Jeoloji Münendisliği Dergisi
Jeoloji Mühendisliği Dergisi

Jeoloji Mühendisliği Dergisi

2007 Cilt 31 Sayı 2 ve 2008 Cilt 32 Sayı 1
COVER
View as PDF
COPYRİHT PAGE
View as PDF
CONTENTS
View as PDF
Smallscale Karstic Surface Features (Karren)
Muhsin Eren
View as PDF

ABSTRACT: Karren (or lapies) is a general term, describing small-scale (< 10 m) karstic surface features.They are common on limestone surfaces. The main types of karrens are solution flutes (rillenkarren),trittkarren (heelprints), solution runnels (rinnenkarren, rundkarren, meanderkarren), spitzkarren(solution spikes, pinnacle karren), kluftkarren (solution slots, grikes), solution pan (kamenitza, tinajita)and solution pit (or hollow). They form by dissolution from surface water or water-sheets as solutionflutes, trittkarren, and solution pans, from channelized water as solution runnels, from enlargement ofstructural weakness as kluftkarren, from draining water along roots as solution pit, and from massiverocks between discontinuities as spitzkarren. The dissolution process develops on bare rocks or beneatha thin surface cover (soil, snow).

  • Dissolution

  • diagenesis

  • karren

  • karst

  • limestone

  • Bögli, A. 1960, Kalklösung und Karrenbildung. Zeitschrift für Geomorphologie, Supplementary issue 2, Internationale Beiträge zur Karstmorphologie 4-21.

  • Bögli, J. 1980: Karst hydrology and physical speleology. , Berlin, 285.

  • Dreybrodt, W., 1988: Process in karst systems: physics, chemistry, and geology. Springer- Verlag, Berlin, 288 p.

  • Esteban, M. Klappa, C.F. 1983: Subaerial exposure environment. In: Scholle, P.A., Bebour, D.G. Moore, C.H. (Eds.): Carbonate Depositional Environments. Springer KATKIBELİRTME Yazar, makaleye katkılarından dolayı Yrd. Doç.Dr. Cüneyt Güler`e ve dergi h

  • Field, M.S., 2002, A lexicon of cave and karst terminology with special reference to environmental karst hydrology. U.S. Environmental Protection Agency, National Center for Environmental Assessment- Washington Office, Washington, 214 p. (http://www.

  • Fiol, L.I., Fornos, J.J., and Gines, A., 1996, Effects of biokarstic process on the development of solutional rillenkarren in limestone rocks. Earth Surface Processes and Landforms, 21, 447-452.

  • Ford, D.C. and Williams, P.W., 1989, Karst Geomorphology and Hydrology. Chapman Hall, London, 601 p.

  • Gams, I., 1993, Origin of the term karst, and the transformation of the classical karst (kras). Environmental Geology 21/3, 110-114.

  • Hutchinson, G.E., 1957, A Treatise on Limnology.Wiley, London

  • James, N.P. Choquette, P.W. 1984: Diagenesis 9. Limestones- The meteoric diagenetic environment. Geoscience Canada, 11, 161-194.

  • Miller, D.J. and Mitchell, S.F., 2003. Palaeokarstic surfaces in the upper Cretaceous limestones of central Jamaica. Cretaceous Research 24, 119-128.

  • Molina, J.M., Ruiz-Ortiz, P.A. Vera, J.A. 1999: A review of polyphase karstification in extensional tectonic regimes: Jurassic and Cretaceous examples, Betic Cordillera, southern Spain. Sedimentary Geology 129, 71-84.

  • Öztaş, T. 1992: Karst and karstification features of the surrounding area of Boğsak karst spring (Mersin-Taşucu). Jeoloji Mühendisliği Dergisi 41, 118-130.

  • Sweeting, M.M., 1973, Karst Landforms. Columbia University Pres, New York, 362 p.

  • Şahinci, A., 1991, Karst. Reform Matbaası, İzmir, 173 s.

  • Trudgill, S. 1985, Limestone geomorphology. Longman, London, 196 p.

  • Vanstone, S.D., 1998, Late Dinantian palaeokarst of England and Wales: implications for exposure surface development. Sedimentology 45, 19-37.

  • Viles, H.A. 1984: Biokarst: review and prospect. Progress in Physical Geography 8, 523- 542.

  • Vincent, P., 1995, Limestone pavements in the British Isles: A review. Geographical Journal 161, 265-274.

  • White, W.B., 1988, Geomorphology and Hydrology of Karst Terrains. Oxford University Press, Oxford, 464 p.

  • Wray, R.A.L., 1997, A global review of solutional weathering forms on quartz sandstones. Earth Science Reviews 42, 137-160.

  • Wright, V.P., 1982, The recognition and interpretation of paleokarsts: two examples from the Lower Carboniferous of South Wales. Journal of Sedimentary Petrology 52, 83-94.

  • www.gosaunet.at/tipps/wasser-berge-schnee/derdachstein- eine-vielfaeltigeurlandschaft. htm.

  • www.geo.unizh.ch/.../haltepunkt09/1b..htm.www. limestonepavements. org.uk/geology.shtml.

  • www.shadow.eas.gatech.edu edu/kcobb/speleo/Fieldtrip2005.htlm



  • Eren, M . (2007). Küçük Ölçekli Karstik Yüzey Yapıları Karen . Jeoloji Mühendisliği Dergisi , 31 (2) , 1-8 . Retrieved from https://dergipark.org.tr/tr/pub/jmd/issue/52386/686297

  • Eren, M . Küçük Ölçekli Karstik Yüzey Yapıları Karen. Jeoloji Mühendisliği Dergisi 31 (2007 ): 1-8

  • Formation of Deposit and Corrosion in Afyonkarahisar Geothermal Heating System
    Aysel Büyüksağiş
    View as PDF

    ABSTRACT: The formation of deposit and corrosion, which was formed depending on the chemicalcomposition of the geothermal water, is one of the most serious problems at the geothermal systems. Inthis study, ion chromotography (IC) and ınductively coupled plasma optical emission spectroscopy(ICP_OES) analysis were carried out for water samples that are taken off Afyonkarahisar GeothermalHeating System. Analysis of the deposits formed in pipeline was carried out by using X-Ray DiffractionTechnique and total hardness of water was analyzed by TS 266 method. The results of XRD analysisshowed that the deposit of CaCO formed in the suburban geothermal pipelines while the deposit ofcontaining Na Ca(OH) , CaCO and MgAlSi formed in the inner city well water pipelines. Pitting anderosion corrosion occurred in the pipelines running well water decalcified with NaCl. Also same caseoccurred in the geothermal pipelines. The increase of amount of dissolved substance in the return waterindicated that St37 steel was exposed to erosion corrosion. The increase of total hardness favored theformation of deposit

  • Geothermal water

  • deposit

  • corrosion

  • XRD

  • ICP-OES

  • Anonymous, 2006 http://www.magnetixtr. com/jeotermal.html

  • Banaś, J., Lelek-Borkowska, U., Mazurkiewicz, B. ve Solarski,W., 2007, Effect of CO and H S on the composition and stability of passive film on iron alloys in geothermal water”, Electrochimica Acta, 52(18), 5704-5714

  • Çataltaş, İ., 1985, Kimyasal Proses Endüstrileri 1, İnkılap Kitabevi, İstanbul, 500 sayfa

  • Çakır, A. ,2005, Jeotermal Su Kullanımında Kabuklaşma Ve Korozyon Problemleri, , Jeotermal Enerji Semineri, TESKON, 303-316

  • Gallup, D.L., 1993, “The use of reducing agents for control of ferric silicate scale deposition” , Geothermics, 22 (1), 39-48

  • Gallup, D.L., 1998, “Inhibition of silica precipitation “ A p p l i e d Thermal E n g i n e e r i n g 18 (6), 19

  • Gallup, D. L. ve Barcelon, E., 2005, “Investigations of organic inhibitors for silica scale control from geothermal brines–II”, Geothermics 34 (6), 756-771

  • Batis, G., Kouloumbi, N. ve Kotsakou, K., 1997, “Corrosion and protection of carbon steel in low enthalpy geothermal fluids. The case of SOUSAKI IN Greece”, Geothermics, 26 (1), 65-82

  • Gendenjamts, OE., 2005 The United Nations University, Geothermal Training Programme, `Interpretation Of Chemical Composition Of Geothermal Fluids From Árskógsströnd, Dalvík, And Hrísey, NIceland And In The Khangai Area, Mongolia`, Reports Number 10,

  • Higgins, J. P. Ve Hard, B. C., 2003, “Bıoremedıatıon of Rock Draınage Usıng Sulphate-Reducıng Bacterıa”, SUDBURY 2003, www.jacqueswhitford.com

  • Kubiak, J. A. ve Urquiza-beltrán, G., 2002, “Simulation of the effect of scale deposition on a geothermal turbine”, Geothermics, 31(5),2002, 545-562

  • Mergen, H., Mergen, B.E., Erdoğmuş, A.B., 2006, “Jeotermal Enerji ve Balneoterapi Uygulamaları”, FTR Bil Der J PMR Sci,9(3), 108-113

  • Mertoğlu, O., 2000, Türkiyede Jeotermal Enerji Uygulamaları Ve Gelişimi, İller Bankası Genel Müdürlüğü, Yerel Yönetimlerde Jeotermal Enerji Ve Jeoteknik Uygulamalar Sempozyumu, Editör:Ö. Ersin Gırbalar ,Aydoğdu Ofset , Ankara, 1-9

  • Mornet ve Neville (2002) Morizot,A. P. ve Neville, A., 2002, “Insights into Electrodeposition of an Inhibitor Film and Its Inhibitive Eff e c t s on Calcium Carbonate Deposition”, Journal of Colloid and Interface Science, 245 40–49

  • Mutlu, H., 1997, “Gazlıgöl (Afyon) Termal ve Maden Sularının Jeokimyasal Özellikleri ve Jeotermometre Uygulamaları”, Jeoloji Müh. Dergisi, 50

  • Özbek, T., 2000, Jeotermal Akışkanın Entegre Olarak sağlık ve Termal Turizmde Değerlendirilmesi, İller Bankası Genel Müdürlüğü,Yerel Yönetimlerde Jeotermal Enerji Ve Jeoteknik Uygumlalar Sempozyumu, Editör:Ö. Ersin Gırbalar ,Aydoğdu Ofset,Ankara, 241

  • Patzay, G., Stahl, G., Karman, F.H. And Kalman, E., 1998, Modeling of scale formation and corrosion from geothermal water, Electrochim.Acta, 43, p.137-147

  • Al-Rawajfeh, A. E., Gladeb, H., Ulrich, J., 2005, Scaling in multiple-effect distillers: the role of CO2 release, Desalination, 182, 209–219

  • Richter, S., Hilbert, L.R., ve Thorarinsdottir, R.I., 2006, “On-line corrosion monitoring in geothermal district heating systems. I. General corrosion rates”, Corrosion Science, 48(7), 1770-1778

  • Sampedro, J. A., Rosas, N. ve Díaz, R., Domínguez , B.,1998, “Developments in geothermal energy in Mexico—part nineteen. Corrosion in Mexican geothermal wells”, Heat Recovery Systems andCHP, 8 (4), 355-362

  • Soylemezoglu, S. ve Harper, R. , 1982, “Oxygen ingress into geothermal steam and its effect on corrosion of low carbon steel at Broadlands, New Zealand”, Geothermics, 11(1), 31-42

  • Şahmurova, A., Hepsağ, E. Ve Özkan, A., 2005, “Azerbaycan`ın Yeraltısularında Eser Element Konsantrasyonları ve Florür Seviyesinin Değerlendirilmesi”, Trakya Univ J Sci, 6(2), 57-63

  • Üneri, S., 1998, Korozyon ve Önlenmesi, Korozyon DerneğiYayınları,Ankara,413 s

  • Xyla, A. G., Mikroyannidis, J. ve Koutsoukos, P. G., 1992, The inhibition of calcium carbonate precipitation in aqueous media by organophosphorus compounds, Journal of Colloid and Interface Science, 153 (2), 537-551TS 266

  • ( ( ( www.ansiklopedim.com http://envisjnu.net/newslet/v7n3/surface.html http://www.kazancionline.com/ http://www.mayerkimya.com/endustriyel.htm http://www.cevretek.com/ http://www.coskunaritma.com/anatur.asp http://www.detayaritma.com/ )



  • Büyüksağiş, A . (2007). Afyonkarahisar Jeotermal Isıtma Sisteminde Oluşan Kabuklaşma ve Korozyon . Jeoloji Mühendisliği Dergisi , 31 (2) , 9-23 . Retrieved from https://dergipark.org.tr/tr/pub/jmd/issue/52386/686296

  • Büyüksağiş, A . Afyonkarahisar Jeotermal Isıtma Sisteminde Oluşan Kabuklaşma ve Korozyon. Jeoloji Mühendisliği Dergisi 31 (2007 ): 9-23

  • Geological And Geotechnical Properties Of Bahçecik Travertine (Gümüşhane)
    Bülent Yalçinalp Hakan Ersoy Arzu Firat Ersoy Canan Keke
    View as PDF

    ABSTRACT: There are important travertine deposits in the eastern Black Sea Region, especially in Bayburt,Gümüşhane and Şiran. In the region, production of natural stones has been increased in the last decadeand production of travertine reached to 450 millions tons in 2003. Traverten formations are controlledwith NE-SW directed fault systems crosscutting NAF. In this study, physico-mechanical properties andformation condition of Bahçecik travertine as the biggest travertine deposit in the region weredetermined.Bahçecik travertine was formed with carbonic acid-rich water percolated through rocks in limestone,the water dissolved the Berdiga limestones and becomes saturated with it. When the water resurfacedrelated with vertical faults, the sudden drop in pressure caused the water to release thegas and the calcium carbonate then recrystallized. Widely outcropping terraced-mount type travertine was formed by saturated water resurfaced on the low slopes topographical surface. Considering to itsmorphological properties and formation condition, reserve of terraced-mount type Bahçecik travertineis about 400000 m .Determination of uniaxial compressive strength of intact rocks can be quite difficult owing to timeconsuming and expensive to prepare specimens and to conduct this test. Thus, if there is a linearcorrelation between strength and index properties of travertine samples is tested. As a result of this study,it is concluded that there is a linear correlation between uniaxial compressive strength and sonic velocitytest results.

  • Properties of geotechnical and geological,

  • Bahçecik travertine



  • Yalçınalp, B , Ersoy, H , Ersoy, A , Keke, C . (2007). Bahçecik Gümüşhane Travertenlerinin Jeolojik Ve Jeoteknik Özellikleri . Jeoloji Mühendisliği Dergisi , 31 (2) , 25-34 . Retrieved from https://dergipark.org.tr/tr/pub/jmd/issue/52386/686298

  • Yalçınalp, B , Ersoy, H , Ersoy, A , Keke, C . Bahçecik Gümüşhane Travertenlerinin Jeolojik Ve Jeoteknik Özellikleri. Jeoloji Mühendisliği Dergisi 31 (2007 ): 25-34

  • Stuyfzand Hydrogeochemical Modeling System: A case Study of Gümüşhaciköy (Amasya) aquifer
    Arzu Firat Ersoy Hakan Ersoy
    View as PDF

    ABSTRACT: Approximately 10 different systems of classification of natural water types were developed. Stuyfzand Classification System combines some features of existing classifications with new, strongly diagnostic criteria for subdivision. And this classification plays very important role for determination of hydrogeochemical evolution of groundwater plain. In this study hydrochemical evolution of Gümüşhacıköy Plain was determined using Stuyfzand Classification System and totally 79 well water, 37 well water analyze results between 1951 and 1972, and 49 well water analyze results between 2003 and 2004, were compared with each other considering this classification system. According to this classification system, the sequence concludes that freshening is going on from NaHCO + to MgHCO +. The south and southwest of the plain is formed CaHCO water type according to the first analyses results but CaHCO + water type dominates theconsequence of freshening to the second analyses results. Typical freshening is going on fromwest to east in time and the composition of the groundwater is turned in to CaHCO +water type.

  • Stuyfzand Classification System

  • Hydrogeochemistry

  • Gümüşhacıköy Aquifer

  • DSİ, 2006.Yıl Sonu Faaliyet Raporu,İşletmeBakım Şube Müdürlüğü, Samsun.

  • DSİ, 1973. Merzifon-Gümüşhacıköy Ovası Hidrojeolojik Etüt Raporu, Devlet Su İşleri Genel Müdürlüğü, Jeoteknik Hizmetler veYeraltısuları Dairesi Başkanlığı,Ankara.

  • Fırat Ersoy, A., 2007. Gümüşhacıköy (AMASYA) Akiferi`nin Yeraltısuyu Akım Modeli. KaradenizTeknik Üniversitesi Fen Bilimleri Enstitüsü.,Doktora Tezi,182s (Yayınlanmamış).

  • Kreye, R., Ronneseth, K., Wei, M., 1998. An aquifer classification system forgroundwater management in the British Columbia, Ministry of Environment, Lands and Parks Water Management Division, Hydrology Branch Privince of British Columbia.

  • Matthess, G., 1982. The properties of groundwater, John Wiley & Sons, NewYork, 406 pp.

  • Nieto, P., Custodio, E., Manzano, M., 2005. Baseline groundwater quality: a European approach, Environmental Science and Policy, 399-409.

  • Stuyfzand, P.J.,1985. Hydrochemisty and hydrology of the coastal dunes between Egmond Wijk aan Zee, KIWA report, SWE-85-012, 205 pp.Stuyfzand, P.J., 1986. New hydrochemical classification of watertypes: principles and application to the coastal dunes



  • Fırat Ersoy, A , Ersoy, H . (2007). Stuyfzand Hidrojeokimyasal Modelleme Sistemi: Gümüşhaciköy Amasya Akiferi Örneği . Jeoloji Mühendisliği Dergisi , 31 (2) , 37-51 . Retrieved from https://dergipark.org.tr/tr/pub/jmd/issue/52386/686295

  • Fırat Ersoy, A , Ersoy, H . Stuyfzand Hidrojeokimyasal Modelleme Sistemi: Gümüşhaciköy Amasya Akiferi Örneği. Jeoloji Mühendisliği Dergisi 31 (2007 ): 37-51

  • ISSUE FULL FİLE
    View as PDF