4 million. Thequarries which presently supply aggregate to the ready-mixed concrete plants and cement factories inand around the metropolitan city of İzmir are expected to be closed down in the near future due to theircloseness to the settlement areas and the environmental problems they create. Thus it is necessary tofind new crushed rock areas that will meet the future aggregate needs of the city. It is envisaged that theaggregate needs of the city will be met partially from the Mesozoic aged limestones of the KaraburunPeninsula. In this study, the facies and chemical properties of Mesozoic aged limestones of the KaraburunPeninsula have been investigated and the influences of these properties on the usability as concreteaggregate were evaluated. The results indicated that the most important property affecting the usage ofthe limestones as concrete aggregate is found to be silica content. It affects the purity of the limestonesby causing alkali silica reaction in concrete. Additionally, it has been noted that the clay containingaggregates in the limestones are found to decrease the strength of the concrete.

  • Alkali Silica Reaction

  • Limestone Aggregate

  • Purity of Limestone

  • Karaburun

  • Akman, S. M., 1978. Dolomit Kökenli Beton Agregalarında Alkali-Reaktivitesi Olasılığı. İTÜ Dergisi, 36 (3), 55-59

  • Akman, S. M., 1984. Beton Agregaları. Beton Semineri, D.S.İ. Yayın No: 16 15-28 Ankara.

  • Alptuna, G., 2009. Dolomit kökenli agregaların alkalikarbonat reaktivitesinin araştırılması. Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir, Yüksek Lisans Tezi, 194 s (yayımlanmamış).

  • Baradan, B., 2004. Yapı Malzemesi II. Dokuz Eylül Üniversitesi Mühendislik Fakültesi, Yayın No. 207.

  • Bell, F. G., 2006. Mühendislik Jeolojisi ve İnşaat (Çeviren K. Kayabalı, Engineering Geology and Construction, 2004). Ankara, Sistem Ofset.

  • Binal, A., 2004. Pesimum reaktif agrega içeriğinin alkali-silika reaksiyonuna etkisinin deneysel yöntemlerle araştırılması. İstanbul Üniversitesi Mühendislik Fakültesi Yerbilimleri Dergisi, 17 (2), 119-128.

  • Binal, A., 2008. The determination of gel swelling pressure of reactive aggregates by ASGPM devices and a new reactive innocuous aggregate decision chart. Construction and Building Materials, 22 (1), 1–13.

  • Carlos, A., Masumu, I., Hiroaki, M., Maki, M., Takahisa, O., 2010. The effects of limestone aggregate on concrete properties. Construction and Building Materials, 24, 2363-2368.

  • Dunham, R. J., 1962. Classification of carbonate rocks according to depositional texture. In: W. E. Ham (ed.), Classification of Carbonate Rocks. American Association Petroleum Geologist, 1, 108-121.

  • Dearman, W. R., 1981. Engineering properties of carbonate rock, general report. Bulletin of the International Association of Enginering Geology, 24, 3-17.

  • Elçi, H., 2011. Karaburun Yarımadası kireçtaşlarının mühendislik jeolojisi. Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir, Doktora tezi, 511 s.

  • Erdoğan, B., 1990. İzmir – Ankara Zonu ile Karaburun Kuşağının Tektonik İlişkisi. MTA Dergisi., No:110, 1-15.

  • Erdoğan, B., Altıner, D., Güngör, T., Özer, S., 1990. Karaburun Yarımadası’nın Stratigrafisi, MTA Dergisi, No:111, 1-22.

  • Erdoğan , M., 1996. Alkali karbonat reaksiyonunun gelişim mekanizması ve nedenleri. Mühendislik Jeolojisi Türk Milli Komitesi Bülteni, 41-47.

  • Flügel, E., 2004. Microfacies of carbonate rocks: Analysis, Interpretation and application. Berlin: Springer-Verlag, 976 p.

  • Fookes, P.G., 1980. An introduction to the influence of natural aggregates on the performance and durability of concrete. Quarterly Journal of Engineering Geology and Hydrogeology, 13 (2), 207–229.

  • Folk, R. L., 1959. Practical petrographic classifaction of limestones. American Association Petroleum Geologist, 43, 1-38.

  • French, W.J., Poole, A. B., 1974. Deleterious reactions between dolomites from Bahrain and cement paste. Cement and Concrete Research, 4, 925-937.

  • French, W. J., 1991. Concrete Petrography: a review. Quarterly Journal Engineering Geology, 24, 17-48

  • Gillott, J. E., Swenson, E. G., 1969. Mechanism of alkali carbonate reaction. Quarterly Journal Engineering Geology, 2, 7-24.

  • Gillott, J. E., 1980. Properties of aggregates affecting concrete in North America. Quarterly Journal Of Engineering Geology, 13, 289-303.

  • Güler, B., Tuğrul, A., Hasdemir, S., Şahin, S. Y., 2010. İstanbul’da üretilen farklı kökenli agregaların beton özelliklerine etkileri. Mühendislik Jeolojisi Bülteni, 30, 53-72.

  • Güngör, T., 1989. Karaburun Yarımadası Balıklıova – Barboros arasındaki bölgenin jeolojisi ve yapısal evrimi. Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü Jeoloji Mühendisliği Bölümü, 47 s, (yayımlanmamış).

  • Güngör, T., Erdoğan, B., 2002. Tectonic significance of mafic volkanic rocks in a Mesozoic sequence of the Menderes Massif, West Turkey. International Journal of Earth Science, 91, 386 - 397.

  • Hacımustafaoğlu, R., 1999. Karaburun Yarımadası Mermerlerinin Cinsleri Üretimleri Ekonomileri ve Kapasiteleri. Yüksek lisans tezi, Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir, 120 s (yayımlanmamış).

  • Hammersly, G.P., 1989. The use of petrography in the evulation of aggregates. Concrete, 23 No:10, 29-32.

  • Hasdemir, S., 2004. Metilen mavisi deney sonuçlarının beton basınç dayanımlarına etkisi. Beton 2004 Kongresi, İstanbul, 615-622.

  • Hobbs, D.W., 1978. Expansion of concrete due to alkali-silica reaction: An explanation. Magazine of Concrete Research, 30 (105), 215-220.

  • İşintek, İ., 2002. Foraminiferal and Algal Biostratigraphy and Petrology of the Triassic to Early Cretaceous Carbonate Assembleges in the Karaburun Peninsula, (Western Turkey). Ph.D. Thesis, Natural and Applied Science of Dokuz Eylul University, 446

  • İşintek, İ., Altıner, D., Altıner Özkan, S., 2007. İzmir-Soma (Manisa) arasında yüzeyleyen Mesozoyik karbonat kütlelerinin foraminifer ve alg biyostratigrafisi ve paleocografik anlamları. Çaydag 103Y191 numaralı (TUBİTAK) proje raporu, 231 s (yayımla

  • ISSA, International Slurry Seal Association, 1989. Test Method for determination of methylene blue absorption value of mineral aggregate filler and fines, ISSA Bullettin No 145.

  • Kandall, P.S., Lynn, C.Y., Parker, F., 1998. Tests for Plastic Fines in Aggregates Related to Stripping in Asphalt Paving Mixtures. National Center of Asphalt Technology, Auburn University, Alabama, USA, Report no. 98-3, 1–20.

  • Kara, G., Tuğrul, A., Yılmaz, M., Buldum, M., 2009. Taş Ocaklarındaki Kayaç Değişimlerinin Agrega ve Beton Özelliklerine Etkisi. 5. Ulusal Kırmataş Sempozyumu, İstanbul, 107-117.

  • Katayama, T., 2004. How to Identify Carbonate Rock Reactions in Concrete. Materials Characterization, 53, 85-104.

  • Krumbein, W. C., Sloss, L. L., 1963. Stratigraphy and Sedimantation. W. H., Freeman and Co., San Francisco, 660p.

  • Lorenzi, G., Jensen, J., Wigum, B. 2001. Petrographic Atlas of The Potentially Alkali-Reactive Rocks in Europe. Geological Survey of Belgium, 2006/01 - 302, 64p.

  • McNally, G.H., 1998. Soil and Rock Construction Matrerials. E & FN Spon, London, 403 p.

  • Okay, A. I., Siyako, M., 1993. İzmir-Balıkesir arasında İzmir-Ankara Neo-Tetis Kenedinin yeni konumu. Türkiye ve Çevresinin Tektoniği- Petrol Potansiyeli (ed. S. Turgut) Ozan Sungurlu Sempozyumu Bildirileri, Ankara, 333-355.

  • Okay, A. I., Satır, M., Sıyako, M., Monıé, P., Metzger, R., Akyüz, S., 1996. Paleo- and Neo-Tethyan events in northwestern Turkey: Geologic and geochronologic constrains. In: Yin A, Harrison TM, (eds). The Tectonic Evolution of Asia. Cambridge Univer

  • Okay, A. I., Tüysüz, O., 1999. Tethyan Sutures of northern Turkey. In: Durand B., Jolivet L., Horvath, F. & Seranne M. (eds). Mediterranean Basins: Tertiary Extension within the Alpine Orogen. Geological Society of London, Special Publication (156),

  • Oates, J. A. H., 1998. Lime and Limestone, Chemistry and Technology, Production and Uses. Wenheim, Wiley-VCH, 455p.

  • Pettijohn, F. J., 1975. Sedimentary Rocks. Third edition, Harper, New York, 628p.

  • Poitevin, P., 1999. Limestone aggregate concrete, usefulness and durability. Cement and Concrete Composites, 21, 89-97.

  • Petkovsek, A., Macek, M., Pavsic, P., 2010. Fines characterization through the methylene blue and sand equivalent test: comparison with other experimental techniques and application of criteria to the aggregate quality assessment. Bulletin of Enginee

  • Qian, G., Deng, M., Thang, M., 2001. Expansion of Siliceous and Dolomitic Aggregates Lithium Hydroxide Solution, Cement and Concrete Research, 32, 763-768.

  • Qian, G., Deng, M., Lan, X., Xu, Z., Tang, M., 2002. Alkali Carbonate Reaction Expansion of Dolomitic Limestone Aggregates With Porphyrotopic Texture. Engineering Geology, 63, 17-29.

  • RILEM TC 191-ARP., 2005. Alkali-reactivity and prevention - Assessment, specification and diagnosis of alkali-reactivity AAR-5: Rapid preliminary screening test for carbonate aggregates. Material and Structures, 38, 787-792.

  • RILEM TC 106-2., 2000. Alkali Aggregate Reaction – The Ultra Accelerated Mortar –Bar Test. Material and Structures, 33, 283-293.

  • Rollings M. P., Rollings R. S., 1995. Geotechnical Materials in Construction. McGraw-Hill, London, 523p.

  • Sims, I., Sotiropoulos, P., 1983. Standard alkalireactivity testing of carbonate rocks from the Middle East and North Africa. Proceedings of the 6th International Conference, Alkalis in Concrete, Research and Practice, Copenhagen.

  • Smith, M. R., Collis, L., 2001. Aggregates: Sand, Gravel and Crushed Rock Aggregates for Construction Purposes. Geological Society, London, UK, Engineering Geology, Special Publication, 17.

  • Stapel, E. E., Verhoef, P. N. W., 1989. The use of the methylene blue adsorption test in assesing the quality of basaltic tuff rock aggregate. Engineering Geology, 26, 233-246.

  • Tosun, K., Felekoğlu, B., Baradan, B., 2006. The effect of cement alkali content on ASR susceptibility of mortars incorparating admixtures. Bulding and Environment, 42, 3444-3453.

  • TS EN 197-1., 2012. Çimento- Bölüm 1: Genel Çimentolar- Bileşim, Özellikler ve Uygunluk Kriterleri. Ankara. Türk Standartları Enstitüsü.

  • TS 706 EN 12620 + A1., 2009. Beton Agregaları. Ankara. Türk Standartları Enstitüsü.

  • TS EN 933-3., 2012. Agregaların Yassılık Endeksi Tayini. Ankara. Türk Standartları Enstitüsü.

  • TS EN 933-4., 2009. Agregaların Geometrik Özellikleri İçin deneyler Bölüm 1: Tane Şeklinin Tayini – Şekil İndisi. Ankara. Türk Standartları Enstitüsü

  • TS EN 933-8., 2012. Agregaların Geometrik Özellikleri İçin Deneyler Bölüm 8: İnce Tanelerin Tayini –Kum Eşdeğeri Tayini. Ankara. Türk Standartları Enstitüsü.

  • TS EN 933-9., 2010. Agregaların Metilen Mavisi Deneyi. Ankara. Türk Standartları Enstitüsü.

  • TS EN 1097-1., 2003. Agregaların Aşınmaya Karşı Direnci-Mikro Deval. Ankara. Türk Standartları Enstitüsü.

  • TS EN 1097-2., 2010. Agregaların Parçalanma Direnci-Los Angeles Deneyi. Ankara. Türk Standartları Enstitüsü.

  • TS EN 1097-3., 1999. Agregaların Gevşek Yığın Yoğunluğunun ve Boşluk Hacminin Tayini. Ankara. Türk Standartları Enstitüsü.

  • TS EN 1097-6., 2013. Agregaların Tane Yoğunluğu ve Su Emme Oranı Tayini. Ankara. Türk Standartları Enstitüsü.

  • TS EN 1367-1., 2009. Agregaların Termal Bozunma Özellikleri İçin Deneyler- Bölüm1: Donmaya ve Çözülmeye Karşı Direnci Tayini. Ankara. Türk Standartları Enstitüsü.

  • TS EN 1367-2., 2010. Agregalarda Magnezyum Sülfat Deneyi. Ankara. Türk Standartları Enstitüsü.

  • TS EN 1744-1., 2011. Agregaların Kimyasal Analizi- Organik Madde Tayini. Ankara. Türk Standartları Enstitüsü.

  • TS EN 1744-5., 2008. Agregaların Kimyasal Özellikleri İçin Deneyler-Bölüm 5: Asitte Çözülebilen Klorür Tuzlarının Tayini. Ankara. Türk Standartları Enstitüsü.

  • TS 10088 EN 932-3/A1., 2006. Agregaların Genel Özellikleri İçin Deneyler - Kısım 3: Basitleştirilmiş Petrografik Tanımlama İçin İşlem ve Terminoloji.TS EN 12350-2., 2007. Beton - Taze Beton Deneyleri - Bölüm 2: Çökme (Slump) Deneyi. Ankara. Türk Stan



  • Elçi, H , Türk, N , İşintek, İ . (2014). İzmir Karaburun Yarımadasındaki Farklı Kireçtaşlarının Beton Agregası Olarak Değerlendirilmesi . Jeoloji Mühendisliği Dergisi , 38 (2) , 103-134 . DOI: 10.24232/jeoloji-muhendisligi-dergisi.295328

  • Elçi, H , Türk, N , İşintek, İ . İzmir Karaburun Yarımadasındaki Farklı Kireçtaşlarının Beton Agregası Olarak Değerlendirilmesi. Jeoloji Mühendisliği Dergisi 38 (2014 ): 103-134

  • Investigation of the Biogeochemical Anomalies for Mn, Zn, Cu, Ni and Co in the Kırka (Eskişehir), Bigadiç (Balıkesir) and Emet (Kütahya) Boron Deposits Area
    Zeynep Özdemir Semiha Zorlu Mustafa Akyildiz
    View as PDF

    ABSTRACT: Plants accumulates a lot of elements and determination of the amount of elements in the plantsis important for biogeochemical prospecting. 14 plant species and 220 plant and soils samples werecollected from Kırka (Eskişehir) primarily, Bigadiç (Balıkesir) and Emet (Kütahya) boron deposits areaand element contents of plant and soil samples were determined. The biogeochemical anomalies were determined with the help of the statistical relations between element contents of the soil and the plantspecies samples. There are no statical relationship established between the Zn, Cu, Ni ve Co values of plantand soil samples. Twigs of Gypsophila perfoliata L. (n=13, r=0.79, R²=0.62, P<0.01 for Mn) observedwere found to be indicator plants. The indicator plants could be successfully used for biogeochemicalprospecting and environmental monitoring. In addition, the correlation analysis was performed in orderto determine the inter-elemental relationships between the soil (for B, Sr, Li, Mn, Zn, Cu, Ni and Co) andMn in G. perfoliata L. While there is a positive significant (S) relationship between Mn in plant and Mn insoil, there is a negative significant(-S) relationship between Mn in plant and Li in soil. 

  • Biogeochemistry

  • Boron

  • Mn

  • Indicator plant

  • Kırka

  • Bigadiç

  • Emet

  • Alkan, A., 1998. Farklı Tahıl Türleri ile Buğday ve Arpa Çeşitlerinin Bor Toksisitesine Dayanıklılığının Araştırılması ve Dayanıklılıkta Rol Alan Faktörlerin Belirlenmesi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, Doktora Tezi, 135 s (yay

  • Arslan, N., Çiçek, A., Akkan, C., 2010. Accumulation of heavy metals by earthworms in boroncontaminated area (Kırka-Eskişehir). Advances of the 4th International Oligoochaeta Taxonomy Meeting Zoology in the Middle East, Supplementum 2, 111-116.

  • Babaoğlu, M., Gezgin, S., Sade, B., Dural, H., 2004. Gypsophila sphaerocephala Fezl ex Tchihat.: A.Boron Hyperaccumulator Plant Species That May Phytoremediate Soils with Toxic B Levels. TUBİTAK. Turkish Journal of Botany, 28, 273- 278.

  • Benton, J., Jones, R., 1984. Developments in the measurement of trace metal in foods. Analytical Food Control, 157-206.

  • Bingham, F. T., 1982. Boron, In: A. L. Page, R. H. Miller and D. R. Keeney, (Eds.), Methods of Soil Analysis, Part 2, Madison, 431-447.

  • Brooks, R.R., Baker, A.J.M., Malaisse, F., 1992. Copper Flowers. National Geographic Research and Exploration, 8 (3), 338-351.

  • Brooks, R.R., Dunn, C. E., Hall, G.E.M., 1995. Biological System in Mineral Exploration and Processing. Elles Horwood Limited, 538 p.

  • Davis, P. H. (Ed.), 1965-1985. Flora of Turkey and the East Aegean Islands. Vol. 1-9, Universty Pres, Edinburgh.

  • Demir, E., Özdemir, Z., 2013. Kazanlı-Mersin bölgesinde Cu, Mn, Zn, Cd ve Pb için biyojeokimyasal anomalilerin incelenmesi ve çevresel ortamın yorumlanması, Jeoloji Mühendisliği Dergisi, 37 (2), 119-140.

  • Dunn, C. E., 2007. Biogeochemistry in Mineral Exploration. Handbook of Exploration and Environmental Geochemistry, Elsevier, London, V.9, 462 p.

  • Garcia- Veigas, J., Helvacı, C., 2013. Mineralogy and Sedimentology of the Miocene Göcenoluk borate deposit, Kırka district, western Anotolia, Turkey. Sedimentary Geology, 290, 85-96.Ghaderian, S.M., Baker, A. J. M., 2007.

  • Geobotanical and biogeochemical reconnaissance of the ultramafics of Central Iran, Journal of Geochemical Exploration, 92, 34-42.

  • Gök, S., Çakır, A., Dündar, A., 1979. Survey of Kırka towns and surrounding area borate deposits and other industrial minerals. Mineral Research and Exploration Institute of Turkey (MTA), Report No: 6768.

  • Helvacı, C., 1983. Minerology of the Turkish borate deposits. Geological Engineering, 17, 37-54.

  • Helvacı, C., 1984. Occurrence of rare borate-minerals: veatch. Atunellite, teruggite and cahnite in the Emet borate deposits, Turkey. Mineralium Deposite, 19, 217-226.

  • Helvacı, C., 2004. The Geological Situation and Economical importance of Turkey Borate Deposits and Borate Policy. 5. Symposium of Industrial Minerals, İzmir, 11-27.

  • Helvacı, C., Orti, F., 2004. Zoning in The Kırka borate deposit, western Turkey: primary evaporitic fractionation or diagenetic modifications. The Canadian Minerologist, 42, 1179-1204.

  • Köksoy, M., 1991. Uygulamalı Jeokimya. Hacettepe Üniversitesi Yayınları, A-64, 366 s.

  • Normandin, L., Kennedy, G., Zayed, J., 1999. Potential Of Dandelion Taraxacum Officinale As a Bioindicator of Manganese Arising From the Use of Methylcyclopentadienyl Manganese Tricarbonyl in Unleaded Gasoline. The Science of the Total Environment, 2

  • Ornella V.G., Gabbrielli R., 1987. The response of plants to heavy metals: organic asid production. Giornale Botanico Italiano, 121 (3-4), 209-212.

  • Özbek, H., Kaya, Z., Gök, M., Kaptan, H., 1993. Toprak Bilimi. Çukurova Üniversitesi Ziraat Fakültesi Yayınları, Adana, 816 s.

  • Özdemir, Z., 2003. Biogeochemical studies at the Musalı and Silifke-Anamur area in Mersin, Turkey. Geochemistry International, 41 (11), 1137-1142.

  • Özdemir, Z., 2005. Pinus brutia as a biogeochemical medium to detect iron and inc in soil analysis, chromite deposits of the area Mersin, Turkey. Chemie Der Erde-Geochemitry, 65, 79-88.

  • Özdemir, Z., 2009. Bitkilerle Madenler Bulunabilir mi? Biyojeokimyasal (Bitki Jeokimyası) prospeksiyon nedir?. Madencilik ve Yer Bilimleri Dergisi, 1/3, 14-19.

  • Özdemir, Z., 2011. Kobaltın Biyojeokimyasal prospeksiyonu için bir belirtgen Alyssum Peltarıoides Boiss Subsp. Virgatiforme (Nyar.) Dudley. İstanbul Üniversitesi Dergisi, 24 (1), 65- 75.

  • Özdemir, Z., Sağıroglu, A., 1999. Biogeochemical manganese anomalies along the Maden Çayı Valley, Maden-Elazığ. Geochemistry International, 37 (7), 673-677.

  • Özdemir, Z., Sağıroğlu, A., 2000a. Biogeochemical zinc anomalies along the Maden Çayı Valley, Maden-Elazığ, Turkey. Zeitschrift für Angewandte Geologie, 46, 218-222.

  • Özdemir, Z., Sağıroğlu, A., 2000b. Salix acmophylla Boiss, Tamarix smyrnensis Bunge and Phragmites australis (cav) Trin. ex. Stuedel as biogeochemical indicators for copper deposits in Elazığ-Turkey. Journal of Asian Earth Sciences, 18, 595-601.

  • Özdemir, Z., Demir, E., 2010. Fındıkpınarı - Erdemli / Mersin bölgesinde nikel akümülatörü bir bitki türü Alyssum murale Waldst.&Kit, Jeoloji Mühendisliği Dergisi, 34 (1), 57-70.

  • Özdemir, Z., Zorlu, S., Akyıldız, M., Yücesoy Eryılmaz., F., 2014. Determination of Indicator Plants for B in the Kırka (Eskişehir) Boron Deposit Area. International Journal of Geosciences, 5, 77-84.

  • Schroll, E. (Ed)., 1975. Anallytische Geochemie Enke Verl, Bd. I. Stuttgart, 292 p.

  • Schlesinger W.H.(Edit.), Holland H. D, Turekıan K. K, 2006. Biogeochemistry. Treatise on geochemistry,Vol. 8, Elsevier, London 702 p.

  • Sümbüloğlu, K., Sümbüloğlu, V., 1995. Biyoistatistik. 6. Baskı, Özdemir Yayıncılık, Ankara, 269 s.

  • Turan, H., Özdemir, Z., Zorlu, S., 2006. Çiftehan (Ulukışla-Niğde) bölgesinin Cu, Zn, Fe, Mn ve Ni için biyojeokimyasal anomalilerin araştırılması. İstanbul Üniversitesi Yerbilimleri Dergisi, 19 (2), 131-140.



  • Özdemir, Z , Akyıldız, M . (2014). Kırka (Eskişehir), Bigadiç (Balıkesir) ve Emet (Kütahya) Bor Yatakları Bölgesinde Mn, Zn, Cu, Ni ve Co için Biyojeokimyasal Anomalilerin Araştırılması . Jeoloji Mühendisliği Dergisi , 38 (2) , 135-149 . DOI: 10.2423

  • Özdemir, Z , Akyıldız, M . Kırka (Eskişehir), Bigadiç (Balıkesir) ve Emet (Kütahya) Bor Yatakları Bölgesinde Mn, Zn, Cu, Ni ve Co için Biyojeokimyasal Anomalilerin Araştırılması. Jeoloji Mühendisliği Dergisi 38 (2014 ): 135-149

  • ISSUE FULL FİLE
    View as PDF