Jeoloji Münendisliği Dergisi
Jeoloji Mühendisliği Dergisi

Jeoloji Mühendisliği Dergisi

2013 HAZİRAN Cilt 37 Sayı 1
View as PDF
View as PDF
View as PDF
Acid Rock Drainage, and Trace Element Pollution in Groundwater in Surrounding of Kurşunlu Mine Area
Tülay Ekemen Keskin Sonay Bozdemir Filiz Ersöz
View as PDF

ABSTRACT: Acid mine drainage occurs as a result of reactions with water and sulphide minerals such as pyrite.As a result of these reactions water gains acidic properties and significant water pollution problems couldrise. The study area located in Ortakent (Koyulhisar) has an active Pb-Zn-Cu mining site. The corelationand factor analyses applied to determine mineral-water reactions controlling the chemical compositionof groundwater clearly show effects of sulphide mineral bearing volcanic rocks. Sulfide minerals produceacid and groundwater contains high concentrations of SO4 and Fe. Low pH values are also responsiblefor dissolved metals (Al, Fe, Mn SO4, Pb, Zn) in the groundwater and river. Al, Fe and Mn concentrationsin the acidic waters in the study area exceed the limits of Ministry of Health-2005 Standard. In addition,several springs have SO4 and Pb concentrations higher than the limits of drinking water standards. Solidand liquid mine wastes contribute on the trace element contamination of water as well. Geochemicalmodelling showed that mostly heavy toxic metals in the acidic waters may exist largely in the form of freemetal and metal-sulphate. It is understood that the trace elements contained in the groundwater and rivercould introduce high risks to human, animals and plants.

  • Acid mine drainage

  • Factor and cluster analysis

  • Correlation

  • Koyulhisar

  • Sulfide mineralization

  • Groundwater pollution

  • Akçay, M., 2002. Jeokimya: Temel Kavramlar ve Uygulamaya Aktarım. Karadeniz Teknik Üniversitesi, Mühendislik Mimarlık Fakültesi Yayınları, Trabzon, 506

  • Altun, İ.E., Senin, M., Akbaş, B., Keskin, H., Mengi, H., Köse, Z., Arslan, H., Deniz, N., Yaşar, T., Erdoğan, K., Acar, Ş., 1994. Giresun-PirazizŞebinkarahisar arasında kalan bölgenin jeolojisi. Maden Teknik ve Arama Genel Müdürlüğü, Jeoloji Etütler

  • Appelo C.A.J., Postma, D., 1996. Geochemisrty, Groundwater and Pollution. A.A. Balkema, Rotterdam, 536 p.

  • Apte, S.C., Benko, W.I., Day, G.M., 1995. Partition and complexation of copper in the Fly River, Papua, New Guinea. Journal of Geochemical Exploration, 52, 67-79.

  • Atilla, A.Ö., Arıkan, A., 2001. Antalya traverten platosu yeraltısularının kümeleme ve faktör analizi ile sınıflandırılması. Jeoloji Mühendisliği Dergisi, 25, 41-53.

  • Baba, A, Gündüz, O., 2010. Effect of alteration zones on water quality: a case study from Biga Peninsula, Turkey. Archives of Environmental Contamination and Toxicology, 58, 499-513.

  • Bi, S., 2000. Speciation of aluminium in the stream waters from the Susquehanna River watershed, Chesapeake Bay. Environmental Geology, 40, 300-304.

  • Edet, A.E., Merkel, B.J., Offiong, O.E., 2004. Contamination risk assessment of fresh groundwater using the distribution and chemical speciation of some potentially toxic elements in Calabar (southern Nigeria). Environmental Geology, 45, 1025-1035

  • Freeze, R.A., Cherry, J.A., 1979. Groundwater. Prentice-Hall, New Jersey, 604 p

  • Gökçe, A., Özgüneylioğlu, A., 1988. Kurşunlu (Ortakent-Koyulhisar-Sivas) Pb-Zn-Cu yataklarının jeolojisi, oluşumu ve kökeni. Yerbilimleri, Mühendislik Fakültesi Bülteni, Cumhuriyet Üniversitesi, 5, 23-36

  • Gündüz, O., Baba, A., 2008. Fate of acidic mining lakes in Can Lignite District, Turkey. In Proceedings of the XXXVI IAH congress integrating groundwater science and human wellbeing, Proceedings CD-ROM, 26 October–1 November 2009, Toyoma, Japan

  • Gündüz, O., Baba, A., 2008. Fate of acidic mining lakes in Can Lignite District, Turkey. In Proceedings of the XXXVI IAH congress integrating groundwater science and human wellbeing, Proceedings CD-ROM, 26 October–1 November 2009, Toyoma, Japan

  • He, Z.L., Yang, X.E., Stoffella, P.J., 2005. Trace elements in agroecosystems and impacts on the environment. Journal of Trace Elements in Medicine and Biology, 19, 125-140.

  • Hemley, J.J., Hostetler, P.B., Gude, A.J., Mountjoy, W.T., 1969. Some stability relations of alunite. Economic Geology, 64, 599-612.

  • Inc, S., 2006. SPSS for Windows (15.0 ed.). SPSS 15.0 Command Syntax Reference, Chicago Ill

  • Karakaya, N., Karakaya, M.Ç., Nalbantçılar, M.T., Yavuz, F., 2007. Relation between spring-water chemistry and hydrothermal alteration in the Şaplıca volcanic rocks, Şebinkarahisar (Giresun, Turkey). Journal of Geochemical Exploration, 93, 35-46.

  • Keskin, T.E., Toptaş, S., 2012. Heavy metal pollution in the surrounding ore deposits and mining activity: a case study from Koyulhisar (SivasTurkey). Environmental Earth Sciences, 67, 859- 866.

  • Knight, J.E., 1977. A thermochemical study of alunite, enarjite, luzonite and tennantite deposits. Economic Geology, 72, 1321-1336.

  • Krauskoft, K.B., 1967. Introduction to Geochemisrty. New York, McGraw Hill, 721 p.

  • MTA, 2009. 1/100.000 ölcekli Türkiye jeoloji haritaları-Giresun G39, G40, H39, H40 paftaları. MTA Genel Müdürlüğü, Jeoloji Araştırma Dairesi, Ankara (yayımlanmamış).

  • Özdamar, K., 1999. Paket Programlar ile İstatistiksel Veri Analizi 2 (Çok Değişkenli Analizler). Kaan Kitabevi, Eskişehir, 502 s.

  • Parkhurst, D.L., Appelo, C.A.J., 1999. User’s guide to PHREEQC (Version 2)-A computer program for speciation, batch-reaction, one-dimensional transport and inverse geochemical calculations. US Geological Survey, Denver, 312 p.

  • Piper, A.M., 1944. A graphical procedure in the geochemical interpretation of water analyses. American Geophysical Union Transactions, 25, 914-923.

  • Seal, R.R. II, Hammarstrom, J.M., Johnson, A.N., Piatak, N.M., Wandless, G.A., 2008. Environmental geochemistry of a Kuroko-type massive sulfide deposit at the abandoned Valzinco mine, Virginia, USA. Applied Geochemisrty, 23, 320-342.

  • Smedley, P.L., Edmunds, W.M., Pelig-Ba, K.B., 1996. Mobility of arsenic in groundwater in the Obuasi gold-mining area of Ghana: some implications for human health. Special Publications Geological Society London, 113, 163-181.

  • Tardy, Y., 1971. Characterization of the principal weathering types by the geochemistry of waters from some European and African crystakkine massifs. Chemical Geology, 7, 253-271.

  • Sağlık Bakanlığı, 2005. İnsani Tüketim Amaçlı Sular Hakkında Yönetmelik. Sağlık Bakanlığı, Ankara, Turkey.

  • Şahin, A., 2008. Risk Koşullarında Tarım İşletmelerinin Planlanması: Oyun Teorisi Yaklaşımı. Doktora Tezi, Ege Üniversitesi Fen Bilimleri Enstitüsü, İzmir, 219 s.

  • Uysal, Ş., Bedi, Y., Kurt, İ., Kılınç, F., 1995. Koyulhisar (Sivas) dolayının jeolojisi. MTA Genel Müdürlüğü, Jeoloji Araştırma Dairesi, Ankara

  • WHO (World Health Organization), 2006. Guidelines for Drinking-Water Quality. First Addendum to Third Edition, 1, Recommendation. Geneva Switzerland.

  • Ekemen Keskin, T , Toptaş, S , Ersöz, F . (2013). Kurşunlu Maden Alanı Çevresindeki Yeraltısularında Asit Kaya Drenajı ve İz Element Kirliliği . Jeoloji Mühendisliği Dergisi , 37 (1) , 1-26 . Retrieved from

  • Ekemen Keskin, T , Toptaş, S , Ersöz, F . Kurşunlu Maden Alanı Çevresindeki Yeraltısularında Asit Kaya Drenajı ve İz Element Kirliliği. Jeoloji Mühendisliği Dergisi 37 (2013 ): 1-26

  • Evaluation of Rock Slope Stability by Different Methods (Ünye, Ordu)
    Kadir Karaman
    View as PDF

    ABSTRACT: In this study, the stability of two rock slopes was evaluated by means of kinematic analysis, SlopeStability Probability Classification System (SSPC), and Slope Mass Rating (SMR). The results of thekinematic analyses have revealed that planar, wedge and toppling failures would not occur in the analyzedslopes. Based on the SSPC orientation–dependent stability analysis, the slope–1 has 100% stabilityagainst the sliding failure, and over 95% stability against the toppling failure. The probability of stabilityof the slope–2 is over 95% against the sliding and toppling failures. The maximum possible heights anddip angles of the slopes were determined according to the orientation–independent stability analysis.Based on the SSPC orientation–independent stability analysis, the angles for a safe slope are proposed tobe 75° for the slope–1 and 70° for the slope–2. According to the SMR system, the stabilities of the slope–1and the slope–2 were determined as “partially stable” and “unstable”, respectively

  • Kinematic analysis

  • Slope Stability Probability Classification System (SSPC)

  • Slope Mass Rating (SMR)

  • Slope stability

  • Alejano, L.R., Ferrero, A.M., Oyanguren, P.R., Fernandes, M.I.A., 2011. Comparison of limit– equilibrium, numerical and physical models of wall slope stability. International Journal of Rock Mechanics and Mining Sciences, 48, 16–26.

  • Anbalagan, R., Sharma, A., Sanjeey, B., Raghuvanshi, T. K., 1992. Rock Mass Stability Evaluation Using Modified SMR Approach. Proceedings of the Sixth National Symposium on Rock Mechanics, Bangalore, India, 258-268.

  • Barton, N.R., 1976. Recent experiences with the Q system of tunnel support design. In: Bieniawski ZT (ed) Proceedings Symposium on Exploration for Rock Engineering, Johannesburg. Balkema, Rotterdam, 107–117.

  • Barton, N.R., 1988. Rock mass classification and tunnel reinforcement selection using the Q-system. In: Kirkaldie L (ed). Proceedings Symposium on Rock Classification Systems for Engineering Purposes, ASTM Special Technical Publication 984, AmericanS

  • Bieniawski, Z.T., 1989. Engineering Rock Mass Classification. Wiley, Chichester. 251 p.

  • Bye, A.R., Bell, F.G., 2001. Stability assessment and slope design at Sandsloot open pit, South Africa. International Journal of Rock Mechanics and Mining Sciences, 38, 449–466.

  • Calcaterra, D., Gili, J.A., Iovinelli, R., 1998. Shallow landslides in deeply weathered slates of the Sierra de Collcerola (Catalonian Coastal Range, Spain). Engineering Geology, 50, 283–298

  • Eberhardt, E.D., 2003. Rock slope stability analysis– utilization of advanced numerical techniques. Earth and Ocean sciences at UBC. 4 p.

  • Gedikoğlu, A., Pelin, S., Özsayar, T., 1979. The main lines of geotectonic development of the Eastern Pontides in Mesozoic era. Proceeding of the 1st Geological Congress of the Middle East (GEOCOME), 555-580.

  • Goodman, R.E., 1989. Introduction to rock mechanics. John Wiley&Sons, New York. 478 p.

  • Gürocak, Z., Alemdag, S., Zaman, M.M., 2008. Rock slope stability and excavatability assessment of rocks at the Kapikaya dam site, Turkey. Engineering Geology, 96, 17–27.

  • Hack, R., 1998. Slope stability probability classification. SSPC, 2nd edition. ITC, Enschede, The Netherlands, 258 p.

  • Hack, R., 2002. An evaluation of slope stability classification. Eurock, ISRM International Symposium on Rock Engineering for Mountainous Regions, Madeira, Frunchal, Portugal, 1–32.

  • Hack, R., Price, D., Rengers, N., 2003. A new approach to rock slope stability–a probability classification (SSPC). Bulletin of Engineering Geology and the Environment, 62, 167–184

  • Haines, A., Terbrugge, P.J., 1991. Preliminary estimation of rock slope stability using rock mass classification systems. In: Wittke, W. (editor) Proceedings 7th Congress on Rock Mechanics 2, ISRM. Aachen, Germany. Balkema, Rotterdam, 887–892.

  • Hoek, E., Bray, J.W., 1981. Rock Slope Engineering. 3rd edition. London, Institute of Mining and Metallurgy. 358 p

  • Hoek, E., 1999. Putting numbers to geology - an engineer’s viewpoint. Quarterly Journal of Engineering Geology, 32, 1-19.

  • ISRM, 1981. ISRM Suggested Methods: Rock Characterization, Testing and Monitoring. E. T. Brown (ed.), Pergamon Press, London, 211 p.

  • ISRM, 2007. The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. In: Ulusay, Hudson (Eds.), Suggested methods prepared by the commission on testing methods. International Society for Rock Mechanics. ISRM T

  • Karaman, K., 2011. Taşönü (Trabzon–Araklı) kalker ocağındaki şevlerin duraylılık açısından incelenmesi. Karadeniz Teknik Üniversitesi Fen Bilimleri Enstitüsü, Trabzon, Yüksek Lisans Tezi, 123 s (yayımlanmamış)

  • Kentli, B., Topal, T., 2004. Assessment of rock slope stability for a segment of the Ankara–Pozanti motorway, Turkey. Engineering Geology, 74, 73–90

  • Kliche, C.A., 1999. Rock slope stability. SME, Littleton, CO

  • Kıncal, C., Koca, M.Y., 2009. A proposed method for drawing the great circle representing dip angle and strike changes. Environmental and Engineering Geoscience, 15, 145–165.

  • Koca, M.Y., 1995. Slope stability assessment of the abandoned Andesite quarries in and around the Izmir city centre. Dokuz Eylül University Graduate School of Natural and Applied Science, Izmir, PhD thesis, 430 p (yayımlanmamış).

  • Koca, M.Y., Kıncal, C., 2004. Abandoned stone quarries in and around the Izmir city centre and their geo-environmental impacts – Turkey. Engineering Geology, 75, 49–67

  • Kulatilake, P.H.S.W., Wang, L., Tang, H., Liang, Y., 2011. Evaluation of rock slope stability for Yujian River dam site by kinematic and block theory analyses. Computers and Geotechnics, 38, 846–860.

  • Laubscher, D.H., 1990. Ageomechanics classification system for rating of rock mass in mine design. Journal of the South African Institute of Mining and Metallurgy, 90 (10), 257–273.

  • Lindsay, P., Campbell, R.N., Fergusson, D.A., Gillard, G.R., Moore, T.A., 2001. Slope stability probability classification. Waikato Coal Measures, New Zealand. International Journal of Coal Geology, 45, 127–145

  • Okay, A. I., Şahintürk Ö., 1997. Geology of Eastern Pontides, in A. G. Robinson, edition, Regional and Petroleum Geology of the Black Sea and Surrounding Region: AAPG Memoir 68, 291- 311.

  • Özsayar, T., Pelin, S., Gedikoğlu, A., 1981. Doğu Pontidler’de Kretase, Karadeniz Teknik Üniversitesi Yer Bilimleri Dergisi, 2, 66-115

  • Pantalidis, L., 2009. Rock slope stability assessment through rock mass classification systems. International Journal of Rock Mechanics and Mining Sciences, 46, 315–325

  • Rocscience, 1999. DIPS 5.0 – Graphical and statistical analysis of orientation data rocscience. Canada. 90 p.

  • Romana, M., 1985. New adjustment rating for application of the Bieniawski classification to slopes. Proceedings International Symposium on Rock Mechanics, Mining Civil Works, ISRM, Zacatecas, Mexico, 59–63

  • Romana, M., 1991. SMR classification. In: Wittke W (editor) Proceedings 7th Congress on Rock Mechanics 2, ISRM, Aachen, Germany. Balkema, Rotterdam, 955–960.

  • Romana, M., 1993. A Geomechanics Classification for Slopes: Slope Mass Rating. (In Comprehensive Rock Engineering. Ed. I. Hudson). Pergamon, 3, 575-600.

  • Romana, M., Serón, J.B., Montalar, E., 2003. SMR geomechanics classification: application, experience and validation. In: Merwe, J.N. (Ed.), Proceedings of the 10th Congress of the International Society for Rock Mechanics, ISRM 2003—Technology Roadma

  • Selby, M.J., 1980. A rock mass strength classification for geomorphic purposes: with tests from Antarctica and New Zealand. Geomorphology, 23, 31–51.

  • Selby, M.J., 1982. Hillslope materials and processes. Oxford University Press, Oxford, 264 p.

  • Shuk, T., 1994. Key elements and applications of the natural slope methodology (NSM) with some emphasis on slope stability aspects. Proceedings 4th South American Congress on Rock Mechanics, Santiago de Chile, 255–266.

  • Tomas, R., Cuenca, A., Cano, M., Barba, J.G., 2012. A graphical approach for slope mass rating (SMR). Engineering Geology, 124, 67–76

  • Ulusay, R., Gökçeoğlu, C., Sönmez, H., Tuncay, E., 2001. Causes, mechanism and environmental impacts of instabilities at Himmetoğlu coal mine and possible remedial measures. Environmental Geology, 40 (6), 769–786.

  • Wyllie, D.C., Mah, C.W., 2004. Rock slope engineering civil and mining. 4th edition. New York, Spon Press 431 p.

  • Karaman, K . (2013). Kaya Şev Duraylılığının Farklı Yöntemlerle Değerlendirilmesi (Ünye, Ordu) . Jeoloji Mühendisliği Dergisi , 37 (1) , 27-48 . Retrieved from

  • Karaman, K . Kaya Şev Duraylılığının Farklı Yöntemlerle Değerlendirilmesi (Ünye, Ordu). Jeoloji Mühendisliği Dergisi 37 (2013 ): 27-48

  • Investigation of the Natural Soils and Artificial Fills Using Plate Load Test
    Nihat Dipova Bülent Cangir
    View as PDF

    ABSTRACT: A plate load test apparatus, which can be used for direct measurement of bearing capacity andsettlement of natural soils, improved soils and man-made fills, consists of rigid plates located on the ground,a dead load to apply pressure on the soil, a jack to transfer load and dial gauges to measure deflection.Nowadays, this test is preferred for artificial fill compaction control of motorways and airfields morethan the natural soils. The plate load test can also be used on rocks. Besides having simple components and giving results quickly, the test has some limitations. Shallow depth of influence is the most importantlimitation. Test results are affected by humidity and density of the natural soil. In this study; details of theplate load test procedure are given which have advantages especially in determination of bearing capacityand settlement of fill grounds, important aspects which should be attended to interpret test results areemphasized and some sample cases are presented.  

  • Fill ground

  • Settlement

  • Plate load test

  • Bearing capacity

  • ASTM D1195, 1997. Standard Test Method for Repetitive Static Plate Load Tests of Soils and Flexible Pavement Components, for Use in Evaluation and Design of Airport and Highway Pavements, Annual Book of ASTM Standards, Vol. 04.08.

  • ASTM D1196, 1997. Standard Test Method for Nonrepetitive Static Plate Load Tests of Soils and Flexible Pavement Components, for Use in Evaluation and Design of Airport and Highway Pavements, Annual Book of ASTM Standards, Vol. 04.08.

  • Bowles, J. E., 1996. Foundation Analysis and Design, 5th edition, McGraw-Hill, New York, 224-226 p

  • BS 5930, 1999. The code of practice for site investigation. The British Standards Institute

  • Clayton, C.R.I., Matthews, M.C., Simons, N.E., 1995. Site Investigation, Wiley-Blackwell. 497-503 p.

  • Coates D.F., Gyenge, M., 1966. Plate-load testing on rock for deformation and strength properties, Testing Techniques for Rock Mechanics, ASTM STP 402, American Society for Testing and Materials

  • Craig, R. F., 1986 . Soil mechanics: 4th Edition, New York, Chapman & Hall, 302 p.

  • DIN 18134, 1999. Determination of deformation and strength characteristics of soil by the plate loading test, Deutsche Norm

  • Dipova, N., 2011a. Antalya büyükşehir belediyesi Antalya akvaryum projesi temel zemini özellikleri konulu Rapor, Akdeniz Üniversitesi Teknokent A.Ş., Ağustos 2011, Antalya.

  • Dipova N., 2011b. The Engineering Properties of Tufa in The Antalya Area, SW Turkey, Quarterly Journal of Engineering Geology and Hydrogeology, 44 (1), 123-134

  • Dipova, N., 2011c. Antalya ili Konyaaltı ilçesi 8841 ada 07 parsel Zemin İyileştirme Kontrolü Konulu Rapor, Akdeniz Üniversitesi Teknokent A.Ş., Kasım 2011, Antalya.

  • Dipova, N., 2012. Muratpaşa (Antalya) 5602 ada 02 parselin plaka yükleme yöntemi ile incelenmesi Konulu Rapor, Akdeniz Üniversitesi Teknokent A.Ş., Antalya

  • Dipova, N., Doyuran V., 2006a. Characterization of the Antalya (Turkey) tufa deposits, Carbonates and Evaporites, 21 (2), 144-160

  • Dipova, N., Doyuran V., 2006b. Assessment of the collapse mechanism of tufa deposits, Engineering Geology, 83, 332-342.

  • Gökay, K., 1988. Bearing capacity analysis of layered rock for an underground mine. Orta Doğu Teknik Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Yüksek Lisans Tezi, 135 s Ankara (yayımlanmamış).

  • Hobbs, N.B., 1975. Factors affecting the prediction of settlement of structures on rock: with particular reference to the Chalk and Trias: General report and state-of-the-art review for session 4, Conference Proceedings on Settlement of Structures, B

  • Hunt, R.E., 2007. Geotechnical investigation methods, A field guide for geotechnical engineers, CRC Press, Taylor Francis Group, 236 p.

  • Terzaghi, K., Peck, R. B., 1948. Soil Mechanics in Engineering Practice, John Wiley and Sons, 61 p.

  • Terzaghi, K., 1955. Evaluation of coefficient of subgrade reaction, Geotechnique, 5 (4), 297-326 p.

  • TS 5744, 1988. İnşaat mühendisliğinde temel zemini özelliklerinin yerinde ölçümü. Türk Standartları Enstitüsü, Ankara.

  • Venkatramaiah, C., 1993. Geotechnical Engineering, Third edition, New Delhi: John Wiley Eastern, 548 p

  • Yıldırım, S., 2009. Zemin İncelemesi ve Temel Tasarımı, 3. Basım, Birsen Yayınevi, İstanbul, 63 s.

  • Dipova, N , Cangir, B . (2013). Doğal Zeminlerin ve Yapay Dolguların Plaka Yükleme Deneyi ile İncelenmesi . Jeoloji Mühendisliği Dergisi , 37 (1) , 49-62 . Retrieved from

  • Dipova, N , Cangir, B . Doğal Zeminlerin ve Yapay Dolguların Plaka Yükleme Deneyi ile İncelenmesi. Jeoloji Mühendisliği Dergisi 37 (2013 ): 49-62

  • Wollastonite: A Review
    Serhan Haner Dilek Çuhadaroğlu
    View as PDF

    ABSTRACT: Wollastonite is an inosilicate mineral, which is used in the different branches of the national economies in the world. Until 1970s wollastonite had been used as a decorative graywacke; however, from 1980s wollastonite has started to be used in many industries such as ceramics, plastic, rubber, paint, coating, metallurgy by taking the place of the aspestos in the products. Because of its unique cleavage properties, wollastonite breaks down during crushing and grinding in to lathlike or needleshaped particles of varying acicularity. This particle morphology imparts high strength, making it of considerable importance in many markets. In the reports of National Occupational Health and Safety Commision (NOHSC) and the International Agency for Research on Cancer (IARC), it has been pointed out that there is no cancerogenic effect on the human body. Accordingly, this consequence gives way to the replacement of industrial minerals and fibers with the wollastonite. In this review, the information about the occurrence, the product, the consumption and the characteristics of wollastonite, its scope of use and technology are provided. In addition, the results of the studies about the toxicology and the epidemiology of the wollastonite are summarized.

  • CaSiO3

  • Calcium metasilicate

  • Wollastonite

  • Alexandra, F., 2011. Supply situation reportWollastonite struggles to get back top re-crisis levels: Industrial Minerals. May. (http://www.

  • Alexandra, F., 2010. Top stories: South Africa rejoins wollastonite supply: Industrial Minerals. March. (

  • Andrews, R.W., 1970. Wollastonite. London: Institute of Geological Sciences, Her Majesty’s Stationary Office

  • Anon., 1991. Synthetic Minerals: Potential Materials from Ontario Resources. Industrial Minerals.

  • Anon., 2001. Wollastonite. (http://www.

  • Can, G., 1991. Vollastonit yataklarının jeolojisi, madenciliği ve dünya üretimi. Jeoloji Mühendisliği, 39, 55-62.

  • Ciullo, P.A., 1996. Industrial Minerals and Their Uses, Noyes Publications. New Jersey, 607 p

  • Çoğulu, H.E., 1973. Petrografi ve Petroloji. İTÜ Matbaası, Gümüşsuyu, Sayı:94, 318 s.

  • Degryse, P., Elsen, J., 2003. Industrial Minerals,- Resources, Characteristics and Applications. Leuven University Pres, Belgium, 120 p

  • DPT, 2001. Madencilik özel ihtisas komisyonu raporu. Devlet Planlama Teşkilatı, No:2611, 204 s.

  • Dumont, M., 2004. Wollastonite. Canadian Minerals Yearbook, No:60, 5 p.

  • Fattah, H., 1994. Wollastonite-New aspects promise growth. Industrial Minerals, 21-43.

  • Genç, S., 1992. Mineraller, Kayaçlar, Jeolojik Yapılar ve Saha Jeolojisi. KTÜ Basımevi, Sayı:118, 221 s

  • Geo, 2011. (

  • Hanke, W., Sepulveda, M.J., Watson, A., Jankovic, J., 1984. Respiratory morbidity in wollastonite workers. British Journal of Industrial Medicine, 41 (4), 474-479

  • Hawley, G.C., 2010. Wollastonite: Mining Engineering, 62 (6), 84-86.

  • Huuskonen, M., Tossavainen, A., Koskinen, H., Zitting, A., Korhonen, O., Nickels, J., Korhonen, K., Vaaranen, V., 1982. Respiratory morbidity of quarry workers exposed to wollastonite (Abstract). In Proceeddings of the International Conference on Occ

  • IARC, 1987. Silica and some silicates. IARC monographs on the evaluation of carcinogenic risks of chemicals to humans.

  • IARC, 1997. IARC monographs on the evaluation of carcinogenic risks to humans, 68, 283-305.

  • IARC, 2013. International Agency for Research on Cancer. (

  • IBM, 2005. Indian Bureau of Mines. (http://ibm.nic. in/index.htm)

  • ICL, 2012. Imperial College London. (http://www3.

  • IMF, 2010. International Monetary Fund. Washington, DC, Kenya: Poverty Reduction Strategy Paper, 10/224, 201 p.

  • IMY, 2011. Indian Minerals Yearbook (http://ibm.nic. in/imyb2010_prelims.pdf)

  • Indmin, 2012. Industrial Minerals, (http://www.

  • Jilin, 2011. Jilin Shanwei Wollastonite Mining Co., Ltd. (

  • Kennedy, B.A., 1990. Surface Mining (2nd Edition). Published by Society for Mining, Metallurgy and Exploration, Inc., Maryland, 1177 p

  • Kogel, J.E., Trivedi, N.C., Barker, J.M., Krukowski, S.T., 2006. Industrial Minerals & Rocks (7th Edition). Published by Society for Mining, Metallurgy, and Exploration, Inc., Colorado, 1507 p

  • Kumbasar, I., 1977. Silikat Mineralleri. İTÜ Matbaası, Gümüşsuyu, 170 s.

  • Kuo, C.S., 2011. In Minerals yearbook. U.S. Geological Survey. ( minerals/pubs/mcs/2011/mcs2011.pdf

  • Maxim, L.D., McConnell, E.E., 2005. A review of the toxicology and epidemiology of wollastonite. Inhalation Toxicology, 17, 451-466

  • Maxim, L.D., Niebo, R., LaRosa, S., Johnston, B., Allison, K., McConnell, E.E., 2008. Product stewardship in wollastonite production. Inhalation Toxicology, 20, 1199-1214.

  • NOHSC, National Occupational Health and Safety Commision. (

  • Nordkalk, 2012. Norkalk Corporation. (http://www.

  • NYCO, 2012. (

  • Robinson, S.M., Craig, D.B., 2000. Reinforcement of ceramic bodies with wollastonite. United States Patent, No:6 037 288, 16 p

  • Sarıiz, K., 1992. Endüstriyel Hammadde Yatakları ve Madenciliği. Anadolu Üniversitesi MühendislikMimarlık Fakültesi Yayınları, 443 s.

  • Springer, J., 1994. Ontario wollastonite: uses, markets and Ontario’s potential as a future producer. Industrial Mineral Background, 17, 22

  • Teir, S., Eloneva, S., Zevenhoven, R., 2005. Production of precipitated calcium carbonate from calcium silicates and carbon dioxide. Energy Conversion and Management, 46, 2954–2979

  • Vanderbilt, 2012. R.T. Vanderbilt Company, Inc.. (

  • Virta, R.L., 2001. Wollastonite. In Minerals yearbook, U.S. Geological Survey. (http:// wollastonite/860401.pdf)

  • Virta, R.L., 2004. Wollastonite. In Minerals yearbook, U.S. Geological Survey. (http://minerals.usgs. gov/minerals/pubs/commodity/wollastonite/ wollamyb04.pdf)

  • Virta, R.L., 2011. Wollastonite. In Minerals yearbook, U.S. Geological Survey. (http://minerals.usgs. gov/minerals/pubs/commodity/wollastonite/ myb1-2010-wolla.pdf

  • Virta, R.L., 2012. Wollastonite. In Minerals yearbook, U.S. Geological Survey. (http://minerals.usgs. gov/minerals/pubs/commodity/wollastonite/ myb1-2011-wolla.pdf

  • WHO, 2006. WHO Workshop on Mechanisms of Fibre Carcinogenesis and Assessment of Chrysotile Asbestos Substitutes World Health Organization. ( issues/summary_report.pdf)

  • Wolkem, 2005. Wolkem India Ltd. (http://www.

  • Haner, S , Çuhadaroğlu, D . (2013). Vollastonit: Bir Gözden Geçirme . Jeoloji Mühendisliği Dergisi , 37 (1) , 63-82 . Retrieved from

  • Haner, S , Çuhadaroğlu, D . Vollastonit: Bir Gözden Geçirme. Jeoloji Mühendisliği Dergisi 37 (2013 ): 63-82

    View as PDF