Jeoloji Münendisliği Dergisi
Jeoloji Mühendisliği Dergisi

Jeoloji Mühendisliği Dergisi

2017 HAZİRAN Cilt 41 Sayı 1
COVER
View as PDF
COPYRİHT PAGE
View as PDF
CONTENTS
View as PDF
Faults as Geological Barrier, A Case Study: Çiğli Evka-5 Landslide (Izmir)
Cem Kincal Tümay Kadakci Koca Mehmet Yalçin Koca
View as PDF

ASTRACT: The landslides in İzmir region occur due to high rainfall, faulting, the presence of highly weathered volcanics as well as large-scale human activities such as road widening, foundation excavations and filling in old creek beds to form building site. All of these activities increase the vulnerability of rock masses to failure or reactivate rock and soil masses which fail due to various reasons mentioned beforehand. The Çiğli Evka-5 landslide is controlled by the faults where the sliding direction of the mass movement coincides with the dip direction of fault. Mass movement which developed on the disturbed hanging wall of the fault occurred in the type of earthflow. A trench/pocket was formed due to the geometries of the normal and reverse faults developed in agglomerate and the flysch base rocks. The relationship between the hanging wall fault pocket and the mechanism of the landslide is investigated in this work. It is also determined that the reverse fault as a geological barrier blocked a possible deep sliding in the area. It was benefitted from the rising block of the reverse fault revealing good rock mass characteristics during the decision phase of the location of proposed piles to prevent the landslide at shallow depth (8-15 m). Subsurface geotechnical investigations in the landslide area included; 12 borings (core drillings) down to 30-70 m from the ground surface, inclinometric readings in 2 borings, and pressuremeter measurements in 3 borings. Slip circle was defined on the basis of inclinometric readings, pressuremeter measurements, core descriptions (geotechnical logging), and geomorphologic structure. The location of the slip surface defined by the measurements and in-situ survey is compared with that of derived from the slope stability analyses.

  • Çiğli (İzmir)

  • Fault

  • Landslide

  • Geological Barrier

  • Engineering Geology

  • Akartuna, M., 1962. On the geology of Izmir, Torbalı, Seferhisar, Urla districts. MTA Bulletin, 5, 1-19.

  • Akgün, A., Kıncal, C., Pradhan, B., 2012. Application of remote sensing data and GIS for landslide risk assessment as an environmental threat to İzmir city (west Turkey). Environmental Monitoring and Assessment, 184, 5453-5470.

  • ASTM 1971. Standard test method for plastic limit and plasticity index of soil. D. 424-59, 127-128.

  • ASTM 1979a. Standard test method for direct shear test of soils under consolidated drained conditions. D. 3080-72, 487-497.

  • ASTM 1979b. Standard test method for unconfined compressive strength of cohesive soils. D. 2166- 67, 332-335.

  • ASTM D0422-63, 2007. Test method for particlesize analysis of soils. Annual book of ASTM standards, section 4, Vol. 04.08, soil and rock, building stones. ASTM International, West Conshohocken, PA.

  • ASTM D4622-86, 1993. Standard test method for rock mass monitoring using inclinometers (Withdrawn 2000), in soils. ASTM International, West Conshohocken, PA

  • ASTM D4719 2000. Standard test method for prebored pressuremeter testing in soils. ASTM International, West Conshohocken, PA

  • Bishop, A. W., 1955. The use of the slip surface in stability analysis of slopes. Geotechnique, 5 (1), 7-17

  • Kıncal, C., 2005. İzmir İç Körfezi çevresinde yer alan birimlerin coğrafi bilgi sistemleri ve uzaktan algılama teknikleri kullanılarak mühendislik jeolojisi açısından değerlendirilmesi. Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, İzmir, Doktor

  • Kıncal, C., Akgün, A., Koca, M. Y., 2009. Landslide susceptibility assessment in the İzmir (West Anatolia, Turkey) city center and its near vicinity by the logistic regression method. Environmental Earth Sciences, 59, 745-756.

  • Koca, M. Y., 1995. Slope stability assessment of the abandoned andesite quarries in and around the Izmir city centre. The Graduate School of Natural and Applied Sciences of Dokuz Eylul University, İzmir, PhD Thesis, 430 p.

  • Koca, M. Y, Kıncal, C., 2004. Abandoned stone quarries in and around the Izmir city centre and their geo-environmental impacts –Turkey. Engineering Geology, 75, 49-67.

  • Köse, G., 2007. Grafitli şeyl ayrışma ürünü killer ve kaymaya olan etkileri, örnek çalışma: Narlıdere heyelan bölgesi. Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir, Yüksek Lisans Tezi, 114 s.

  • Rocscience, 2010. Slide: Stability analysis for soil and rock slopes. Rocscience, Toronto.

  • Tarcan, G., Koca, M. Y., 2001. Hydrogeological and geotechnical assessments of the Kadifekale landslide area, İzmir, Turkey. Environmental Geology, 40 (3), 289-300.



  • Kıncal, C , Kadakçı Koca, T , Koca, M . (2017). Jeolojik Bariyer Olarak Faylar, Örnek Çalışma: Çiğli Evka-5 Heyelanı (İzmir) . Jeoloji Mühendisliği Dergisi , 41 (1) , 1-30 . DOI: 10.24232/jmd.306682

  • Kıncal, C , Kadakçı Koca, T , Koca, M . Jeolojik Bariyer Olarak Faylar, Örnek Çalışma: Çiğli Evka-5 Heyelanı (İzmir). Jeoloji Mühendisliği Dergisi 41 (2017 ): 1-30

  • Liquefaction Severity Index (LSI) – Based Liquefactıon Map of the Lara - Kundu Plain (Antalya)
    Nihat Dipova Bülent Cangir
    View as PDF

    ÖZ: In this research, engineering properties of Lara-Kundu coastal plain soils and liquefaction potential of thesands in the region have been investigated. For this purpose, samples which were taken at an interval of 1.5 m from 20 boreholes of 20 m depth, were investigated in the laboratory, and soil index, strength and compressibility properties were determined. In situ tests which are SPT and CPT were executed. Dense sand is the main soil type of the region, and also in some parts loose sand, clay and peat are also available. Carrying out seismic hazard analysis, a peak ground acceleration contour map has been generated. Probabilistic liquefaction potential analysis was performed to search for liquefaction potential of sand layers in the soil profile. LSI (Liquefaction Severity Index) value was calculated with the help of PL values which were determined for every depth of the searching location. By using all the data and Geographical Information Systems (GIS) technique; liquefaction severity index (LSI) map of the soils of Lara - Kundu Region has been created.

  • GIS,

  • CPT,

  • Lara-Kundu,

  • LSI

  • Liquefaction

  • SPT

  • Acar, M. H., Budak, G., 2004. Antalya Yamansaz Bölgesi’nin sıvılaşma potansiyelinin araştırılması. Zemin Mekaniği ve Temel Mühendisliği Onuncu Ulusal Kongresi. 469, İstanbul

  • Akay, E., Uysal, Ş., Poisson, A., Cravatte, J., Müller, C., 1985. Antalya Neojen havzasının stratigrafisi. T.J.K. Bülteni, 28 (2), 105-121.

  • Bommer, J., Spence, R., Erdik, M., Tabuchi, S., Aydınoğlu, N., Booth, E., Del Re, D., Peterken, O., 2002. Development of an earthquake loss model for Turkish catastrophe insurance. Journal of Seismology, 6, 431-446.

  • Boore, D. M., Atkinson, G. M., 2008. Ground motion prediction equations for the average horizontail component of PGA, PGV and 5% damped PSA at spectral periods between 0.01s and 10.0s. Earthquake Spectra, 24 (1), 99-138.

  • Çetin, K. O., Seed, R.B., Der Kiureghian, A., Tokimatsu, K., Harder, L. F., Kayen, R. E., Moss, R. E. S., 2004. Standard penetration test-based probabilistic and deterministic assessment of seismic soil liquefaction potential, Journal of Geotechnical

  • Chen, C. J., Juang, C. H., 2000. Calibration of SPTand CPT-based liquefaction evaluation methods, In: Innovations and applications in geotechnical site characterization, edited by: Mayne, P.W., Hryciw, R., Vol. 97. Geotechnical Special Publication, A

  • Clayton C. R. I., Mathews M. C., Simons N. E., 1995. Site investigation. 2nd edition, Blackwell Science

  • Das, Braja M., 1983. Fundamentals of soil dynamics. Elver Science Publishers Co., Inc, New York, NY, 1983.

  • Deniz, A., Yücemen, M. S., 2005. Antalya yöresi için deprem tehlikesinin stokastik yöntemler ile tahmini. Antalya Yöresinin İnşaat Mühendisliği Sorunları Kongresi, 22-25 Eylül 2005, Antalya

  • Dipova, N., 2002. Antalya kıyı düzlüklerinin oluşumu ve mühendislik özellikleri, IV. Kıyı. IV. Kıyı Mühendisliği Ulusal Sempozyumu, 24-27 Ekim 2002, Antalya, Bildiriler Kitabı, 429-442.

  • Dipova, N., Cangir, B., 2011. Antalya ili yerleşim alanının depremselliğinin araştırılması. Jeoloji Mühendisliği Dergisi, 35 (2), 93-114.

  • Dipova, N., Oğuz, C., 1998. Lara (Antalya) kumulları ve kıyı alanı. Türkiye’nin Kıyı ve Deniz Alanları II. Ulusal Konferansı Bildiriler Kitabı, 22-25 Eylül, ODTÜ, Ankara

  • Erdik, M., Alpay Biro, Y., Onur, T., Şeşetyan, K., Birgören., 1999. Assessment of earthquake hazard in Turkey and neighboring regions. Annali Di Geofisica, 42 (6), 1125-1138.

  • ESRI, 2009. ArcGIS Desktop: release 9.3. Environmental Systems Research Institute, Redlands CA, USA.

  • Iwasaki T, K., Tokida K. Tatsuoka, Watanabe, S., Yasuda, S., Sato, H., 1982. Microzonation for soil liquefaction potential using simplified methods. Proceedings of the 13th International Conf. on Microzonation”, Seattle, USA, 3, 1319- 1330.

  • Juang, C. H., Yuan, H., Lee, D. H., Lin, P. S., 2003. Simplified CPT-based method for evaluating liquefaction potential of soils. Journal of Geotechnical and Geoenvironmental Engineering, ASCE 129 (I), 66-80.

  • Kramer, S. L., 1996. Geotechnical earthquake engineering. Prentice Hall, New Jersey.

  • Liao, S. S. C., Whitman, R. V., 1986. Overburden correction factor for SPT in sand. Journal of Geotechnical Engineering, ASCE, 112 (3), 373- 37.

  • McGuire, R. K., 2001. Deterministic vs. probabilistic earthquake hazards and risks. Soil Dynamics and Earthquake Engineering, 21, 377-384.

  • Ordaz, M., Aguilar, A., Arboleda, J., 2007. CRISIS2007, Ver. 7.2, Program for Computing Seismic Hazard, Instituto de Ingeniería, UNAM, Mexico.

  • Önalp, A., Arel, E., 2002. Siltlerin sıvılaşma yeteneği: Adapazarı kriteri. Zemin Mekaniği ve Temel Mühendisliği Dokuzuncu Ulusal Kongresi, 1, 363-372, Anadolu Üniversitesi, Eskişehir.

  • Seed, H. B., Idriss. I. M., 1971. Simplified procedure for evaluating soil liquefaction potential. Journal of Soil Mechanics and Foundations Division, ASCE, 97 (SM9), 1249-1273

  • Seed, H. B., Idriss. I. M., 1982. Ground motions and soil liquefaction during earthquakes. Earthquake Engineering Research Institute, Berkeley, CA, 134 p.

  • Seyrek, E., 2009. Baraj yeri sismik tehlike analizlerinde sayısal çözümleme modelleri ve bir uygulama. Eskişehir Osmangazi Üniversitesi Fen Bilimleri Enstitüsü, Eskişehir, Doktora Tezi, 184 s (yayımlanmamış)

  • Skempton, A.W., 1986. Standard penetration test procedures and the effects in sands of overburden pressure, relative density, particle size, aging and overconsolidation. Geotechnique, 36 (3), 425- 447

  • Tsuchida, H., 1970. Prediction and countermeasure against the liquefaction in sand deposits. Abstract of the Seminar in the Port and Harbor Research Institute, Japan

  • Yılmaz, Z., Çetin, K. Ö., 2004. GIS-based seismic soil liquefaction assessment for Sakarya city after 1999 Kocaeli-Turkey earthquake. Proc. of the 11th Int. Conf. on Soil Dynamics and Earthquake Engineering and The 3rd Int. Conf. on Earthquake Geotec

  • Yücemen, M. S., 2008. Deprem tehlikesinin tahmininde olasılıksal yöntemler, Bölüm: Binalar için deprem mühendisliği temel ilkeleri. Editörler, E. Canbay v.d., Bizim Büro Basımevi, 365-413, Ankara.



  • Dipova, N , Cangir, B . (2017). Lara - Kundu (Antalya) Düzlüğünün Sıvılaşma Şiddeti İndeksi’ne (LSI) Dayalı Sıvılaşma Haritası . Jeoloji Mühendisliği Dergisi , 41 (1) , 31-46 . DOI: 10.24232/jmd.311839

  • Dipova, N , Cangir, B . Lara - Kundu (Antalya) Düzlüğünün Sıvılaşma Şiddeti İndeksi’ne (LSI) Dayalı Sıvılaşma Haritası. Jeoloji Mühendisliği Dergisi 41 (2017 ): 31-46

  • Baseflow Separation in Karstic Region Streams
    Ebru Eriş
    View as PDF

    ABTRACT: Baseflow estimation is important for hydrological activities such as water supply, irrigation, river transportation, energy production and groundwater practice. In this study, different methods widely used in the literature for baseflow estimation are applied on streams in the karstic Mediterranean Region. Three methods, the nonlinear baseflow separation, United Kingdom Institute of Hydrology and Recursive Digital Filter, were performed on daily flows of gauging stations in the region and results were compared. It is seen that the calculated baseflow is not far from results of previous case studies available for the study area. However, the nonlinear baseflow separation method is found to be the closest in terms of approaching the results of the previous studies.

  • Mediterranean Region

  • Digital Filter Method

  • Nonlinear Baseflow Separation Method

  • United Kingdom Institute of Hydrology Method

  • Karstic Region

  • Baseflow

  • Aksoy, H., Unal, N. E., Pektas, A. O., 2008. Smoothed minima baseflow separation tool for perennial and intermittent streams. Hydrological Processes, 22, 4467-4476.

  • Aksoy, H., Wittenberg, H., 2011. Nonlinear baseflow recession analysis in watersheds with intermittent streamflow. Hydrological Sciences Journal, 56 (2), 226-237.

  • Aksoy, H., Wittenberg, H., 2015. Baseflow recession analysis for flood-prone Black Sea watersheds in Turkey. CLEAN – Soil, Air, Water, 43 (6), 857- 866

  • Arnold, J. G., Allen, P. M., Muttiah, R., Bernhardt, G., 1995. Automated base flow separation and recession analysis techniques. Groundwater, 33 (6), 1010-1018.

  • Baran, T., Harmancioğlu, N. B., 1993. Assessment of mathematical models with exponential functions describing karstic spring discharges. UKAM, IAHS & IAH, International Symposium and Field Seminar on Hydrogeologic Processes in Karst Terrains, Antalya

  • Baran, T., Harmancioğlu, N., Öziş, Ü., 1987. Türkiye’nin akarsularında karst pınar katkıları. Türkiye İnşaat Mühendisliği IX. Teknik Kongresi, 299-311.

  • Benzeden, E., Olcay, M. S., Bağalı, K., 1993. Flood frequency analysis in karst river basins, UKAM, IAHS & IAH, International Symposium and Field Seminar on Hydrogeological Processes in Karst Terranes, Antalya, Turkey. (Editors: LaMoreaux, Assaad and

  • Birtles, A.B., 1978. Identification and separation of major base flow components from a stream hydrograph. Water Resources Research. 14 (5), 791-803.

  • Chapman, T., 1999. A comparison of algorithms for stream flow recession and baseflow separation. Hydrological Processes, 13, 701-714

  • Değirmenci, M., 1989. Köprüçay havzası ve dolayının (Antalya) karst hidrojeolojisi incelemesi. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Yüksek Lisans Tezi, 398 s (yayımlanmamış)

  • Eckhardt, K., 2005. How to construct recursive digital filters for baseflow separation. Hydrological Processes, 19, 507-515

  • Eris, E., Wittenberg, W., 2015. Estimation of baseflow and water transfer in karst catchments in Mediterranean Turkey by nonlinear recession analysis. Journal of Hydrology, 530, 500-507

  • Graf, İ. K., Bozcu, A., 2006. Yapısal özelliklerin lapya gelişimindeki rolü: Kızılörü Dağı doğusu (Korkuteli-Antalya). Jeoloji Mühendisliği Dergisi, 30, 9-16

  • Hall, A. J., 1971. Baseflow recessions and baseflow hydrograph separation problem. Proceedings of the Hydrology Symposium, Institution of Engineers, Australia, Canberra, 159–170.

  • Institute of Hydrology (IH), 1980. Low flow studies research report. Institute of Hydrology Report No=1, 50 p (unpublished)

  • Karanjac, J., Günay, G., 1980. Dumanlı spring, Turkey-The largest karstic spring in the World? Journal of Hydrology, 45, 219-231

  • Kayan, G., 2014. Sakarya ve Batı Karadeniz akarsu havzaları için taban akışı ayırma modeli. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Yüksek Lisans Tezi, 113 s (yayımlanmamış).

  • Koç, A. C., 2008. Evaluation of karstic aquifers contribution to streams by the statistical analysis of recession curves. Journal of Earth System Science, 117 (1), 59–67.

  • Kurt, İ., 2007. Filtre edilmiş yuvarlatılmış minimumlar taban akışı ayırma yöntemi. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Yüksek Lisans Tezi, 158 s (yayımlanmamış).

  • Li, L., Maier, H. R., Partington, D., Lambert, M. F., Simmons, C.T., 2014. Performance assessment and improvement of recursive digital baseflow filters for cathcments with different physical charactersitics and hydrological inputs. Environmental Mode

  • Lyne, V., Hollick, M., 1979. Stochastic time-variable rainfall-runoff modelling. Institute of Engineers Australia National Conference. Publ. 79/10, 89- 93.

  • MGM, 2015. Meteoroloji Genel Müdürlüğü, Türkiye. https://www.mgm.gov.tr/veridegerlendirme/ il-ve-ilceler-istatistik.aspx?k=A, son erişim 29.03.2015.

  • Nathan, R. J., McMahon, T. A., 1990. Evaluation of automated techniques for base flow and recession analyses. Water Resources Research, 26 (7), 1465-1786.

  • Öziş, Ü., Keloğlu, N., 1979. Stochastic analysis of Manavgat flows, Antalya. International Seminar on Karst Hydrogeology, Oymapinar 1979, Proceedings (Editor: Günay). 305–315.

  • Piggott A. R., Moin S., Southam, C., 2005. A revised approach to the UKIH method for the calculation of baseflow. Hydrological Sciences Journal, 50 (5), 911-9203.

  • Saplıoğlu, K., 2005. Akarsu çekilmelerine etkiyen parametrelerin belirlenmesi ve çekilmenin modellenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü, Isparta, Yüksek Lisans Tezi, 72 s (yayımlanmamış).

  • Saplıoğlu, K., Çimen, M., 2010. Taban akışı ayrımı için yeni bir yöntem. e-Journal of New World Sciences Academy, Engineering Sciences, 1A0108, 5(4), 580-589.

  • Su, C.-H., Costelloe, J. F., Peterson, T. J., Western A. W., 2016. On the structural limitations of recursive digital filters for base flow estimation. Water Resources Research, 52, 4745–4764.

  • Szilagyi, J., Parlange B. M., 1998. Baseflow separation based on analytical solutions of the Boussinesq equation. Journal of Hydrology, 204, 251-260.

  • Ünal, E., 1981. Karst bölgelerindeki baraj haznelerinin yeraltı biriktirme hacminin Oymapınar örneğinde alçalma hidrografı yöntemiyle incelenmesi. Ege Üniversitesi İnşaat Fakültesi, İzmir, Yüksek Lisans Tezi, 68 s (yayımlanmamış).

  • Wittenberg, H., 1999. Baseflow recession and recharge as nonlinear storage processes. Hydrological Processes, 13, 715–726.

  • Wittenberg, H., Aksoy, H., 2010. Groundwater intrusion into leaky sewer systems. Water Science and Technology, 62 (1), 92-98.

  • Wittenberg H., 2003. Effects of season and man-made changes on baseflow and flow recession: case studies. Hydrological Processes, 17, 2113-2123

  • Wittenberg H., Sivapalan, M., 1999. Watershed groundwater balance estimation using streamflow recession analysis and baseflow separation. Journal of Hydrology, 219, 20-33.

  • Zaifoğlu, H., 2013. Fırat akarsu havzası için topoğrafik ve hidrometeorolojik veriye dayanan taban akışı ayırma modeli. İstanbul Teknik Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Yüksek Lisans Tezi, 97 s (yayımlanmamış).



  • Eriş, E . (2017). Karstik Bölge Akarsularında Taban Akışının Ayrılması . Jeoloji Mühendisliği Dergisi , 41 (1) , 47-58 . DOI: 10.24232/jmd.311873

  • Eriş, E . Karstik Bölge Akarsularında Taban Akışının Ayrılması. Jeoloji Mühendisliği Dergisi 41 (2017 ): 47-58

  • Water-Rock Interaction of Springwater in the Değirmendere Basin (Trabzon-NE Turkey)
    Elham Tahmasebzadeh Bastam Fatma Gültekin
    View as PDF

    ABSTRACT: In general, the rock types; basalt, andesite, altered andesite, tuff, dacite, and marl intercalating with volcanics, have been identified lithologically in the Değirmendere Basin. In the basin, there are many springs with a high carbon dioxide content and total dissolved solids, all of which are related to tectonic lines. Of these, four springs have discharge rates, pH, specific electrical conductivity (SEC) and total dissolved solids (TDS), respectively, 46- 158 ml/sec, 5.32-6.99, 603-1899 μS/cm and 380-1230 mg/l. It is determined that silicate weathering, carbonate weathering and ion-exchange type water-rock interaction processes were effective on the chemical evaluation of the Ca-HCO3 water type springs. The Chloro Alkaline Indices (CAI), which are calculated to explain the ion-exchange, indicated a reverse exchange. Based on δ18O-δ2H correlation, the springs which have a meteoric origin lie on the Eastern Black Sea Metoric Water Line. According to the isotopic values, the chemical composition of the young and shallow circulating springs was developed during circulating to the upper parts of the volcanic rocks where an intense weathering was observed. The concentration of Ba, Sr and Zn are high as in the rocks. Br (0.036-0.070 mg/l) and Cr (0.062 mg/l) values of the springs exceed the limit recommended in the Natural Mineral Water Regulation (2004).

  • Değirmendere Basin

  • Hydrochemistry

  • Spring water

  • Water-rock interaction

  • Trabzon

  • Alkan, A., Serdar, S., Fidan, D., Akbaş, U., Zengin, B., Kılıç, M.B., 2013. Physico-chemical characteristics and nutrient levels of the eastern black sea rivers. Turkish Journal of Fisheries and Aquatic Sciences, 13, 847-859

  • Appelo, C. A. J., Postma, D., 1994. Geochemistry, groundwater and pollution. Rotterdam: Balkema, 536 p.

  • Aydın, F., 2003. Değirmendere vadisi (TrabzonEsiroğlu, KD- Türkiye) volkanitlerinin mineral kimyası, petrolojisi ve petrojenezi. Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon. Doktora Tezi, 232 s. (yayımlanmamış).

  • Brunt, R., Vasak, L., Griffioen, J., 2004. Fluoride in groundwater: probability of occurrence of excessive concentration on global scale. International Groundwater Resources Assessment Centre (Igrac) Report nr: Sp 2004-2.

  • Collins, A. J., 1975. Geochemistry of oil field waters: New York, Elsevier Scientific Pub. Co. 496 p.

  • Craig, H., 1961. Isotopic variations in meteoric water. Science, 133, 1702-1703.

  • Davraz, A., 2003. Kaya- su etkileşimi üzerine bir çalışma, Keçiborlu- Değirmendere kaynağı (Isparta). Süleyman Demirel Üniversitesi, Fen Bilimleri Enstitüsü Dergisi, 7 (2), 327-335.

  • Drever, J. I., 1997. The geochemistry of natural waters. Third edition. New Jersey: PrenticeHall. Inc. 436 p.

  • Ekmekçi, M., Gültekin, F., 2015. Doğu Karadeniz bölümü suları çevresel duraylı izotop içeriğinin değerlendirilmesi. MÜHJEO’2015 Ulusal Mühendislik Jeolojisi Sempozyumu, (Editörler: Ulusay, Ekmekçi, Ersoy ve Fırat Ersoy), Trabzon, 459-466.

  • Freeze, R. A., Cherry, J. A., 1979. Groundwater. Englewood Cliffs: Prentice-Hall. Inc. 562 p

  • Garbos, S., Swiecicka, D., 2013. Determination of barium in natural waters by ICP-OES technique. Part II: Assessment of human exposure to barium in bottled mineral and spring waters produced in Poland. Roczniki Panstwowego Zakladu Higieny. 64, (2), 9

  • Garrels, R. M., Mackenzie, F.T., 1971. Evolution of sedimentary rocks. New York: WW Norton. 413 p

  • Gibbs, R.J., 1970. Mechanisms controlling world water chemistry. Science Journal, 170,795-840.

  • Gültekin, F., Dilek, R., Fırat Ersoy, A., Ersoy, H., 2005. Aşağı Değirmendere (Trabzon) havzası’ndaki suların kalitesi. Jeoloji Mühendisliği Dergisi, 29 (1), 21-35

  • Gültekin, F., Fırat Ersoy, A., Hatipoğlu, E., 2010. Trabzon ili CO2 ’ce zengin kaynak sularında su-kayaç ilişkisi, IV. Ulusal Jeokimya Sempozyumu, (Editör: Şaşmaz), Elazığ, 113.

  • Güven, İ. H., 1993. Doğu Pontidlerin jeolojisi ve 1/250.000 ölçekli kompilasyonu. MTA Yayınları, Ankara

  • Hamzaoui-Azaza, F., Ketata, M., Bouhlila, R., Gueddari, M., Riberio, L., 2011. Hydrogeochemical characteristics and assessment of drinking water quality in Zeuss-Koutine aquifer, southeastern Tunisia. Environmental Monitoring and Assessment, 174, 283

  • Hem, J. D., 1970. Study and interpretation of the chemical characteristics of natural water. Geological Survey (U.S.), Water-supply paper, Second Edition, 363 p.

  • Hounslow, A. W., 1995. Water quality data: analysis and interpretation. Lewis Publishers, 416 p.

  • Kara, İ., 1997. Termal ve mineralli sular envanteri Trabzon, MTA Genel Müdürlüğü, Enerji Hammadde Etüt ve Arama Dairesi Başkanlığı, Ankara, (yayımlanmamış).

  • Korkmaz, S., 1993. Tonya-Düzköy (GB Trabzon) yöresinin stratigrafisi. Türkiye Jeoloji Bülteni, 36, 151- 158.

  • Langmuir, D., 1997. Aqueous environmental geochemistry. Prentice Hall, Inc., 601p.

  • MGM, 2015. Meteoroloji Genel Müdürlüğü, İllerimize ait istatistik verileri, 20 Kasım, 2015, https://www.mgm.gov.tr/veridegerlendirme/ilve-ilceler-istatistik.

  • Parkhurst, D. L., Appelo, C. A. J., 1999. User’s guide to PHREEQC (version 2): A computer program for speciation, batch reaction, one dimensional transport, and inverse geochemical calculations. U.S. Geological Survey Water-Resources Investigations R

  • Rankama, K., Sahama, T. H. G., 1950. Geochemistry, The university of Chicago Pres, Chicago and London, 912 p

  • Sami, K., 1992. Recharge mechanisms and geochemical processes in a semi-arid sedimentary basin, Eastern Cape, South Africa. Journal of Hydrology (Amsterdam), 139, 27–48.

  • Scislewski, A., Zuddas, P., 2010. Estimation of reactive mineral surface area during water–rock interaction using fluid chemical data. Geochimica et Cosmochimica Acta, 74, 6996–7007.

  • Schoeller, H., 1965. Qualitative evaluation of groundwater resources. In Methods and techniques of groundwater investigations and development, UNESCO, 54–83.

  • Schoeller, H., 1967. Geochemistry of groundwateran international guide for research and practice (Chap.). UNESCO, 15, 1–18.

  • T.C. Resmi Gazete, 2004. Doğal mineralli sular hakkında yönetmelik, 25657.

  • Zhu, C., 2005. In situ feldspar dissolution rates in an aquifer. Geochimica et Cosmochimica Acta, 69 (6), 1435–1453.



  • Tahmasebzadeh Bastam, E , Gültekin, F . (2017). Değirmendere (Trabzon) Havzası Kaynak Sularında Su-Kayaç Etkileşimi . Jeoloji Mühendisliği Dergisi , 41 (1) , 59-78 . DOI: 10.24232/jmd.314585

  • Tahmasebzadeh Bastam, E , Gültekin, F . Değirmendere (Trabzon) Havzası Kaynak Sularında Su-Kayaç Etkileşimi. Jeoloji Mühendisliği Dergisi 41 (2017 ): 59-78

  • Groundwater Budget Discussions
    Muhterem Demiroğlu
    View as PDF

    ABSTRACT: The groundwater balance is based on the principle that the water entering and leaving any aquifer considered to be equal over a certain time interval, taking in to account the change in the storage. Groundwater, a renewable resource, is quite complicated in its balances, as the equilibrium conditions take place in very long periods. Surface waters are directly related to current recharge and discharge, while circulating groundwater, is in a different age and even in different climatic conditions in the system and complicate this relationship. Accountings of all the inflows, outflows, and including changes in the future, are called a groundwater budget. Sustainable groundwater management until the 1950s was made with the understanding that the groundwater discharge should not exceed the natural recharge and the permission for groundwater withdrawal is still given by State Hydraulic Works (DSİ) with the same approach. Since the 1980s, this approach has been declared legendary, and the calculation of water retained from discharge and recharge has come to an approach that ignores the recharge. The truth is an approach that takes in to account the decreased discharge and increased recharge in addition to recharge. For a sustainable groundwater development, the well locations should be selected with an approach that takes in to account the increased recharge and decreased discharge. The rate of groundwater removal should be defined by the long-term balance between recharge and discharge, and the capture rate from discharge must be defined by taking in to account the long-term environmental impacts. With this study, discussions were evaluated and the importance of the groundwater budget was emphasized in sustainable groundwater management

  • Aquifer

  • Recharge

  • Discharge

  • Groundwater Budget

  • Aeschback-Hertig, W., Gleeson, T., 2012. Regional strategies for the accelerating global problem of groundwater depletion. Nature Geoscience, 5 (12), 853-861.

  • Aksever (Seyman), F., 2012. Yeraltı suyu bilançosu nedir?, SDUGEO ISSN 1309-6656, 3/1, s. 37- 43. (Online: www.geo.sdu.edu.tr)

  • Alley, W. M., Reilly T. E., Franke O. L., 1999. Sustainability of ground-water resources. U.S. Geological Survey Circular 1186. Reston, Virginia: USGS. (on line:http://pubs.usgs.gov/ circ/circ1186)

  • Alley, W. M., Leake S. A., 2004. The journey from safe yield to sustainability. Ground Water, 42 (1), 12-16.

  • Bjerre, T. K., 2012. Bæredygtig vandindvinding – hvad er det? ATV vintermøde.

  • Bredehoeft, J. D., Papadopulos S. S., Cooper H. H., 1982. Groundwater: The water-budget myth. In Scientific Basis of Water-Resource Management. 51–57. Washington, DC: National Academy. (Online: http://aquadoc.typepad. com/waterwired/ files/water_budg

  • Bredehoeft, J. D., 1997. Safe yield and the water budget myth. Ground Water, 35 (6), 929

  • Bredehoeft, J. D., 2002. The water budget myth revisited: Why hydrogeologists model. Ground Water 40 (4), 340-5.

  • Bredehoeft J., Durbin T., 2009. Ground water development-the time to full capture problem. Groundwater, 47 (4), 506–514.

  • Demiroğlu, M., Orgun, Y., Yaltırak, C., 2011. Hydrogeology and hydrogeochemistry of Gunyuzu semi-arid basin. Environmental Earth Sciences, 64 (5), 1433-1443.

  • Demiroğlu, M., 2016. Classification of karst springs for flash-flood-prone areas in western Turkey. Natural Hazards and Earth System Sciences, 16, 1473-1486.

  • Devlin, J. F., Sophocleous, M., 2005. The persistence of the water budget myth and its relationship to sustainability. Hydrogeology Journal, 13 (4), 549-554.

  • Dumlu, O., 2005. Hidrojeolojide tartışmalı konular ve görüşler (1. Baskı). Maden Mühendisleri Odası, İstanbul, 124 s.

  • Eris, E., Wittenberg, H., 2015. Estimation of baseflow and water transfer in karst catchments in Mediterranean Turkey by nonlinear recession analysis. Journal of Hydrology, 530, 500-507.

  • Freeze, R. A., Cherry, J. A., 1979. Groundwater. Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 604 p.

  • Galloway, D., Jones D. R., Ingebritsen, S. E., 2001. Land subsidence in the United States. U.S. Geological Survey Circular 1182, Denver, Colorado, 175 p. (http://pubs.usgs.gov/circ/ circ1182).

  • Henriksen, H. J., Refsgaard, J. C., 2013. Sustainable groundwater abstraction, review report file:///E:/ Recharge%20ve%20emniyetli%20verim/ denmark%20report_2013_30.pdf)

  • Korzoun, V. I., Sokolov, A. A., Budyko, M. I.,Voskresensky, K. P., Kalinin, G. P., 1978.World water balance and water resources of the earth. Studies and Reports in Hydrology (UNESCO), no. 25 / United Nations Educational, Scientific and Cultural Orga

  • Lee C. H., 1915. The determination of safe yield of underground reservoirs of the closed basin type. Transactions of the American Society of Civil Engineers, 78, 148–151.

  • L’vovich, M. I., 1979. World water resources and their future. Translation of the original Russian edition (1974), American Geophysical Union, Washington, D.C

  • Lohman, S.W., Bennett, R. R., Brown, R. H., Cooper, H. H., Drescher, W. J., Ferris, J. G., Johnson, A. I.,. McGuiness, C. L., Piper, A. M., Rorabaugh, M. I., Stallman, R. W., Theis, C.V., 1972. Definitions of selected ground-water terms— Revisions an

  • Muller, D. A., Price, R. D., 1979. Ground-water availability in Texas, estimates and projections through 2030: Texas Department of Water Resources Report 238, 77 p.

  • Özgül, N., 2006. İstanbul Jeolojisi. İstanbul Büyükşehir Belediesi Planlama ve İmar Dairesi Başkanlığı Şehir Planlama Müdürlüğü, İstanbul Büyükşehir Nazım İmar Planı Analitik Etüdler İşi, 98 s, İstanbul, (Yayınlanmamış Proje).

  • Öztaş, T., 2008. İstanbul’un su politikası sempozyumu, Bildiriler Kitabı, İstanbul, 78-106.

  • Ponce, V. M., Pandey R. P., Ercan, S., 2000. Characterization of drought across climatic spectrum. Journal of Hydrologic Engineering, ASCE, 5/2 222-224.

  • Sophocleous, M,. 2000. From safe yield to sustainable development of water resources – The Kansas experience. Journal of Hydrology, 235 (1-2), 27- 43.

  • T.C. Resmi Gazete, 2014. Yüzeysel suları ve yeraltı sularının izlenmesine dair yönetmelik, 28910.

  • Tezcan, L., 1993. Karst akifer sistemlerinin trityum izotopu yardımıyla matematiksel modellemesi. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Doktora Tezi 121 s.

  • Tezcan, L., 2002. New isotopes and their uses in hydrological studies. 1. Symposium on the use of isotope techniques in national hydrology, Adana.

  • Theis, C. V., 1940. The source of water derived from wells—Essential factors controlling the response of an aquifer to development. Civil Engineering, 10, 277–280.

  • Todd, D. K. 1959. Groundwater hydrology. John Wily & Sons, Inc., New York, 336 p.

  • Tufan, S., 2007, Bakırköy Havzasının bilgisayar ortamında modellenmesi, İTÜ, Fen bilimleri Enstitüsü,Yüksek Lisans tezi, Maslak 90 s.

  • Voss, C. I., 2011. Editor’s message: Groundwater modeling fantasies —part 1, adrift in the details. Hydrogeology Journal, 19, 1281–128.

  • Yazıcıgil, H., 2006. Sürdürülebilir ve Emniyetli Akifer Verimleri. 59. Türkiye Jeoloji Kurultayı Bildiri Özleri Kitabı, 101-103.

  • Zhou, Y., 2009. A critical review of groundwater budget myth, safe yield and sustainability. Journal of Hydrology, 370, 207–213.



  • Demiroğlu, M . (2017). Yeraltı Suları Bütçesi Tartışmaları . Jeoloji Mühendisliği Dergisi , 41 (1) , 79-89 . DOI: 10.24232/jmd.315899

  • Demiroğlu, M . Yeraltı Suları Bütçesi Tartışmaları. Jeoloji Mühendisliği Dergisi 41 (2017 ): 79-89

  • ISSUE FULL FİLE
    View as PDF