Jeoloji Münendisliği Dergisi
Jeoloji Mühendisliği Dergisi

Jeoloji Mühendisliği Dergisi

2023 HAZİRAN CİLT 47-2
View as PDF
View as PDF
View as PDF
Determination of Spatial Distribution and Temporal Variation of Suspended Sediment in Seyhan Dam Lake by Remote Sensing
Mehmet Ali Akgül Recep Yurtal
View as PDF

ABSTRACT: Access to clean water is becoming increasingly difficult as a result of global climate change, industrialization, fast population expansion, and other factors. To safeguard fresh waters, natural lakes such as wetlands are protected,and storage water structures are erected on streams. The most important aspect influencing the life of storage water structures is the determination of the sediment entering the water reservoir. This material builds in the dam reservoir, reducing the amount of usable water and rendering essential elements such as the bottom weir or water in take structure inoperable. The spatial distribution and temporal variation of TSS were investigated in this study by using the parameters of Total Suspended Sediment (TSS), which were produced by creating a model between satellite data and terrestrial data, and Sentinel-2 satellite data from Seyhan Dam Lake, which is located in the south of Turkey,within the provincial borders of Adana. The maximum TSS concentration was determined to be 25.01 mg/L on 26.03.2020, with the lowest value being 17.65 mg/L on 23.01.2021. The TSS characteristics will be more precisely determined by samples from additional places at previously known satellite transit times, as a foundation for a system to be created for remote sensing-based TSS monitoring in the Seyhan Dam Lake. TSS values for the whole lake surface will be determined in this manner rather than TSS values for specific spots.

  • Remote sensing

  • Sentinel-2

  • Temporal variation of suspended sediment

  • Akgül, M.A., & Dağdeviren, M., Ekmekçi̇, F., Kağnıcıoğlu, N., (2019). Köyceğiz Gölü Su Kalitesi Parametrelerinin Uzaktan Algılama İle Tahmin Edilmesi. 10. Ulusal Hidroloji Kongresi, 9-12 Ekim 2019, Muğla Sıtkı Koçman Üniversitesi, Muğla/TURKEY, Volume 2, P. 805-814.

  • Bernstein, L.S., Adler-Golden, S.M., Sundberg, R.L., Levine, R.Y., Perkins, T.C., Berk, A., (2005). Validation of the QUick Atmospheric Correction (QUAC) algorithm for VNIR- SWIR multi- and hyperspectral imagery. SPIE, Proceedings, Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI. Vol. 5806, pp. 668-678. https://doi. org/10.1117/12.603359.

  • Bresciani M., Cazzaniga I., Austoni M., Sforzi T., Buzzi F., Morabito G., Giardino C., (2018). “Mapping phytoplankton blooms in deep subalpine lakes from Sentinel-2A and Landsat-8.”, Hydrobiologia https://doi. org/10.1007/s10750-017-3462-2.

  • Canty, J.M., (2014). Image Analysis, Classification and Change Detection in Remote Sensing, with Algorithms for ENVI/IDL and Python, Third Edition. CRC Press.

  • DSİ, (2014). Seyhan Havzası Master Plan Raporu., 6.Bölge Müdürlüğü, Adana.

  • ESA, (2015). Sentinel-2 User Handbook, ESA Standard Doc., 24/07/2015 Issue 1 Rev 2

  • ESRI, (2011). ArcGIS Desktop: Release 10. Redlands, CA: Environmental Systems Research Institute.

  • EOS, (2019)., Date of access: 17.11.2019.

  • Gupta, H.V., Sorooshian S., and Yapo, P.O., (1999). Status Of Automatic Calibration For Hydrologic Models: Comparison with Multilevel Expert Calibration, Journal of Hydrologic Engineering. 4(2), 135-143. (ASCE)1084-0699(1999)4:2 (135)

  • Güvel, Ş.P., Akgül, M.A., Aksu, H., (2022). Flood inundation maps using Sentinel-2: a case study in Berdan Plain. Water Supply 1 April 2022; 22 (4): 4098–4108. ws.2022.039.

  • Huizingh, E., (2007). Applied Statistics with SPSS. SAGE Publications Ltd, London. https://doi. org/10.4135/9781446249390.

  • Kabbara, N., Benkheil, J., Awad, M., Barale, V., (2008). “Monitoring water quality in the coastal area of Tripoli (Lebanon) using highresolution satellite data.”, ISPRS Journal of Photogrammetry & Remote Sensing, 63, 488–495.

  • Kontopoulou, E., Kolokoussis, P., Karantzalos K., (2017). “Water quality estimation in Greek lakes from Landsat 8 multispectral satellite data”, European Water, Vol.58, pp.191-196.

  • Matthews, G.V.T., (1993). The Ramsar Convention on Wetlands: Its History and Development (Ramsar Convention Bureau).

  • Nash, J.E., Sutcliffe, J.V., (1970). River Flow Forecasting through Conceptual Models 1. A Discussion of Principles. Journal of Hydrology 10(3), 282-290.

  • Sentinel-2 Team, (2015). “The story of Sentinel-2”, ESA Bulletin 161. P:8.

  • Shiklomanov, I., (1993). “World fresh water resources.”, In: P.H. Gleick, editor. Water in crisis: A guide to the world’s fresh water resources. Oxford Univ. Press, New York.

  • Sòria-Perpinyà, X., Vicente, E., Urrego, P., Pereira- Sandoval, M., Tenjo, C., Ruíz-Verdú, A., Delegido, J., Soria, J.M., Peña, R., Moreno, J., (2021). Validation of water quality monitoring algorithms for sentinel-2 and sentinel-3 in mediterranean inland waters with in situ reflectance data. Water (Switzerland) 13. https://

  • Ticman, Kristina Di V., Medina Jommer M., Gubatanga Jr. Edgardo V., Jalbuena Rey L., Santos Justin Ace S., Ana Raymund Rhommel C. Sta., Blanco Ariel C., (2018). “Assessment of Landsat 8-Based Indices for Water Quality Parameter Estimation in Laguna De Bay, Philippines”, 39th Asian Conference on Remote Sensing (ACRS 2018).

  • Vanhellemont, Q., Ruddick, K., (2016). “ACOLITE processing for Sentinel-2 and Landsat-8: atmospheric correction and aquatic applications extended abstract submitted for the 2016 Ocean Optics Conference”, to be held in Victoria, BC, Canada, 23-28 October 2016.

  • Van Liew, M.W., Arnold, J.G., and Garbrecht, J.D., (2003). Hydrologic simulation on agricultural watersheds: Choosing between two models. Trans. ASAE 46(6): 1539-1551.

  • Zhan, Y., Delegido, J., Erena, M., Soria, J.M., Ruiz- Verdú, A., Urrego, P., Sòria-Perpinyà, X., Vicente, E., Moreno, J., (2022). Mar Menor lagoon (SE Spain) chlorophyll-a and turbidity estimation with Sentinel-2. Limnetica 41, 1.

  • AKGÜL, M. A., & YURTAL, R. (2023). Seyhan Baraj Gölünde Askıda Sedimentin Alansal Dağılımının ve Zamansal Değişiminin Uzaktan Algılama ile Belirlenmesi. Jeoloji Mühendisliği Dergisi, 47(2), 103-118.

  • An Assessment of The Water Quality of Erdemli̇ (Mersi̇ n) Coastal Aquifer
    Fatma Ece Karakuş Mehmet Ali Kurt Ümit Yildirim Cüneyt Güler Onur Güven
    View as PDF

    ABSTRACT: The water quality and quantity of coastal aquifers are increasingly adversly affected due to changing climate conditions and increasing anthropogenic activities. This study was conducted to determine the water quality and pollutants of the Erdemli Coastal Aquifer (ECA). In this study, groundwater sampling was carried out in August 2020 to determine the physical and chemical properties of the water. The obtained results were evaluated according to the World Health Organization (WHO) drinking water standards. It was found that the electrical conductivity values were quite high in samples taken from certain points near the Mediterranean coast of ECA. These samples also exhibited high sodium (Na+) and chloride (Cl−) concentrations, exceeding the recommended WHO limits. Another significant problem in the ECA is nitrate (NO3−) pollution. The nitrate concentrations in the August 2020 samples ranged from 2.17 to 131.51 mg/L, with 15 samples exceeding the limit value (50 mg/L). Some samples also exceeded the WHO-established limit values for trace element concentrations (Al, Fe and Ni). When assessing the groundwater in the study area for agricultural irrigation water quality, it was determined that waters in areas with active seawater intrusion were not suitable for irrigation purposes. The study area and its vicinity have been witnessing the opening of new agricultural areas on a daily basis. This situation further exacerbates the pressure on the declining water resources in the ECA. As a result, the implementation of sustainable integrated water management in ECA is urgently needed.

  • Anthropogenic activities

  • Seawater intrusion

  • Erdemli Coastal Aquifer (ECA)

  • Water quality

  • Groundwater

  • Irrigation water

  • Akbulut, C. (2016). Aşağı Seyhan Ovası (Adana) Yeraltı ve Yüzey Suyu Kaynaklarının Hidrojeolojisi ve Hidrojeokimyası, Doktora tezi, Mersin Üniversitesi, Mersin.

  • Alfarrah, N., & Walraevens, K. (2018). Groundwater overexploitation and seawater intrusion in coastal areas of arid and semi-arid regions. Water, 10(2), 143.

  • Gaaloul, N., Pliakas, F., Kallioras, A., Schuth, C., & Marinos, P. (2012). Simulation of seawater intrusion in coastal aquifers: Forty five-years exploitation in an eastern coast aquifer in NE Tunisia. The Open Hydrology Journal, 6(1). DOI:10.2174/1874378101206010031

  • Krishan, G., Vashisht, R., Sudarsan, N., & Rao, M. S. (2021). Groundwater salinity and isotope characterization: a case study from South-West Punjab, India. Environmental Earth Sciences, 80, 1-11. DOI: 10.1007/s12665-021-09419-7

  • Leslie, D. L., & Lyons, W. B. (2018). Variations in dissolved nitrate, chloride, and sulfate in precipitation, reservoir, and tap waters, Columbus, Ohio. International Journal of Environmental Research and Public Health, 15(8), 1752. DOI: 10.3390/ijerph15081752

  • Mullaney, J. R., Lorenz, D. L., & Arntson, A. D. (2009). Chloride in groundwater and surface water in areas underlain by the glacial aquifer system, northern United States (Scientific Investigations Report). Reston, VA: US Geological Survey.

  • Samantara, M. K., Padhi, R. K., Sowmya, M., Kumaran, P., & Satpathy, K. K. (2017). Heavy metal contamination, major ion chemistry and appraisal of the groundwater status in coastal aquifer, Kalpakkam, Tamil Nadu, India. Groundwater for Sustainable Development, 5, 49-58.

  • Schoeller, H. (1955). Gechemie des Eaux Souterranes. Paris, France, Rev. Inst. Franc. Petrole.

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517-568. 2927(02)00018-5

  • Speight, J. G. (2019). Natural water remediation: Chemistry and Technology. Butterworth- Heinemann.

  • TEMA (2021) [Online]. Available: https://topraktema. org/toprak-azot-dongusu.

  • Varol, S. (2011). Tefenni (Burdur) Ovası Hidrojeolojisi ve Hidrojeokimyasal Özelliklerinin Tıbbi Jeoloji Açısından Değerlendirilmesi, Doktora Tezi, Süleyman Demirel Üniversitesi, Isparta

  • United States Salinity Laboratory Staff (USSLS), (1954). Diagnosis and Improvement of Saline and Alkali Soils. Handbook 60, United States Department of Agriculture, 160 pp.

  • Wilcox, L.V. (1954). Classification and use of irrigation water. U.S. Department of Agriculture Circular 969, Washington, DC.

  • World Health Organization, (2011). Guidelines for Drinking Water Quality, 4th ed., WHO Publications, Geneva, Switzerland, 2011.

  • ECE-KARAKUŞ, F., KURT, M. A., YILDIRIM, Ü., GÜLER, C., vd. (2023). Erdemli (Mersin) Kıyı Akiferi Su Kalitesinin Değerlendirilmesi. Jeoloji Mühendisliği Dergisi, 47(2), 119-134.

  • Improvement of Clay Soil Using a Plaster Mortar Additive
    Mohammed Zainel Qader Hasan Çetin Emre Pinarci
    View as PDF

    ABSTRACT: The engineering properties of a clay soil and its mixtures (5, 10 and 15% by weight) with a plaster mortar additive (PMA) were studied through a series of soil mechanical tests to investigate possibilities to improve its undesired/problematic plasticity, strength, compaction and consolidation characteristics. The tests included the Atterberg limits, shear box, compaction, consolidation, and unconfined compressive strength tests. The results demonstrated that using PMA can significantly enhance the soil properties and serve as a soil stabilizer. Adding PMA led to a decrease in the plasticity values of the soils. Moreover, it was observed that the highest maximum dry unit weight and the lowest optimum moisture content were achieved when 15% PMA was added. The soil strength properties reached maximum values when the mixtures contained 15% PMA. Additionally, an optimal coefficient of volume compressibility (mv) was obtained when the PMA ratio in the mixtures was 10%. It was concluded that the plaster mortar additive used in this study could significantly improve the geotechnical parameters of the soil.

  • Handere clay

  • soil stabilization

  • plaster mortar additive

  • compaction

  • Akbarimehr, D., & Fakharian, D. (2021). Dynamic shear modulus and damping ratio of clay mixed with waste rubber using cyclic triaxial apparatus. Soil Dynamics and Earthquake Engineering. 106435.

  • Agarwal, B. K., Shah, J. & Sachan, A. (2023). Determination of optimum content of additive for stabilization of expansive soil considering its shrinkage, swelling, desiccation cracking, and shear strength response. Transportation Infrastructure Geotechnology.

  • Ahmed, H. (2023). Two-dimensional study of the inclusions of skirt sand and deep cement piles to improve the load-displacement behavior of circular foundations on soft clay soil. Heliyon. e13627.

  • ASTM D 2166, (2009). Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, In: Annual Book ASTM Standards, Volume 04.08, West Conshohocken, p 201–206.

  • ASTM, D 2435, (2009). Standard Test Method for One-Dimensional Consolidation Properties of Soils, In: Annual Book of ASTM Standards, Volume 04.08, West Conshohocken, p 238–247.

  • ASTM, D 3080-98, (2003). Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. Annual Book of ASTM Standards, pp.347–352. West Conshohocken, PA, 4.08

  • ASTM, D 698-00, (2009). Standard Test Method for Laboratory Compaction Characteristics of Soil Using Standard Effort. Annual Book of ASTM Standards. American Society for Testing and Materials, 04.08, West Conshohocken, pp. 78– 87.

  • Aswad M. F., Al-Gharbawi, A. S. A, Fattah, M. Y., Mustfa, R. H. & Hameed, H. R. (2023). Improvement of Clayey Soil Characteristics Using Poly Acrylamide Geopolymer, Transportation Infrastructure Geotechnology.

  • Cetin, H., Fener, M. & Günaydın, O., 2006. Geotechnical properties of tire-cohesive clayey soil mixtures as a fill material. Engineering Geology, Elsevier, Vol. 88, pp. 110-120.

  • Chen, Y., Zhao, W., Han, J., & Jia, P. (2019). A cel study of bearing capacity and failure mechanism of strip footing resting on c-φ soils. Comput. Geotech. 111, 126–136.

  • Cosentino, D., Darbaş, G., Gliozzi, E., Grossi, F., Gürbüz, K. & Nazik, A. (2010a). How did the Messinian salinity crisis impact the Adana Basin? 7th International Symposium on Eastern Mediterranean Geology, Adana, Turkey, 18–22 October 2010. Abstract Book, 145.

  • Cosentino, D., Darbaş, G., & Gürbüz, K. (2010b). The Messinian salinity crisis in the marginal basins of the peri-Mediterranean orogenic systems: examples from the central Apennines (Italy) and the Adana Basin (Turkey). EGU General Assembly 2010. 2-7 May, 2010 in Vienna, Austria, p.2462

  • Cipollari, P., Cosentino, D., Radeff, G., Schildgen, T. F., Faranda, C., Grossi, F., Gliozzi, E., Smedile, A., Gennari, R., Darbas, G., Dudas, Ö., Gürbüz, K., Nazik, A., & Echtler, H. (2012). Easternmost Mediterranean evidence of the Zanclean flooding event and subsequent surface uplift: Adana Basin, southern Turkey. Geological Society, London, Special Publications Volume 372 Pages 473 – 494.

  • Darbaş, G. & Nazik, A. (2010). Micropaleontology and paleoecology of the Neogene sediments in the Adana Basin (South of Turkey). Journal of Asian Earth Sciences 39, 136–147.

  • Ding, X., Qu, L., Yang, J., & Wang, C., (2020). Experimental study on the pile group-soil vibration induced by railway traffic under the inclined bedrock condition. Acta Geotech. 15 (12), 3613–3620.

  • Faranda, C., Cipollari, P., Cosentino, D., Gliozzi, E. & Pipponzi, G. (2008). Late Miocene ostracod assemblages from eastern Mediterranean coral- reef complexes (central Crete, Greece). Revue de Micropaléontologie 51, 287–308.

  • Gürbüz, K. & Kelling, G. (1993). The provenance of Miocene submarine fans in the northern Adana Basin, southern Turkey: a test of discriminant function analysis. Geological Journal 28, 277– 293.

  • mastercast-301

  • Pengjiao, J., Wen, Z., Khoshghalb, A., Pengpeng, N., Baofeng, J., Yang, & C., Shengang, L., (2020). A new model to predict ground surface settlement induced by jacked pipes with flanges. Tunn. Undergr. Sp. Tech. 98, 103330.

  • Proctor, R. R., (1933). Fundamental principles of soil compaction. Engineering News-Record, Vol. 111, Nos. 9, 10, 12, and 13.

  • Schmidt, G. C., (1961). Stratigraphic nomenculature for Adana region, Petroleum District VII: Petroleum Administration Bulletin, Ankara, 6. 47- 63.

  • Sharma, L., Sirdesai N. N., Sharma K. M, & Singh T. N. (2018). Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: a comparative study, Appl. Clay Sci. 152 183–195.

  • Sheob. M., Sajid, M., Ansari, A., M., Rais, I., Sadique, M.R., & Ahmad, S. (2023). Using a blend of cement and waste glass powder to improve the properties of clayey soil. Materials Today: Proceedings.

  • Suresh, R. & Murugaiyan, V. (2021). Influence of chemical admixtures on geotechnical properties of expansive soil, Int. J. Eng., Trans. A: Basics 34 (1). 19–25.

  • Tong, L., Li, H., Ha, S.I. & Liu, S., (2022). Lateral bearing performance and mechanism of piles in the transition zone due to pit-in-pit excavation. Acta Geotech 17 (5), 1935–1948.

  • Tran, Q, N., Hoy, M., Suddeepong, A., Horpibulsuk, S., K., K. & Arulrajah, A. (2022). Improved mechanical and microstructure of cement- stabilized lateritic soil using recycled materials replacement and natural rubber latex for pavement applications. Construction and Building Materials, 347, 128547.

  • Ünlügenç, U. C. (1993). Controls on Cenozoic sedimentation, Adana Basin, Southern Turkey. PhD thesis, University of Keele.

  • Wang, A., Zhang, D., & Deng, Y., (2018a). Lateral response of single piles in cement-improved soil: numerical and theoretical investigation. Comput. Geotech. 102, 164–178.

  • Wang, A., Zhang, D., & Deng, Y., (2018b). A simplified approach for axial response of single precast concrete piles in cement-treated soil. International Journal of Civil Engineering. 16 (10), 1491–1501.

  • Yang, S., Lohnes, R.A., & Kjartanson, B.H. (2002). Mechanical properties of shredded tires. Geotechnical Testing Journal 25, 44–52.

  • Yetiş, C. & Demirkol, C., (1986). Adana Baseni Batı kesiminin detay etüdü. MTA Rapor No: 8037, 187s. (unreleased, in Turkish).

  • Yetiş, C., Kelling, G., Gökçen, S.L. & Baroz, F. (1995). A revised stratigraphic framework for Later Cenozoic sequences in the northeastern Mediterranean region. Geol. Rundsch. 84, 794– 812.

  • Yi, Y. L. Liu, & Gu, S. (2015). Microstructural and mechanical properties of marine soft clay stabilized by lime-activated ground granulated blast furnace slag, Appl Clay Sci 103 71–76.

  • Youwai, S., & Bergado, D.T., (2004). Numerical analysis of reinforced wall using rubber tire chips-sand mixtures as backfill material. Computers and Geotechnics 31, 103–114.

  • Zada, U., Jamal, A., Iqbal, M., Eldin, S. M, Almoshaogeh, M., Bekkouche, S. R., & Almuaythir, S., (2023). Recent advances in expansive soil stabilization using admixtures: current challenges and opportunities. Case Studies in Construction Materials. e01985.

  • Zhuang, Y., Cui, X., Zhang, S., Dai, G., & Zhao, X. (2020). The load transfer mechanism in reinforced piled embankment under cyclic loading and unloading. Eur. J. Environ. Civ. En. 1–15.

  • Zhou, EQ., Yao, Y., Cui, L. & Wang, L. (2023). Shear strength characteristics of unsaturated rubber silt mixtures. Rock and Soil Mechanics, 44 (7): 1949-1958.

  • QADER, M., ÇETİN, H., & PINARCI, E. (2023). Improvement of Clay Soil Using a Plaster Mortar Additive. Jeoloji Mühendisliği Dergisi, 47(2), 135-148.

  • An Investigation of the Disturbance Effect and Depth-Dependent Soil Behavior of Ankara Clay Based on Geotechnical Field and Laboratory Tests

    View as PDF

    ABSTRACT: As a result of the characteristics of Ankara Clay, such as its overconsolidated, active, highly plastic, and stiff consistency, obtaining undisturbed samples is challenging and adversely affects the reliability of laboratory test results. Due to this problem, studies in the literature have been mainly limited to shallow depths and no depth-related evaluation has been performed. Within the scope of this research, soil characterization studies related to depth have been carried out using approximately 5500 samples obtained from in-situ field and laboratory tests from clay units located in the west of Ankara at different depths. The frequency distributions of geotechnical parameters have been statistically examined, empirical equations have been developed between parameters, and the effect of sample disturbance has been evaluated. To quantify the effect of disturbance and to verify the accuracy of the identified relationships between soil parameters, laboratory test results have been compared with the existing literature, and sensitivity changes between undisturbed-disturbed and remolded samples, in terms of undrained shear strength (Cu) and liquidity index (LI) values, have been identified. Considering these studies, an approach for identifying disturbed samples has been proposed. The method was tested with validation studies using laboratory results from clayey soils with similar soil properties. As a result of excluding the samples detected as disturbed within the proposed method from the dataset, high percentages of increases have been observed in the success of predicting undrained shear strength in the empirical equations developed both in the literature and within the scope of the study. In conclusion, the present study has not only provided a detailed depth-dependent characterization of the Ankara Clay, but also a new perspective for evaluating the effects of disturbance on sensitive clay samples. These findings have practical implications, especially in civil and geotechnical engineering where soil behavior at different depths is essential for the stability and design safety of underground structures.

  • Ankara,

  • Ankara Clay

  • Effects of sample disturbance

  • Sensitivity

  • Depth-related variation of the soil index and shear strength parameters

  • Akgün H., Türkmenoğlu AG., Met İ., Yal GP., Koçkar MK., Karakas ZS. (2017). The use of Ankara clay as a compacted clay liner for landfill sites. Clay Miner 52(3):391–412

  • Ağaoğlu. S. (1974). Anisotropy in compressibility of M.E.T.U. Campus clay, MSc Thesis, M.E.T.U., Ankara, 79p.

  • Ameratunga, J., Sivakugan, N., & Das, B. M. (2016). Correlations of soil and rock properties in geotechnical engineering. Springer India.

  • Ankara Belediyesi, EGO Genel Müdürlüğü (1993). Ankara Metrosu 2. Etap Raylı Sistem Çalışmaları, Kızılay-Çayyolu Geoteknik Raporu, TEKAR Teknik Araştırma Limited Şirketi, Ankara.

  • Ankara Belediyesi, EGO Genel Müdürlüğü (1994). Ankara Hafif Raylı Sistem Geçişi Sistem İşleri, Dikimevi-ASTI Sondaj Çalışmaları, Yüksel Proje İnş, Ankara.

  • Ankara Belediyesi, EGO Genel Müdürlüğü (2001). Ankara Raylı Ulaşım Sistemi 3. Aşama Çalışmaları, Batıkent-Sincan O.I.D. Zemin Etüt Raporu, GÜRİŞ İnşaat ve Mühendislik A.Ş., Ankara.

  • Ankara Belediyesi, EGO Genel Müdürlüğü (2002). Ankara Hafif Demiryolu Transit Sistem Çalışmaları, Ankaray 3. Etap 1. Tur (Ana İstasyonlar) Sondajı Çalışmaları, Yüksel Proje Int., Ankara.

  • Ankara Belediyesi, EGO Genel Müdürlüğü, (2003). Ankara Metrosu 2. Etap İşleri, Söğütözü İstasyonu, Jeoteknik Rapor, TOKER Sondaj ve İnşaat A.Ş., Ankara.

  • Ankara Belediyesi, EGO Genel Müdürlüğü, (2004). Ankara Raylı Ulaşım Sistemi M2 Hattı Ümitköy- Çayyolu Kesimi, Zemin Etüdü Çalışması, TOKER Sondajı ve İnşaat A.Ş., Ankara.

  • Ankara Belediyesi, EGO Genel Müdürlüğü, (2004). Ankara Raylı Ulaşım Sistemi M2 Hattı Ümitköy- Çayyolu Kesimi, Jeoteknik Değerlendirme Raporu, AKTÜRK İnşaat Sanayi ve Ticaret A.Ş., Ankara.

  • Avşar, E., Ulusay, R., & Sonmez, H. (2009). Assessments of swelling anisotropy of Ankara Clay, Engineering Geology, 105(1-2), 24-31.

  • Binal, A., Bas, B., & Karamut, O. R. (2016). Improvement of the strength of Ankara Clay with self-cementing high alkaline fly ash, Procedia Engineering, 161, 374-379.

  • Birand, A.A. (1976). Presentation of a Case of Damage to an Airfield Pavement, M.E.T.U. Journal of Pure and Applied Sciences, Vol.9, No.1, pp.99-111.

  • Birand, A.A. (1977). Ankara yöresi zeminlerde ön yükleme isotropisi. 4. Tubitak Teknik Kongresi, Altınyunus, Izmir, pp.277-287.

  • Birand, A.A. (1978). Ankara Yöresi Zeminleri ve Jeoteknik Sorunlar, Yerbilimleri Açısından Ankara’nın Sorunları Sempozyumu, Türkiye Jeoloji Kurumu, pp. 55-60.

  • Çokça, E., & Tilgen, H. P. (2010). Shear strength- suction relationship of compacted Ankara clay. Applied Clay Science, 49(4), 400-404.

  • Çolpan, M. (1969). Correlation between laboratory and field vane shear strength, MSc Thesis, M.E.T.U., Ankara.

  • Dağar, V. (2017). A study on the tensile strength of compacted Ankara clay and kaolin clay (MSc Thesis). Middle East Technical University.

  • Deliktaş, C., & Çokça, E. (2020). Influence of swell on undrained shear strength of expansive Ankara Clay, Arabian Journal of Geosciences, 13(18), 1-9.

  • Demiryolları, Limanlar ve Hava Meydanları İnşaatı Genel Müdürlüğü (DLH) (1994), Sincan- Yenikent-Eryaman-Batikent-Etimesgut Banliyö Tren Güzergahı, Geoteknik Laboratuvar Raporu Ek I-II, Doğan Mühendislik ve Haritacılık Ltd. A.Ş., Ankara.

  • D.S.İ. (1975). Ankara güneyi hidrojeoloji etüd raporu, D.S.İ. Genel Müdürlüğü Jeoteknik Hizmetler ve Yeraltısuları Dairesi Başkanlığı Yayını, 40-46p.

  • Erol O. (1973). Geomorphological outlines of the Ankara area (Summary), Map 1:100.000.Ankara University, D.T.C.F. Publication, No:16, Geomorphology Maps, Ankara, No.1, 29 pages.

  • Ergüler, Z. A., & Ulusay, R. (2003). A simple test and predictive models for assessing swell potential of Ankara (Turkey) Clay. Engineering Geology, 67(3-4), 331-352.

  • Etimesgut Belediyesi (2005). Çeşitli Mühendislik Jeoloji ve Bayındırlık İşleri için Geoteknik Sondaj Çalışmaları, Ankara.

  • Hara, A., Ohta, T., Niwa, M., Tanaka, S., and Banno, T. (1974). Shear Modulus and Shear Strength of Cohesive Soils, Soils and Foundations, Vol.14, No.3, pp.1-12.

  • İspir, M. E. (2011). A laboratory study of anisotropy in engineering properties of Ankara Clay, MSc Thesis, M.E.T.U., Ankara.

  • Kasapoğlu, K.E. (1980). Geo-engineering properties of the city of Ankara foundation soils. (Associate Professorship Thesis). Hacettepe University, Geological Engineering Department, Beytepe, Ankara

  • Kayabaşı, A. (2020). Geotechnical properties of fine- grained soils in Ankara/Turkey: an assessment of the existing empirical equations, Environmental Earth Sciences, 79, 1-27.

  • Kiper, O.B. (1983). Etimesgut-Batıkent yöresindeki üst Pliosen çökellerinin jeomühendislik özellik- leri ve konsolidasyonu (Ph. D. Dissertation). Ha- cettepe University, Ankara.

  • Koçkar, M.K. (2006). Engineering geological and geotechnical site characterization and determination of the seismic hazards of Upper Pliocene and Quaternary deposits situated towards the west of Ankara (Ph. D. Dissertation). METU, Geological Eng. Dept., Ankara.

  • Koçkar, M. K., Akgün, H., & Rathje, E. M. (2010). Evaluation of site conditions for the Ankara Basin of Turkey based on seismic site characterization of near-surface geologic materials. Soil Dynamics and Earthquake Engineering, 30(1-2), 8-20.

  • Kulhawy, F. H., & Mayne, P. W. (1990). Manual on estimating soil properties for foundation design (No. EPRI-EL-6800). Electric Power Research Inst., Palo Alto, CA (USA); Cornell Univ., Ithaca, NY (USA).

  • Lohnes, R. (1974). Geological report on Ankara Clay, M.E.T.U. Department of Civil Engineering, Ankara (Unpublished).

  • Met, I., & Akgün, H. (2015). Geotechnical evaluation of Ankara clay as a compacted clay liner. Environmental Earth Sciences, 74(4), 2991- 3006.

  • Mirata, T. (1976). Short term stability of slopes in Ankara clay. Ph.D. thesis. University of London.

  • Maden Tetkik ve Arama Genel Müdürlüğü (M.T.A.) (1954), ODTÜ Kampüs Alanında Yürütülen Jeolojik Sondaj Çalışmaları.

  • Maden Tetkik ve Arama Genel Müdürlüğü (M.T.A.) (2002), ODTÜ Kampüs Alanında Yürütülen Jeolojik ve Hidrojeolojik Sondaj Çalışmaları.

  • Nhuan, B. D. (1981). Effect of sample disturbance on the geotechnical properties of soft clay.

  • Ördemir, T and Alyanak, I. (1965). Reports of soil studies of Stad Hotel, Kocatepe Mosque, Ziraat Bankasi, and Emlak Kredi Bankasi, Ankara (Unpublished work).

  • Ördemir, I., Soydemir, C., Birand, A. (1977). Swelling problems of Ankara clays. 9th International Conference of Soil Mechanics and Foundation Engineering, Tokyo, 1, 243-247.

  • Seed, H., Woodword, R.J. and Lundgren, R. (1962). Prediction of swelling potential of compacted clay. Journal of Soil Mechanic and Foundation Division, A.S.C.E, 88 (3), 53-87.

  • Shimobe, S., & Spagnoli, G. (2019). Some relations among fall cone penetration, liquidity index, and undrained shear strength of clays considering the sensitivity ratio. Bulletin of Engineering Geology and the Environment, 78(7), 5029-5038.

  • Sincan Belediyesi (2005). Çeşitli Mühendislik Jeoloji ve Geoteknik Bayındırlık İşleri için Sondaj Çalışmaları, Ankara.

  • Stroud, M. A. (1974). The standard penetration test in insensitive clays and soft rocks, In Proceedingsof the 1st European Symposium on Penetration Testing, Stockholm, Sweden, Vol. 2, No. 2, pp. 367-375.

  • Sürgel, A. (1976). A Survey of the Geotechnical Properties of Ankara Soils, MSc Thesis, M.E.T.U. Civil Engineering Department, 96 Pages.

  • Şahin, G. (2022). Investigation of Soil Behavior of Ankara Clay Based on Geotechnical Field and Laboratory Experiments. (MSc Thesis). Hacettepe University, Ankara.

  • Van der Merwe, D.H. (1964). Prediction of Heave from the Plasticity Index and Percentage of Clay Fraction of Soils. Transactions of the South African Institution of Civil Engineers, 6, 103- 107.

  • Yaman, G. (2007). Prediction of geotechnical properties of cohesive soils from in-situ test: an evaluation of a local database (MSc Thesis). Middle East Technical University.

  • Yılmaz, I. (2000). Evaluation of shear strength of clayey soils by using their liquidity index, Bulletin of Engineering Geology and the Environment, 59(3), 227-229.

  • Yılmaz, U. (2006). Ankara kilinin (Çankaya-Ankara) sıkışma-kabarma özelliklerinin incelenmesi, S.D.U., MSc Thesis.

  • Yüncü, H. (1972). An Investigation of Volume Change of Ankara Clay, MSc Thesis, M.E.T.U., Civil Eng. Dept., 52 pages.

  • ŞAHİN, G., & KOÇKAR, M. K. (2023). Ankara Kilinde Örselenme Etkisinin ve Derinliğe Bağlı Zemin Özelliklerinin Jeoteknik Arazi ve Laboratuvar Deneylerine Bağlı Olarak İncelenmesi. Jeoloji Mühendisliği Dergisi, 47(2), 149-164.

  • The Historical Development of Emergency and Disaster Management Plans
    Bülent Özmen
    View as PDF

    ABSTRACT: The Kahramanmaraş-centered earthquakes, which occurred on February 6, 2023 and have been the disaster of the century, caused the death of more than fifty thousand of our citizens and an economic loss of over 100 billion dollars, affecting Türkiye very seriously and severely disrupting the sustainable development goals. In addition to the earthquakes, Türkiye is exposed to many different types of disasters, especially floods and forest fires. Many of our citizens lose their lives every year, economic losses occur and the whole society is affected by disasters psychologically. This data shows us that policies that will combat disasters at the desired level have not yet been developed. In order to minimize the effects of possible disasters, many studies need to be carried out on different subjects and areas by looking at the event holistically. Among these studies, emergency and disaster management plans have an important place. Many regulations regarding the preparation of these plans have been made in many laws and regulations published at different times since 1945. The aim of this article is to reveal chronologically how disaster and emergency management plans have developed in the historical process, to provide information about Türkiye’s Disaster Response plan dated 2014 and 2022, to guide the preparation of the plans, to contribute to their effective implementation, and to draw attention to the importance and necessity of the issue..

  • Emergency

  • Disaster

  • Disaster Management

  • Disaster Response

  • Plan

  • 7269 Sayılı Kanun’un 4 üncü Maddesine Göre Hazırlanan Yönetmelik. (1963, 9 Nisan). Resmi Gazete (Sayı: 11377). https://www.resmigazete.

  • AFAD. (2023). 06 Şubat 2023 Pazarcık-Elbistan Kahramanmaraş (Mw: 7.7 – Mw: 7.6) Depremleri Raporu. Afet ve Acil Durum Yönetimi Başkanlığı.

  • Afet ve Acil Durum Müdahale Hizmetleri Yönetmeliği. (2013, 18 Aralık). Resmi Gazete (Sayı: 28855). eskiler/2013/12/20131218-13.htm

  • Afet ve Acil Durum Müdahale Hizmetleri Yönetmeliği. (2022, 24 Şubat). Resmi Gazete (Sayı: 31760). eskiler/2022/02/20220224-31.pdf

  • Afetlere İlişkin Acil Yardım Teşkilatı ve Programları Hakkında Yönetmelik. (1968, 12 Eylül). Resmi Gazete (Sayı: 12999). https://www.resmigazete.

  • Afetlere İlişkin Acil Yardım Teşkilatı ve Planlama Esaslarına Dair Yönetmelik. (1988, 8 Mayıs). Resmi Gazete (Sayı: 19808). https://www.

  • Bozkurt, Ö. Çiçekdağı, H.İ. (2023). Afetlere müdahale mevzuatının tarihi gelişimi. N. Varol ve T. Gültekin (Ed.ler), Disiplinlerarası Bakışla Afet Risk Yönetimi 1, (ss. 237-262). Nobel Yayınları.

  • Bozkurt, Ö. (2023). Türkiye afet müdahale planı’nda (TAMP) afet yönetişiminin izleri. N. Varol ve Ö. Bozkurt (Ed.ler). Afet Yönetişimi, (ss 27-50). Ankara Üniversitesi.

  • Özmen, B. (2017). Türkiye’de afet ve acil durum yönetim planlarının mevcut durumu ve mevzuat karmaşası. Afet ve Acil Durum Yönetiminde Kurumlararası İşbirliği ve Yönetişimi Çalıştayı Bildiriler Kitabı, (s.205-214).

  • Özmen, B. 2018, Acil durum ve afet yönetimi planları mevzuatı. S. Pampal (Ed.), Acil Durum ve Afet Yönetimi Planları, (s.22-41). Anadolu Üniversitesi.

  • Özmen, B. Tün, M. (2022). Türkiye afet müdahale planına ilişkin tespit ve öneriler. 4. Uluslararası Afet ve Dirençlilik Kongresi Bildiri Özleri Kitabı, (s.21-22).

  • Şahin, A.U. (2020). Afet yönetimi ve planlaması perspektifinden Türkiye afet müdahale planının değerlendirilmesi. Dirençlilik Dergisi, 4(1), 129- 158.

  • T.C. Cumhurbaşkanlığı Strateji ve Bütçe Başkanlığı. (2023). 2023 Kahramanmaraş ve Hatay Depremleri Raporu. Strateji ve Bütçe Başkanlığı.

  • Türkiye Afet Müdahale Planı (TAMP). (2014, 3 Ocak). Resmi Gazete (Sayı: 28871). eskiler/2014/01/20140103-12.htm

  • Türkiye Afet Müdahale Planı (TAMP). (2022, 15 Eylül). Resmi Gazete (Sayı: 31954). eskiler/2022/09/20220915-28.pdf

  • Umumi Hayata Müessir Afetler Dolayısiyle Alınacak Tedbirlerle Yapılacak Yardımlara Dair Kanun. (1959, 25 Mayıs). Resmi Gazete (Sayı: 10213).

  • Yersarsıntısından Evvel ve Sonra Alınacak Tedbirler Hakkında Kanun. (1944, 22 Temmuz). Resmi Gazete (Sayı: 5763). https://www.resmigazete.

  • ÖZMEN, B. (2023). Acil Durum ve Afet Yönetimi Planlarının Tarihsel Gelişimi. Jeoloji Mühendisliği Dergisi, 47(2), 165-181.

    View as PDF