Jeoloji Münendisliği Dergisi
Jeoloji Mühendisliği Dergisi

Jeoloji Mühendisliği Dergisi

2021 ARALIK Cilt 45 Sayı 2
COVER
View as PDF
COPYRİHT PAGE
View as PDF
CONTENTS
View as PDF
Investigation of the Reactivation Potential of a Landslide Area: a case study of Harmandalı–İzmir waste disposal site
Cem Kincal Tümay Kadakci Koca Mehmet Yalçin Koca
View as PDF

ABSTRACT:The aim of this study is to investigate the causes of the landslide occurred on 18 February 2013 at the NW–facing slope of the Harmandalı waste disposal site located in İzmir–Çiğli a n d the reactivation potential of the same circular slip surface. In the light of the geological a n d geotechnical studies resumed in September–2016; the reactivation potential has been evaluated. An embankment (a barrier) was built as a protection structure in front of the slopes of solid waste in 2010. It was determined from the readings in the inclinometer boreholes drilled right after the landslide that the sliding slowed down gradually after the initial landslide. A 64.5 mm displacement occurred in horizontal direction towards NW along the circular slip surface passing through the high plasticity clay band located under the embankment. This movement caused cracks on the walls of the administration buildings, disruption of the main connection road, a n d deformation such as buckling indicating the effect of compression within the embankment. The longitudinal cross-section showing the sliding mechanism has been prepared basedon the pressuremeter tests a n d the readings taken from the inclinometer boreholes drilled at different locations in March–2013 a n d September–2016. In addition, the engineering properties of high plasticity clays (CH), which are the weathering products of the andesitic tuffs that cause sliding, have been investigated.

  • Landslide

  • Inclinometer

  • Solid Waste

  • Settlement

  • Pressuremeter

  • High Plasticity Clay

  • Akbaş, B., Akdeniz, N., Aksay, A., Altun, İ.E., Balcı, V., Bilginer, E., Bilgiç, T., Duru, M., Ercan, T., Gedik, İ., Günay, Y., Güven, İ.H., Hakyemez, H.Y., Konak, N., Papak, İ., Pehlivan, Ş., Sevin, M., Şenel, M., Tarhan, N., Turhan, N., Türkecan, A., Ulu, Ü., Uğuz, M.F., Yurtsever, A. 2011. 1:1.250.000 ölçekli Türkiye Jeoloji Haritası. Maden Tetkik ve Arama Genel Müdürlüğü Yayını, Ankara-Türkiye.

  • ASTM D2435 – 04, 2013. Standard Test Method for One – Dimensional Consolidation Properties of Soils Using Incremental Loading. West Conshohocken, PA.

  • ASTM D3080–04, 2004. Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, West Conshohocken, PA

  • ASTM D4318 -10e1, 2010. Standard Test Method for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. West Conshohocken, PA.

  • ASTM D4719 – 00, 2000. Standard Test Method for Prebored Pressuremeter Testing in Soils. West Conshohocken, PA.

  • ASTM D6230 – 13, 2013. Standard Test Methos for Monitoring Ground Movement Using Probe Type Inclinometers. West Conshohocken, PA.

  • DEÜ, 2016. İzmir Büyükşehir Belediyesi Harmandalı düzenli katı atık depolama sahası sedde önü şev stabilite problemleri ve çöp yığınlarının stabilitesi için değerlendirme ve stabilite önlemleri projesi raporu, Jeoloji Müh. Bölümü, İzmir, 98 s (yayımlanmamış).

  • Erdoğan, B., 1990. İzmir-Ankara Zonu’nun İzmir ile Seferihisar arasındaki bölgede stratigrafik özellikleri ve tektonik evrimi. TPJP Bülteni, 2(1), 1-20.

  • Günay, G., Erkan, Y., Kocaefe, S., Yeşertener, C., Çağlan, D., Ekmekçi, M., Erduran, B., Akkuş, N., Varol, Z., 1990. İzmir-Harmandalı Çöp Depolama Alanı Zemin Araştırmaları Raporu. Hacettepe Üniversitesi Uluslararası Karst Su Kaynakları Uygulama ve Araştırma Merkezi, Ankara, 40 s (yayımlanmamış).

  • Holtz, R.D., Kovacs, D., 1981. An Intruduction to Geotechnical Engineering, Prentice Hall Inc., New Jersey, 736 p.

  • Kıncal, C., Kadakçı Koca, T., Koca, M.Y., 2017. Jeolojik bariyer olarak faylar, örnek çalışma: Çiğli Evka-5 heyelanı (İzmir). Jeoloji Mühendisliği Dergisi, 41, 1–30.

  • Koca, M. Y., 1999. İzmir yöresinde andezitlerin bozunma ürünü killerin oluşum şekilleri ve mühendislik özellikleri. Türkiye Jeoloji Bülteni, 42 (2), 39–49.

  • Koca, M.Y., Türk, N., 1994. Ayrışmanın andezitlerin petrografik, kimyasal ve jeomekanik etkisi. Türkiye Jeoloji Kurultayı, TMMOB Jeoloji Mühendisleri Odası, Ankara, 373–382.

  • Mikkelsen, P. E., 1996. Field instrumentation. Landslides: Investigation and Mitigation, Special Report (Editors: A. K. Turner and L. Schuster), Transportation Research Board, National Research Council, Washington, D. C., 278–318.



  • Kıncal, C. , Kadakci Koca, T. & Koca, M. Y. (2021). Heyelanlı Bir Alanın Yeniden Etkinleşme Potansiyelinin İncelenmesi: Harmandalı–İzmir Katı Atık Düzenli Depolama Alanı Örneği . Jeoloji Mühendisliği Dergisi , 45 (2) , 155-180 . DOI: 10.24232/jmd.1049511

  • Kıncal, C. , Kadakci Koca, T. , Koca, M. Y. Heyelanlı Bir Alanın Yeniden Etkinleşme Potansiyelinin İncelenmesi: Harmandalı–İzmir Katı Atık Düzenli Depolama Alanı Örneği. Jeoloji Mühendisliği Dergisi 45 (2021 ): 155-180

  • VS (30) Based Local Soil Conditions a n d Earthquake Damage Relationship Van-Abdurrahmangazi Example
    Zeynep Aykaç Müge Akin Ali Firat Çabalar
    View as PDF

    ABSTRACT:In order to minimize the disaster risk caused by earthquakes, not only province a n d district-based studies, but also studies covering small areas such as neighborhoods a n d villages should be carried out. In this study, Abdurrahmangazi Neighborhood, one of the districts that was severely damaged by two earthquakes that took place on 23 October a n d 09 November 2011 in the province of Van, was examined. The building conditions a n d the ground conditions in the study area where the quarter is located have been considered together. Shear wave velocity (Vs) was used to determine the dynamic behavior of soils. The borehole data obtained in the study area were evaluated a n d the shear wave velocities were determined by using 5 different empirical relations developed by some researchers for the relationship between SPT-N a n d Vs. Using these, VS(30) values were determined a n d ground classifications were made according to the National Earthquake Hazard Reduction Program (NEHRP-2000), EUROCODE-8, the Regulation on Buildings to be Built in Earthquake Zones (DBYBHY-2007). In addition, the new earthquake regulations is Turkey Earthquake Building Regulations (TBDY-2018) were also considered. The building damage conditions a n d the ground conditions in the area where the quarter is located were evaluated together. It was determined that the building damages after earthquakes were caused by structural deficiencies a n d building quality for this neighborhood, regardless of the ground conditions, a n d damage distributions were interpreted accordingly.

  • 2011 Van Earthquakes

  • Structural Damage

  • Ground Conditions

  • NEHRP-2000

  • EUROCODE-8

  • DBYBHY-2007

  • TBDY-2018



  • AFAD, 2011. Afet ve Acil Durum Yönetimi Başkanlığı (https://www.afad.gov.tr/afet-raporu- --van-depremi)

  • Akin, M. K., Kramer, S. L., Topal, T., 2011. Empirical correlations of shear wave velocity (Vs) and penetration resistance (SPT-N) for different soils in an earthquake-prone area (Erbaa-Turkey). Engineering Geology, 119(1-2), 1-17.

  • Akın, M. K., Akın, M., Akkaya, İ., Özvan, A., Üner, S., Selçuk, L., Tapan, M., 2015. Mikrobölgeleme çalışmasına altlık oluşturmak üzere Van Yüzüncü Yıl Üniversitesi kampüs zemininin dinamik özelliklerinin belirlenmesi. Jeoloji Mühendisliği Dergisi, 39(1), 1-26.

  • Aydan, Ö., Ulusay, R., Kumsar, H., Konagai, K., 2012. Site investigation and engineering evaluation of the Van earthquakes of October 23 and November 9, 2011. Japan Society of Civil Engineers, JSCE, 148.

  • Aykaç, Z., 2016. Evaluation of Relationship between Local Site Conditions and Earthquake Damage: After 2011 Van Earthquakes, Gaziantep Üniversitesi Fen Bilimleri Enstitüsü, Gaziantep, Yüksek Lisans Tezi, 75 s (yayımlandı)

  • Boore, D.M., 2004. Estimating Vs (30) from shallow velocity models (Depths <30 m). Bulletin of the Seismological Society of America, 94 (2), 591– 597.

  • BSSC, Building Seismic Safety Council, 2003. NEHRP recommended provisions for seismic regulations for new buildings and other structures (FEMA 450), Part1: Provisions, prepared by the Building Seismic Safety Council for the Federal Emergency Management Agency(Report FEMA 368), Washington, DC

  • DBYBHY-2007, 2007. Deprem Bölgelerinde Yapılacak Binalar Hakkında Yönetmelik, Bayındırlık ve İskan Bakanlığı, Ankara, Türkiye.

  • Hasançebi, N., Ulusay, R., 2007. Empirical correlations between shear wave velocity and penetration resistance for ground shaking assessments. Bulletin of Engineering Geology and the Environment, 66(2), 203–213.

  • İyisan, R., 1996. Correlations between shear wave velocity and in-situ penetration test results, Chamber of Civil Engineers of Turkey. Teknik Dergi 7, 1187–1199

  • Kızılkanat, A., Koçak, A., Çoşar, A., Güney, D., Selçuk, M. E., Yıldırım, M., 2011. Yıldız Teknik Üniversitesi 23 Ekim 2011 Van Depremi Teknik İnceleme Raporu (http://www.ek.yildiz.edu.tr// images/images/yayinlar/vandeprem.pdf).

  • KOERI, 2012. Son Depremler, Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü, Boğaziçi Üniversitesi.

  • Köse, O., 2004. Van Gölü yakın çevresinin coğrafyası. Van Gölü Havzası Jeotraversleri Çalıştay Kitapçığı, DAJEO-2004, 1-6.

  • Köse, O., 2005. Van Gölü’nün Oluşumu, Gelişimi, Doğal Çevre Gelişimindeki Yeri. In: Köse, O., Gökdere A.F., Tolluoğlu, D. (eds). Program Kitapçığı, 12.Ulusal Kil Sempozyumu-KİL 2005, 05-09 Eylül 2005, Van. pp. 33-48.

  • Ohsaki, Y., Iwasaki, R., 1973. On dynamic shear moduli and Poisson’s ratios of soil deposits. Soils and Foundations, 13(4), 61-73.

  • Ohta, Y., Goto, N., 1978. Empirical shear wave velocity equations in terms of characteristic soil indexes. Earthquake Engineering and Structural Dynamics, 6(2), 167-187.

  • Selçuk A.S., Üner S., 2020. 25 Haziran 2020 Saray (Van) Depremi Özet Raporu, Van Yüzüncü Yıl Üniversitesi Afet Yönetimi ve Deprem Uygulama ve Araştırma Merkezi (https://www.yyu.edu.tr/ images/files/Saray(Van)_depremi.pdf).

  • Şengör, A. M. C., Kidd, W. S. F., 1979. Post-collisional tectonics of the Turkish-Iranian plateau and a comparison with Tibet. Tectonophysics, 55(3-4), 361-376.

  • Şengör, A. C., Yilmaz, Y., 1981. Tethyan evolution of Turkey: a plate tectonic approach. Tectonophysics, 75(3-4), 181-241.

  • TBDY, 2018. Türkiye Bina Deprem Yönetmeliği, Afet ve Acil Durum Yönetimi Başkanlığı, Ankara, Türkiye, Mart 2018.

  • TS EN 1998-1 Standartı, 2003. Eurocode 8: Depreme dayanıklı yapıların projelendirilmesi, Bölüm 1: Genel kurallar, Sismik etkiler ve binalar için kurallar.

  • URL-1: https://www.nufusu.com/tusba-van- mahalleleri-nufusu (Erişim tarihi: 31 Mayıs 2021).

  • Aykaç, Z. , Akın, M. & Çabalar, A. F. (2021). VS (30) Tabanlı Yerel Zemin Koşulları ve Deprem Hasar İlişkisi: Van-Abdurrahmangazi Örneği . Jeoloji Mühendisliği Dergisi , 45 (2) , 181-198 . DOI: 10.24232/jmd.1049536

  • Aykaç, Z. , Akın, M. , Çabalar, A. F. VS (30) Tabanlı Yerel Zemin Koşulları ve Deprem Hasar İlişkisi: Van-Abdurrahmangazi Örneği. Jeoloji Mühendisliği Dergisi 45 (2021 ): 181-198

  • Investigation of Lineaments in the Mid-Black Arc Region Using Bouguer Gravity Data
    Abdurrahman Yasir Parlak Mustafa Ali Elmas
    View as PDF

    ABSTRACT:The gravity data used in this study were taken from the Earth Gravity Model (EGM08) to investigate the crustal structure in the mid-Black arc region. In this study, geological structure boundaries that offer differences in density were tried to determine in the mid-Black arc region. For this purpose, the possible geological structure limits at the basement levels were especially focused on. For this reason, horizontal gradient a n d tilt angle techniques were practiced to find possible geological structure limits using first vertical derivative data of the regional gravity data of the region. The soft-hard sediment, basement, Conrad a n d Moho interfaces have been determined using the radial mean amplitude spectrum of Bouguer data of study region. The topographies of these interfaces were also presented utilizing the Parker-Oldenburg algorithm. Depth values found by inversion calculations for soft-hard sediment, basement, Conrad a n d Moho interface topographies are changed as 0.7-3.5, 2.1-7.4, 9.1-14.2, a n d 35.1- 42.5 km, respectively. The linearities determined in the study were matched against to substantial faults of region. It has been observed that there is a qualitative relationship between the faults, ore deposit a n d earthquake epicenters in the region. The results of this practice were based on studies such as exploring the ore deposits a n d investigating the risks of earthquakes in the future.

  • First Vertical Derivative

  • Mid-Black Arc Region

  • Horizontal Gradient

  • Tilt Angle

  • Lineament



  • Akın, U., Şerifoğlu, B.İ., Duru, M., 2011. The use of tilt angle in gravity and magnetic methods. Maden Tetkik ve Arama Dergisi, 143(143), 1-12.

  • Altınoğlu, F.F., Sarı, M., Aydın, A., 2015. Detection of Lineaments in Denizli Basin of Western Anatolia Region Using Bouguer Gravity Data. Pure and Applied Geophysics, 172, 415–425.

  • Angus, D.A., David, C., Wilson, E., Sandvol, E., 2006. Lithospheric structure of the Arabian and Eurasian collision zone in eastern Turkey from S-wave receiver functions. Geophysical Journal International, 166, 1335-1346.

  • Arısoy, M.Ö., and Dikmen, Ü., 2011. Potensoft: MATLAB-based Software for potential field data processing, modelling and mapping. Computer and Geosciences, 37, 935–942.

  • Barazangi, M., Sandvol, E., Seber, D., 2006. Structure and tectonic evolution of the Anatolian plateau in eastern Turkey. In: Dilek, Y., Pavlides, S. (Eds.), Post-collisional Tectonics and Magmatism in the Mediterranean Region and Asia. Geological Society of America Bulletin, 409, 463-474.

  • Bektaş, O., Şen, C., Atıcı, Y., Köprübaşı, N., 1999. Migration of the Upper Cretaceous subduction- related volcanism toward the back-arc basin of the eastern Pontide magmatic arc (NE Turkey). Geological Journal, 34, 95–106.

  • Bhattacharyya, B.K., 1967. Some general properties of potential fields in space and frequency domain; a review. Geoexploration, 5, 127–143.

  • Cordell, L., Grauch, V.J.S., 1985. Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico, (Ed. Hinze, W. J.) The utility of regional gravity and magnetic anomaly maps. Society of Exploration Geophysicists, 181–197.

  • Çakır, Ö., Erduran, M., Çınar, H., Yılmaztürk, A., 2000. Forward modeling receiver functions for crustal structure beneath station TBZ (Trabzon, Turkey). Geophysical Journal International, 140, 341-356.

  • Çakır, Ö., Erduran, M., 2004. Constraining crustal and uppermost structure beneath station TBZ (Trabzon, Turkey) by receiver function and dispersion analyses. Geophysical Journal International, 158, 955-971.

  • Dilek, Y., Imamverdiyev, N., Altunkaynak, Ş., 2010. Geochemistry and tectonics of Cenozoic volcanism in the Lesser Caucasus (Azerbaijan) and the peri-Arabian region: collision-induced mantle dynamics and its magmatic fingerprint. International Geology Review, 52 (4–6), 536– 578.

  • Dewey, J.F., Pitman, W.C., Ryan, W.B.F., Bonnin, J., 1973. Plate tectonics and evolution of the Alpine system. Geological Society of America Bulletin, 84, 3137–3180.

  • Dogru, F., Pamukcu, O., Ozsoz, I., 2017. Application of tilt angle method to the Bouguer gravity data of Western Anatolia. Maden Tetkik ve Arama Dergisi, 155(155), 213-222.

  • Elmas, A., 2018. Kıbrıs adasındaki yapısal süreksizliklerin EGM08 gravite verileri kullanılarak belirlenmesi. Jeoloji Mühendisliği Dergisi, 42, 17-32.

  • Elmas, A., 2019. Edge position detection and depth estimation from gravity data with application to mineral exploration. Carbonates and Evaporites, 34 (1), 189-196.

  • Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, Ş., Şaroğlu, F., 2013. Açıklamalı 1/1.250.000 Ölçekli Türkiye Diri Fay Haritası, Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayın Serisi-30. Ankara- Türkiye.

  • Eyuboglu, Y., Bektaş, O., Pul, D., 2007. Mid- Cretaceous olistostromal ophiolitic melange developed in the back-arc basin of the eastern Pontide magmatic arc (NE Turkey). International Geology Review, 49 (12), 1103–1126.

  • Eyuboglu, Y., Dudas, F.O, Santosh, M., Zhu, D.C., Yi, K., Chatterjee, N., Akaryali, E., Liu, Z., 2016. Cenozoic forearc gabbros from the northern zone of the Eastern Pontides Orogenic Belt, NE Turkey: Implications for slab window magmatism and convergent margin tectonics. Gondwana Research, 33, 160-190.

  • Eyuboglu, Y., Santosh, M., Dudas, F.O., Chung, S.L., Akaryali, E., 2011. Migrating magmatism in a continental arc: Geodynamics of the Eastern Mediterranean revisited. Journal of Geodynamics, 52, 2-15.

  • Eyuboglu, Y., 2010. Late Cretaceous high-K volcanism in the eastern Pontides orogenic belt, and its implications for the geodynamic evolution of NE Turkey. International Geology Review, 52 (2–3), 142–186.

  • Gomez-Ortiz, D., Agarwal, B.N.P., 2005. 3DINVER. M: A MATLAB program to invert the gravity anomaly over a 3-D horizontal density interface by Parker–Oldenburg’s algorithm. Computer Geosciences, 31, 513–520.

  • Karner, G. D., Watts, A. B., 1983. Gravity anomalies and flexure of the lithosphere at mountain ranges. Journal of Geophysical Research: Solid Earth, 88(B12), 10449-10477.

  • Maden, N., Gelişli, K., Bektaş, O., Eyuboglu, Y., 2009. Two-and-three-dimensional crust topography of the Eastern Pontides (NE Turkey). Turkish Journal of Earth Sciences, 18, 225-238.

  • Maden, N., 2013. Geothermal structure of the eastern Black Sea basin and the eastern Pontides orogenic belt: Implications for subduction polarity of Tethys oceanic lithosphere. Geoscience Frontiers, 4, 389–398.

  • Miller, H.G., Singh, V., 1994. Potential field tilt -a new concept for location of potential field sources. Journal of Applied Geophysics, 32, 213–217.

  • Mindevalli, Ö.Y., Mitchell, B.J., 1989. Crustal structure and possible anisotropy in Turkey from seismic surface wave dispersion. Geophysical Journal International, 98, 93-106.

  • Nabighian, M.N., 1972. The analytic signal of two dimensional magnetic bodies with polygonal cross section: Its properties and use for automated anomaly interpretation. Geophysics, 37, 507–517.

  • Oldenburg, D.W., 1974. The inversion and interpretation of gravity anomalies. Geophysics, 39, 526–536.

  • Oruç, B., Keskinsezer, A., 2007. Normalize tam Gradyent Yöntemi ile petrol sahalarındaki Manyetik Temel Kaya Ondülasyonunun Modellenmesi, IPETGAS.

  • Oruç, B., Sertçelik, İ., Kafadar, Ö., Selim, H.H., 2013. Structural interpretation of the Erzurum Basin, Eastern Turkey, using curvature gravity gradient tensor and gravity inversion of basement relief. Journal of Applied Geophysics, 88,105–113.

  • Oruç, B., 2010. Edge detection and depth estimation using a tilt angle map from gravity gradient data of the Kozaklı-Central Anatolia Region, Turkey. Pure and Applied Geophysics, 168.10, 1769- 1780.

  • Pamukçu, O.A., Akçığ, Z., Demirbaş, Ş., Zor, E., 2007. Investigation of crustal thickness in eastern Anatolia using gravity, magnetic and topographic data. Pure and Applied Geophysics, 164, 2345-2358.

  • Parker, R.L., 1973. The rapid calculation of potential anomalies. Geophysical Journal of the Royal Astronomical Society, 31, 447–455.

  • Pavlis, N.K., Holmes, S.A., Kenyon, S.C., Factor. J.K., 2008. An Earth Gravitational Model to Degree 2160: EGM2008. EGU General Assembly 2008, Vienna, Austria, April 13–18, 2008. http://earth-info.nga.mil/GandG/wgs84/ gravitymod/egm2008, (Accessed 8 Aug 2020).

  • Rice, S.P., Roberson, A.H.F., Ustaömer, T., İnan, T., Taslı, K., 2009. Late Cretaceous–Early Eocene tectonic development of the Tethyan Suture Zone in the Erzincan area, eastern Pontides, Turkey. Geological Magazine, 146 (4), 567–590.

  • Spector, A., Grant F.S., 1970. Statistical models for interpreting aeromagnetic data. Geophysics, 35, 293–302.

  • URL-1, 2020. http://www.isc.ac.uk/iscbulletin/. (Accessed 8 Aug 2020).

  • URL-2, 2020. http://www.mta.gov.tr/v3.0/bolgeler/ trabzon. (Accessed 8 Aug 2020).

  • U.S. Geological Survey, Digital Elevation Models GTOPO30, Virginia, 1998. http://webmap.ornl. gov/wcsdown/wcsdown.jsp?dg_id=10003_1, (Accessed 8 Aug 2020).

  • Parlak, A. Y. & Elmas, A. (2021). Investigation of lineaments in the mid-Black arc region using Bouguer gravity data . Jeoloji Mühendisliği Dergisi , 45 (2) , 199-212 . DOI: 10.24232/jmd.1049622

  • Parlak, A. Y. , Elmas, A. Investigation of lineaments in the mid-Black arc region using Bouguer gravity data. Jeoloji Mühendisliği Dergisi 45 (2021 ): 199-212

  • Inorganic Quality Study of Groundwater a n d Agricultural Soils on Nalbantlar Plain (Söke, Aydın): Arsenic a n d Uranium Hazard
    Anil Küçüksümbül Gültekin Tarcan
    View as PDF

    ABSTRACT: This study includes the investigation of the quality of agricultural soils a n d groundwater in the plains located in the east of Söke Plain in Aydın province in Western Anatolia a n d the detection of its effect on human health. The rocks belonging to the Menderes Massif form the basis of the geological structure in the study area a n d surrounding.Metamorphic rocks composed of gneiss, granitoid a n d rocks outcropping in the region are essential parameters determining the water a n d soils’ chemistry. The total carcinogenic a n d non-carcinogenic health risk values of waters were calculated for dissolved As, B, Ba, Cd, Cr, Cu, Ni, Pb, U a n d Zn. Anthropogenic a n d geogenic inputs that cause groundwater contamination were distinguished. Also, major ions (Ca, Mg, K, Na, Cl, SO4, HCO3) a n d many trace elements (Ag, Al, Co, Fe, Ge, Mn, Pd, Rb, Se, Si, Sr, Ta, Tl a n d V) were analyzed. Collected soil samples were analyzed for As, Cd, Co, Cr, Cu, Hg, Ni, Pb, Sb, U a n d Zn. The elemental enrichment factors of Söke Plain soils were calculated a n d compared with the background values. Carcinogenic a n d non-carcinogenic total health risks, which is occurred by inhalation, ingestion a n d dermal contact of soil, were calculated. Some groundwater contains above-average dissolved uranium a n d arsenic, which are determined to originate from the gneiss unit.In the plain, the abundance of dissolved uranium increases as the depth of groundwater wells rises. Groundwater containing uranium 3 times the limit value (30 µg/L) is consumed for drinking purposes in the Karacahayıt region.Groundwater containing arsenic above the allowed limit in Yeşilköy, Karacahayıt a n d Kisir regions (23.1, 24.1 a n d 61.1 µg/L, respectively) is consumed for drinking purposes. The highest cancer risk for As in groundwater consumed for drinking was found to be 2.07E-03 in Kisir. The highest cancer risk for As in agricultural soil was found to be 2.38E-04 in Sayrakçı. The local people health status who work on soil with health risks a n d consume carcinogenic waters should be investigated, a n d suggestions for the solution should be implemented.

  • Human Health Risk Assessment

  • Water Chemistry

  • Water Contamination

  • Cancer

  • Soil Contamination

  • Groundwater



  • Akinci, G., Gök, G., Bilgin, M., 2019. Heavy metals bioconcentration and translocation in plants: the influence of a thermal power site. Environmental Engineering and Management Journal, 18(8), 1625-1637.

  • Bourennane, H., Douay, F., Sterckeman, T., Villanneau, E., Ciesielski, H., King, D., Baize, D., 2010. Mapping of anthropogenic trace elements inputs in agricultural topsoil from Northern France using enrichment factors. Geoderma, 157(3-4), 165-174.

  • CSQG (Çevre ve İnsan Sağlığının Korunması için Kanada Toprak Kalitesi Yönergeleri), 2010. Tarımsal toprak kalitesi sınır değerleri kılavuzu. http://st-ts.ccme.ca/en/index.html (14.02.2021).

  • Çevik, F., Göksu, M. Z. L., Derici, O. B., Fındık, Ö., 2009. An assessment of metal pollution in surface sediments of Seyhan dam by using enrichment factor, geoaccumulation index and statistical analyses. Environmental Monitoring and Assessment, 152(1), 309-317.

  • EU (Avrupa Birliği), 2014. Drinking Water Regulations, S.I. No. 122 of 2014.

  • FAO (Birleşmiş Milletler Gıda ve Tarım Örgütü), 2007. Çevre Yönetimi (Toprak Kalitesi Standartları) Düzenlemeleri. http://extwprlegs1. fao.org/docs/pdf/tan151538.pdf (14.02.2021).

  • Ferreira-Baptista, L., De Miguel, E., 2005. Geochemistry and risk assessment of street dust in Luanda, Angola: a tropical urban environment. Atmospheric environment, 39(25), 4501-4512.

  • Gibbs, R. J., 1970. Mechanisms controlling world water chemistry. Science, 170 (3962), 1088- 1090.

  • Goldschmidt, V. M., 1937. The principles of distribution of chemical elements in minerals and rocks. The seventh Hugo Müller Lecture, delivered before the Chemical Society on March 17th, 1937. Journal of the Chemical Society (Resumed), 655-673.

  • Güney, A., Akgül, E., 2019. Aydın’da Madencilik: Potansiyeli ve Değerlendirilmesi. TMMOB Maden Mühendisleri Odası, Ankara, 277.

  • Kazancı, N., Gürbüz, A., Boyraz, S., 2011. Geology and evolution of the river Büyük Menderes, western Anatolia, Turkey. Geol. Bull. Turkey, 54, 25-56.

  • Küçüksümbül, A., 2018. Söke Ovası ve Bafa Gölü çevresinin hidrojeolojik incelenmesi: Jeotermal Potansiyeli, Toprak ve Su Kirliliği. Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü. Yüksek Lisans Tezi.

  • Küçüksümbül, A., Akar A. T., Tarcan, G., 2020. Bafa Gölü’nün hidrokimyasal ve hidrojeolojik ı̇ ncelenmesi: sürdürülebilir su kaynak yönetimi. Jeoloji Mühendisliği Dergisi, 44(2), 197-224. doi.org/10.24232/jmd.826954.

  • Küçüksümbül, A., Akar A. T., Tarcan, G., 2022. Source, degree and potential health risk of metal(loid)s contamination on the water and soil in the Söke Basin, Western Anatolia, Turkey. Environmental Monitoring and Assessment, 194, 6. doi.org/10.1007/s10661-021-09670-2.

  • Lim, H. S., Lee, J. S., Chon, H. T., Sager, M., 2008. Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. Journal of Geochemical Exploration, 96(2-3), 223-230.

  • Luo, X. S., Ding, J., Xu, B., Wang, Y. J., Li, H. B., Yu, S., 2021. Incorporating bioaccessibility into human health risk assessments of heavy metals in urban park soils. Science of the Total Environment, 424, 88-96.

  • McLennan, S. M., 2001. Relationships between the trace element composition of sedimentary rocks and upper continental crust. Geochemistry, Geophysics, Geosystems, 2(4).

  • MEF (Finlandiya Çevre Bakanlığı), 2007. Toprak Kirliliği ve İyileştirme İhtiyaçlarının Değerlendirilmesine Dair Hükümet Kararı. https://www.finlex.fi/en/laki/kaannokset/2007/ en20070214.pdf (14.02.2021).

  • MTA (Maden Tektik ve Arama Genel Müdürlüğü), 2002. 1:500000 Ölçekli Aydın, Denizli, Muğla Bölgesi Jeoloji Haritası. Ankara. Türkiye.

  • Öztunalı, Ö., 1965. Demirtepe-Çavdar, Osmankuyu- Kisir (Çine Masifi) Uranyum Zuhurlarının Petrografileri ve Oluşumları. Maden Tetkik ve Arama Dergisi

  • Peña-Fernández, A., González-Muñoz, M. J., Lobo-Bedmar, M. C., 2014. Establishing the importance of human health risk assessment for metals and metalloids in urban environments. Environment International, 72, 176-185.

  • Prasad, S., Saluja, R., Joshi, V., Garg, J. K., 2020. Heavy metal pollution in surface water of the Upper Ganga River, India: human health risk assessment. Environmental Monitoring and Assessment, 192(11), 1-15.

  • RAIS (Risk Değerlendirme Bilgi Sistemi), 2021a. https://rais.ornl.gov/tutorials/toxvals.html#1 (14.02.2021).

  • RAIS (Risk Değerlendirme Bilgi Sistemi), 2021b. https://rais.ornl.gov/cgi-bin/tools/TOX_ search?select=chemtox (14.02.2021).

  • Rudnick, R. L., Gao, S., Holland, H. D., Turekian, K. K., 2003. Composition of the continental crust. The Crust, 3, 1-64.

  • Saha, N., Rahman, M. S., Ahmed, M. B., Zhou, J. L., Ngo, H. H., Guo, W., 2017. Industrial metal pollution in water and probabilistic assessment of human health risk. Journal of Environmental Management, 185, 70-78.

  • Sakan, S., Popović, A., Anđelković, I., Đorđević, D., 2016. Aquatic sediments pollution estimate using the metal fractionation, secondary phase enrichment factor calculation, and used statistical methods. Environmental Geochemistry and Health, 38(3), 855-867.

  • Shil, S., Singh, U. K., 2019. Health risk assessment and spatial variations of dissolved heavy metals and metalloids in a tropical river basin system. Ecological Indicators, 106, 105455.

  • Sutherland, R. A., 2000. Bed sediment-associated trace metals in an urban stream, Oahu, Hawaii. Environmental Geology, 39(6), 611-627.

  • TS (Türk Standardları). (2010.08.06). Toprak Kirliliğinin Kontrolü ve Noktasal Kaynaklı Kirlenmiş Sahalara Dair Yönetmelik. Resmi Gazete (27605). https://www.resmigazete.gov.tr/ eskiler/2010/06/20100608-3.htm ( 14.02.2021).

  • TS (Türk Standardları). (2013.03.07). İnsani Tüketim Amaçlı Sular Hakkında Yönetmelik. Resmi Gazete (28580). http://www.resmigazete.gov.tr/ eskiler/2013/03/20130307-7.htm (14.02.2021).

  • Turekian, K. K., Wedepohl, K. H., 1961. Distribution of the elements in some major units of the earth’s crust. Geological Society of America Bulletin, 72(2), 175-192.

  • US EPA (Amerika Birleşik Devletleri Çevre Koruma Ajansı), 1992. Definitions and General Principles for Exposure Assessment. Guidelines for exposure assessment. Washington, DC, USA: Office of Pesticide Programs.

  • US EPA (Amerika Birleşik Devletleri Çevre Koruma Ajansı), 1999. Guidance for Performing Aggregate Exposure and Risk Assessments. Washington, DC, USA: Office of Pesticide Programs.

  • US EPA (Amerika Birleşik Devletleri Çevre Koruma Ajansı), 2004. Risk assessment guidance for superfund. Volume I: Human health evaluation manual (Part E, Supplemental Guidance for Dermal Risk Assessment). EPA/540/R/99/005. Washington, DC.

  • US EPA (Amerika Birleşik Devletleri Çevre Koruma Ajansı), 2018. Drinking Water Standards and Health Advisories Tables. Washington, DC, USA: Office of Water.

  • US EPA IRIS (Amerika Birleşik Devletleri Çevre Koruma Ajansı’nın Entegre Risk Bilgi Sistemi), 2021. https://cfpub.epa.gov/ncea/iris_drafts/ atoz.cfm (14.02.2021).

  • Wedepohl, K. H., 1995. The composition of the continental crust. Geochimica et Cosmochimica Acta, 59(7), 1217-1232.

  • WHO (Dünya Sağlık Örgütü), 2017. Guidelines for drinking-water quality. Genova, Schweiz. 1-542.

  • Wongsasuluk, P., Chotpantarat, S., Siriwong, W., Robson, M., 2014. Heavy metal contamination and human health risk assessment in drinking water from shallow groundwater wells in an agricultural area in Ubon Ratchathani province, Thailand. Environmental Geochemistry and Health, 36(1), 169-182.

  • Zhang, J., & Liu, C. L., 2002. Riverine composition and estuarine geochemistry of particulate metals in China—weathering features, anthropogenic impact and chemical fluxes. Estuarine, Coastal and Shelf Science, 54(6), 1051-1070.

  • Zhao, D., Wan, S., Yu, Z., Huang, J., 2015. Distribution, enrichment and sources of heavy metals in surface sediments of Hainan Island rivers, China. Environmental Earth Sciences, 74(6), 5097-5110.

  • Küçüksümbül, A. & Tarcan, G. (2021). Nalbantlar Ovası (Söke, Aydın) Yeraltı Suyu ve Tarım Toprakları İnorganik Kalite Araştırması: Arsenik ve Uranyum Tehlikesi . Jeoloji Mühendisliği Dergisi , 45 (2) , 213-234 . DOI: 10.24232/jmd.1049636

  • Küçüksümbül, A. , Tarcan, G. Nalbantlar Ovası (Söke, Aydın) Yeraltı Suyu ve Tarım Toprakları İnorganik Kalite Araştırması: Arsenik ve Uranyum Tehlikesi. Jeoloji Mühendisliği Dergisi 45 (2021 ): 213-234

  • An Approach to Determination of Curing Time in Stabilization of Swelling Soils with Lime Column
    Derya Toksöz
    View as PDF

    ABSTRACT:Swelling soils which are problematic in terms of geotechnics should be determined in preliminary works a n d appropriate cautions should be taken. The most frequently used method among the cautions to be taken is to stabilize soil with in-situ operations. One of the most widely used stabilization methods is lime column technique. Before stabilizing a swelling soil with lime column technique, it is investigated if the lime column works for the soil. This is done by creating a small-scale model of the land in the laboratory. The created models are left for a specific curing time to ensure the stabilization. Determination of the appropriate curing time is important for the performance of lime column. The aim of this study is to determine the curing time for the laboratory models, which are designed for investigating lime column performance, with an easy a n d economic method. The method is based on measuring the ion migration distance by using phenolphthalein which is an acid base indicator. In the scope of the study, a small scale laboratory model was designed for a Na-bentonite clay. The ion migration distance from the lime column in the model was measured by using phenolphthalein in various curing times a n d the measurements were stopped when the ion migration distance reached a constant value. The time in which the ion migration distance started not to change was taken as the cure time. The results obtained in this study showed that phenolphthalein can be a useful tool for determination of curing time in the laboratory applications of lime column.

  • Swelling Soil

  • Lime Column

  • Ion Migration

  • Laboratory Model

  • Curing Time



  • Abiodun, A.A., Nalbantoglu, Z., 2015. Lime pile techniques for the improvement of clay soils. Canadian Geotechnical Journal, 52 (6), 760-768.

  • Bell, F.G., 1996. Lime stabilization of clay minerals and soils. Engineering Geology, 42, 223-237.

  • Dölen, E., 2002. Analitik Kimyaya Giriş Sulu Çözeltilerde Denge. Marmara Üniversitesi, Eczacılık Fakültesi Yayınları, İstanbul.

  • Glendinning, S., Rogers, C.D.F., 1996. Deep Stabilisation Using Lime, In: Rogers, C.D.F., Glendinning, S and Dixon, N. (Editors). Lime Stabilisation: Proceedings Seminar on Lime Stabilisation, Loughborough University, Thomas Telford, London, pp. 127-138.

  • Jones, D.E., Holtz, W.G., 1973. Expansive soils – the hidden disaster. ASCE, Civil Engineering, 43, 87-89.

  • Jones, D.E., Jones, K.A., 1987. Treating expansive soils. Civil Engineering, 57 (8), 62–65.

  • Reunkrairergsa, T., Pimsarn, T., 1982. Deep hole lime stabilisation for unstable clay shale embankment. Proceedings of the 7th SE Asia Geotechnics Conference, Hong Kong, 631-645.

  • Rogers, C.D.F., Bruce, C.J., 1991. Slope Stability Engineering. Thomas Telford, London, p 443.

  • Rogers, C.D.F., Glendining, S., 1994. Deep Slope Stabilisation Using Lime. Transportation Research Record 1440, Transportation Research Board, National Research Council, Washington D.C., USA, 63-70.

  • Rogers, C.D.F., Glendining, S., 1997. Improvement of clay soils in situ using lime piles in the UK. Engineering Geology, 47, 243–257.

  • Skempton, A.W., 1953. The colloidal activity of clays. In: Proceedings of the third international conference on soil mechanics and foundation engineering. Zurich, Switzerland, ICOSOMEF, pp 57-61.

  • Toksoz, D., Yılmaz, I., 2019a. Influence of swelling clay content on ion migration and column performance in lime column treated soils. Geotechnical and Geological Engineering, 38(1), 813-832.

  • Toksoz D., Yılmaz, I., 2019b. A study on the performance of lime column technique for treatment of a Na-bentonite clay. IOP Conference Series: Earth and Environmental Science, 221 (012018).

  • Tonoz, M.C., Gökçeoğlu, C., Ulusay, R., 2003. A laboratory – scale experimental investigation on the performance of lime columns in expensive Ankara (Turkey) Clay. Bulletin of the Engineering Geology and the Environment, 62, 91 –106.

  • Tüdeş, E., 1996. Zeminlerin Kireç ve Çimento Katkısı ile Stabilizasyonu. Yüksek Lisans Tezi, Karadeniz Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Trabzon.

  • Van Impe, W.F., 1989. Soil Improvement Techniques and Their Evolution. A.A. Balkema Rotterdam Brookfield.

  • Yılmaz, I., 2007. Mühendislik Jeolojisi – İlkeler ve Temel Kavramlar, Teknik Yayınevi, Ankara.

  • Toksöz Hozatlıoğlu, D. (2021). Şişen Zeminlerin Kireç Kolonu İle İyileştirilmesinde Kür Süresinin Belirlenmesine Yönelik Bir Yaklaşım . Jeoloji Mühendisliği Dergisi , 45 (2) , 235-244 . DOI: 10.24232/jmd.1049652

  • Toksöz Hozatlıoğlu, D. Şişen Zeminlerin Kireç Kolonu İle İyileştirilmesinde Kür Süresinin Belirlenmesine Yönelik Bir Yaklaşım. Jeoloji Mühendisliği Dergisi 45 (2021 ): 235-244

  • Ion Migration Mechanism in Lime Column Applications in Swelling Soils
    Derya Toksöz Işik Yilmaz
    View as PDF

    ABSTRACT: Stabilisation of swelling soils by using lime column technique has been investigated for many years a n d there have been numerous studies on this topic in the literature. The common view in these studies is that stabilisation mechanism of lime column technique is based on physico-chemical reactions occurred as a result of migration of Ca2+ a n d OH- ions from lime column to the surrounding soil. In spite of this, ion migration which is the basis of stabilisation, a n d the factors affecting ion migration have been mentioned in very few studies. This study is a review type study a n d the purpose of the study is to provide a better understanding of the mechanism of ion migration in lime column applications. In the scope of the study, firstly, movement of ions in soil medium in general is explained. Afterwards, ion migration mechanism that occurs during the stabilisation of swelling soils with lime column technique, a n d finally the factors affecting ion migration mechanism are explained by referring to the studies on this topic. In the result of the study, it was seen that in the literature there is no a single a n d precise mechanism that explain ion migration. However, it can be said that the migration of ions in to the soil is a function of ion diffusion a n d mass transport depending on water flow.

  • Swelling Soils

  • Lime Column

  • Stabilisation

  • Ion Migration



  • Adar, E., 2013. Katı Atık Düzenli Depo Sahalarında Alternatif Taban Sistemlerinden Sızıntı Suyu Kirleticilerinin Geçişinin İncelenmesi. Yüksek Lisans Tezi, Yıldız Teknik Üniversitesi, Fen Bilimleri Enstitüsü, İstanbul.

  • Barker, J.E., Rogers, C.D.F., Boardman, D.I., 2006. Physio-chemical changes in clay caused by ion migration from lime piles. Journal of Materials in Civil Engineering, 18, 182–189.

  • Barker, J.E., Rogers, C.D.F., Boardman, D.I., 2007. Ion Migration Associated with Lime Piles: A Review. Proceedings of the ICE - Ground Improvement, 11(2):87-98.

  • Beetham, P., Dijkstra, T.A., Dixon, N., 2014. Lime Diffusion and Implications for Lime Stabilization Practice. Compendium of papers from the Transportation Research Board 93rd annual meeting, Washington DC. TRB, USA.

  • Bell, F.G., 1996. Lime stabilization of clay minerals and soils. Engineering Geology, 42, 223-237.

  • Brandl, H., 1981. Stabilization of slippage-prone slopes by lime piles. Proceedings 8th International Conference on Soil Mechanics and Foundation Engineering, Moscow, USSR, pp 300-301.

  • Davidson, L.K., Demeril, T., Handy, R.L., 1965. Soil pulverization and lime migration in soil lime stabilization. Highways Research Board Record, 92, 103-126.

  • Diamond, S., Kinter, E.B., 1966. Adsorption of calcium hydroxide by montmorillonite and kaolinite. Journal of Colloid and İnterface Science, 22(3), 240-249.

  • Edil, T.B., 2003. A review of aqueous-phase VOC transport in modern landfill liners. Waste Management, 23, 561-571.

  • Fohs, D.G., Kinter, C.B., 1972. Migration of lime in compacted soil. Public Roads, 37 (1), 1-8.

  • Handy, R.L., Williams, N.W., 1967. Chemical stabilization of an active landslide. Civil Engineering, 37 (8),62-65.

  • Jungnickel C, Smith D., Fityus S., 2004. Coupled multi-ion electrodiffusion analysis for clay soils. Canadian Geotechnical Journal, 41(2), 287-298.

  • Katti, R. K., Gupta, A. K., 1970. Studies on the diffusion of lime in expansive soil. Proceedings 2nd S E Asian Conference on Soil Engineering, 611–619.

  • Lutenegger, A.J., Dickson, J.R., 1984. Experiences with drilled lime stabilisation in the mid-west USA. Proceedings of the Fourth International Symposium on Landslides, 289-293.

  • Mitchell, J.K., Hooper, D.R., 1961. Influence of time between mixing and compaction on properties of lime stabilized expansive clay. Highway Research Board Bulletin, 304, 14–31.

  • Mitchell, J.K., Soga, K., 2005. Fundamentals of Soil Behavior. 3rd Edition, John Wiley and Sons, Hoboken, 592 pages.

  • Noble, D.F., Anday, M.C., 1967. Migration of lime deposited in drill holes. Virginia Highway Research Council Publication.

  • Rogers, C.D.F., Glendining, S., 1994. Deep Slope Stabilisation Using Lime. Transportation Research Record 1440, Transportation Research Board, National Research Council, Washington D.C., USA, p.63-70.

  • Rogers, C.D.F., Glendinning, S., 1996. The role of lime migration in lime pile stabilisation of slopes. Quaterly Journal of Engineering Geology, 29 (4), 276-284.

  • Ruenkrairergsa, T., Pimsarn, T., 1982. Deep hole lime stabilisation for unstable clay shale embankment. Proceedings of the 7th SE Asia Geotechnics Conference, Hong Kong, 22-26th November, 1982, p.631-645.

  • Shanker, N., Babu N., Maruti, G., 1989. Use of lime soil piles for in-situ stabilisation of Black Cotton soils. Indian Geotechnical Conference, Visakhapatnam, 1, 149-153.

  • Snethen, D.R., 1979. Technical Guidelines for Expansive Soils in Highway Subgrades. Department of Trans-poration, U.S.A., Final Report No. FHWA-RD-79-51.

  • Öztaş, T., 1997. Topraklarda Difuzyon ve Dispersiyon Arasındaki İlişki. Atatürk Üniv. Ziraat Fak. Dergisi, 28 (1), 153-160.

  • Toksoz, D., Yılmaz, I., 2020. Influence of swelling clay content on ion migration and column performance in lime column treated soils. Geotechnical and Geological Engineering, 38(1), 813-832.

  • Toksöz Hozatlıoğlu, D. & Yılmaz, İ. (2021). Şişen Zeminlerdeki Kireç Kolonu Uygulamalarında İyon Göçü Mekanizması . Jeoloji Mühendisliği Dergisi , 45 (2) , 245-260 . DOI: 10.24232/jmd.1049677

  • Toksöz Hozatlıoğlu, D. , Yılmaz, İ. Şişen Zeminlerdeki Kireç Kolonu Uygulamalarında İyon Göçü Mekanizması. Jeoloji Mühendisliği Dergisi 45 (2021 ): 245-260

  • ISSUE FULL FİLE
    View as PDF