Jeoloji Münendisliği Dergisi
Jeoloji Mühendisliği Dergisi

Jeoloji Mühendisliği Dergisi

2011 HAZİRAN Cilt 35 Sayı 1
View as PDF
View as PDF
View as PDF
Comparison of Permeability Coefficients Calculated on the Basis of Grain Size Analyses: Meşelik and Tepebaşı Examples
Belgin Güneş Galip Yüce
View as PDF

ABSTRACT:  This study aims to compare the permeability coefficients calculated based on the particle sizeanalyses peculiar to the soil samples of some districts at Meşelik and Tepebaşı residential areas inEskişehir. The study area covers 6 km2. In this study, the properties of units in alluvial deposit cut by 29boreholes previously drilled in the area were examined from borehole logs contained in the geological  reports. On the basis of the sieve analyses, particle size distribution curves were drawn. The parametersof D60, D50, D30, D20, D10, I0, U, Cc values were calculated by using these graphs. Porosity values werecalculated by using Gs, specific density and water content. Permeability coefficients were also calculatedfor the units having no water content values considering the intervals accepted by the literature.Dependently or independently on porosity values, permeability coefficients were individually calculated byusing the Hazen, Kozeny-Carman, Breyer, Slichter, Terzaghi, USBR and Alyamani-Sen formulas, for eachcore samples from different depths of the boreholes and then the most appropriate formula for differentdepths and units was determined. Variations of permeability coefficient for different grain sizes andporosities were studied. Based on the outcomes of this study, calculated permeability coefficients arealmost similar for uniform soil units, however, different for non-uniform units. It is inferred that usingabove-mentioned approaches for estimation of permeability coefficient for clay material is not suitable. Asa conclusion, estimation of permeability coefficient using Breyer, Slitcher, Terzaghi and Alyamani-Senapproaches are more suitable for non-uniform units while Hazen, Cozeny-Carman ve USBR areapplicable for uniform units.

  • Sieve analysis

  • Eskişehir

  • Permeability coefficient

  • Porosity

  • Grain size curve

  • Alyamani, M.S., Sen, Z., 1993. Determination of Hydraulic Conductivity from Grain-Size Distribution Curves. Groundwater, 31, 551-555.

  • ASTM, 1992. Classification of soils for engineering purposes (Unified Soil Classification System), ASTM D2487, 325-335.

  • Carman, P. C., 1937. Fluid Flow through Granular Beds. Trans.Inst.Chem. Eng., 15,150p.

  • Carman, P.C., 1956. Flow of Gases through Porous Media. Butterworths Scientific Publications, London.

  • Carrier, W.D., 2003. Goodbye Hazen; Hello Kozeny- Carman. Journal of Geotechnical and Geoenvironmental Engineering, 129, 1054-1056.

  • Cheng, C., Chen, X., 2007. Evaluation of methods for determination of hydraulic properties in an aquifer-aquitard system hydrologically connected to river. Hydrogeology Journal, 15, 669-678.

  • DSİ, 2001a. Porsuk havzası su yönetim planı projesi hidroloji raporu, s. 223, Eskişehir.

  • DSİ, 2001b. Porsuk havzası su yönetim planı projesi ara raporu, s. 248, Eskişehir.

  • Esen, E., Yakal, M., Gökçen, M., Mumcu, N., Türkman, M., Dirik, M., 1975. Eskişehir ve İnönü ovaları hidrojeolojik etüt raporu. DSİ Rapor No: 40, 49 s, Ankara.

  • Freeze, A.R, Cherry, J.A., 1979. Groundwater. Pentice-Hall, Englewood Cliffs, NJ, USA.

  • Gözler, M.Z., Cevher, F. Ergül, E. Asutay, H.J., 1996. Orta Sakarya ve güneyinin jeolojisi, MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi, Rapor no: 9973, s. 87, Ankara (yayımlanmamış)

  • Hazen, A., 1892. Some Physical Properties of Sands and Gravels, with Special Reference to their Use in Filtration. 24th Annual Report, Massachusetts State Board of Health, Pub.Doc. No.34, 539-556

  • cGravityofSoils.ppt

  • Kaçaroğlu, F., 1991. Eskişehir ovası yeraltısuyu kirliliği incelemesi. Doktora Tezi, H.Ü. Fen Bilimleri Enstitüsü, 340 s, Ankara (yayımlanmamış).

  • Kozeny, J., 1927. Uber Kapillare Leitung Des Wassers in Boden. Sitzungsber Akad. Wiss.Wien Math.Naturwiss.Kl., Abt.2a, 136, 271-306.

  • McWorter, D. B., Sunada, D. K., 1977. Ground-water hydrology and hydraulics. Water Resources Publications, Littleton, Colorado.

  • Odong, J., 2008. Evaluation of empirical formula for determination of hydraulic conductivity based on grain-size analysis. Journal of American Science, 4 (1), 1-6.

  • Orhan, A., 2005. Eskişehir il merkezi güney bölümü temel zemin birimlerinin jeo-mühendislik özellikleri ve coğrafi bilgi sisteminin uygulanması. Eskişehir Osmangazi Üniversitesi, Doktora Tezi, 125 s, Eskişehir (yayımlanmamış).

  • Sezer, A., Goktepe, A.B., Altun S., 2009. Estimation of the permeability of granular soils using neurofuzzy system. Artificial Intelligence Applications in Environmental Protection Workshop collocated with 5th IFIP Conference on Artificial Intelligen

  • Shepherd, G.R., 1989. Correlations of permeability and grain size. Ground Water, 27 (5), 633-638.

  • Terzaghi, K., Peck, R.B., 1964. Soil Mechanics in Engineering Practice. Wiley, New York.

  • Tosun, H., Türköz, M., Orhan, A., Çamdalı, B., 2001. Meşelik killerinin geoteknik özellikleri, Eskişehir Osmangazi Üniversitesi Bilimsel Araştırma Projeleri Fonu Raporu no:1999- 15015, s. 86, Eskişehir.

  • Vukoic, M., Soro, A., 1992. Determination of hydraulic conductivity of porous media from grain-size composition. Water Resources Publications, Littleton, Colorado

  • Yüce, G., 2007. Spatial distribution of groundwater pollution in the Porsuk river basin (PRB), Turkey. International Journal of Environment and Pollution, 30, 539-547.

  • Yüce, G., Kuran, U., Gördük, S., 2001. Yeraltısu seviye degisimleri ile depremler arasındaki ilişkinin araştırılması: Eskişehir civarındaki gözlemler. ATAG-5 Toplantısı, 37-38, Ankara.

  • Yüce, G., Pınarbaşı, A., Özçelik, Ş., 2002. Eskişehir ovası yeraltısuyu kirliliğinin incelenmesi. Eskişehir Osmangazi Üniversitesi, Araştırma projesi sonuç raporu, Proje No: 2001/28, s.135, Eskişehir.

  • Yüce, G., Pınarbaşı, A., Özçelik, Ş., Uğurluoğlu, D., 2006. Soil and water pollution derived from anthropogenic activities in the Porsuk River Basin, Turkey. Environmental Geology, 49 (3), 359–375.

  • Çelik Güneş, B , Yüce, G . (2011). Tane Boyu Analizlerine Dayalı Olarak Hesaplanan Geçirgenlik Katsayılarının Karşılaştırılması: Meşelik ve Tepebaşı (Eskişehir) Örnekleri . Jeoloji Mühendisliği Dergisi , 35 (1) , 1-26 . Retrieved from https://dergipa

  • Çelik Güneş, B , Yüce, G . Tane Boyu Analizlerine Dayalı Olarak Hesaplanan Geçirgenlik Katsayılarının Karşılaştırılması: Meşelik ve Tepebaşı (Eskişehir) Örnekleri. Jeoloji Mühendisliği Dergisi 35 (2011 ): 1-26

  • Determination of Liquid Limit of Soils Using One Point Fall Cone Method
    Nihat Dipova
    View as PDF

    ABSTRACT: Liquid limit is one of the important soil index parameters and it is determined by means of two standard methods; Casagrande and fall-cone methods. Determination of liquid limit by fall-cone is based on penetration of cone shaped metal object in to a homogeneously prepared soil mud with free fall. Even though it is less operator dependent and it gives more accurate results, compared to the Casagrande method, standard 4 point fall-cone method as imposed in TS 1900, takes long time when too many samples are to be tested for identification purposes. In this study 138 clay samples were tested with fall-cone method, test results were evaluated statistically and determination of liquid limit by means of one point fall-cone was investigated. After the experimental and statistical studies, 3 empirical equations were developed and “LL= W/(0.33*(P/20)+0.66)” equation seemed to be more reliable. Faults to happen during the application of standard 4 point method are reflected on the graph and after drawing a trend line, these faults will be distributed along the trend line. However in the one point method faults will be reflected directly on a single liquid limit value. Therefore, in one point method, test procedure should be obeyed carefully. Although the fall-cone liquid limit test method is proposed method in Turkish Standards, one point method is not mentioned. As in the standards of other countries, it is thought to be appropriate that Turkish Standards include one point fall-cone method.

  • Consistency limits

  • Fall cone

  • Liquid limit

  • One point

  • ASTM, 2000. ASTM D 4318 (American Society of Testing and Materials), Standard Test Methods for Liquid Limit, Plastic Limit and Plasticity Index of Soils, Annual Book of ASTM Standarts.

  • BS, 1990. BS 1377: Part 2:4.3 (British Standard Institution), Liquid Limit-Cone Penetrometer Method, England.

  • CAN/BNQ, 1986. Soils-Determination of Liquid Limit by the Fall Cone Penetrometer Method and Determination of Plastic Limit. Canadian Standards Association and Bureau de normalisation du Quebec, CAN/BNQ 2501-092- M-86.

  • Casagrande, A., 1932. Research on the Atterberg limits of soils. Public Roads, 13 (3), 121-136.

  • Clayton, C.R.I., Jukes, A.W., 1978. A One-Point Cone Penetrometer Liquid Limit Test, Geotechnique, 28 (4), 469-472.

  • Eden, W.J., 1960. Use of a one - point liquid limit procedure, NRC 5599, National Research Council, Canada, Division Of Building Research.

  • Federico, A., 1983. Relationships (Cu-w) and (Cu-δ) for remolded clayey soils at high water content. Riv. Ital. Geotec., XVII (1), 38–41.

  • IS, 1983. IS 2720 Part 5, Indian Standard Code for determination of liquid limit and plastic limit of soils. Bureau of Indian standards, New Delhi.

  • Johnston, M. M., Strohm, W. E., 1968. Results of second division laboratory testing program on standard soil samples, Misc. Paper 3-978, U.S. Army Engineer Waterways Experiment Station Vicksburg, Mississippi, USA.

  • Kayabalı, K., Tüfenkçi, O.O., 2010. Determination of Plastic and Liquid Limits Using the Reverse Extrusion Technique, Geotechnical Testing Journal (GTJ), 33 (1), 14-22.

  • Lee, L.T., Freeman, R. B., 2007. An alternative test method for assessing consistency limits, Geotechnical Testing Journal, 30 (4), 1-8.

  • Leroueil, S., Le Bihan, J. P., 1996. Liquid Limits and Fall Cones, Canadian Geotechnical Journal, 33, 793-798.

  • Mendoza, M.J., Orozco, M., 2001. Quick and Reliable Procedure for Liquid Limit Determination of Fine-Grained Soils, Geotechnical Testing Journal, 24 (1), 103-108.

  • Nagaraj, T.S., Jayadeva, M.S., 1981. Re-examination of one-point methods of liquid limit determination. Geotechnique, 31 (3), 413-425.

  • Norman, L. E. J., 1959. The One-Point Method of Determining the Value of the Liquid Limit of a Soil, Geotechnique, 9 (1), 1-8.

  • Olmstead F.R., Johnston C.M., 1955. Rapid Methods for Determining Liquid Limits of Soils, Bulletin 95, p.27, Highway Research Board, Washington.

  • Orhan M., Özer M., Işık, N.S., 2006. Doğal zeminlerin likit limitinin belirlenmesinde Casagrande ve koni batma yöntemlerinin karşılaştırılması, Gazi Üniv. Müh. Mim. Fak. Dergisi, 21 (4), 711-720.

  • Sridharan, A., Nagaraj, H.B., 1999. Absorption Water Content and Liquid Limit of Soils, Geotechnical Testing Journal, 22 ( 2), 127-133.

  • Sridharan, A., Nagaraj, H. B., Prakash, K., 1999. Determination of the Plasticity Index from Flow Index, Geotechnical Testing Journal, 22 (2), 175- 181.

  • TSE, 1987. TS 1900 (Türk Standartları), İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri, TSE, Bakanlıklar, Ankara, 1987, 133 sayfa.

  • Wasti, Y., Bezirci, M.H., 1986. Determination of the Consistency Limits of Soils by the Fall Cone Test, Canadian Geotechnical Journal, 23, 241- 246.

  • Whyte, I. L., 1982. Soil plasticity and strength – a new approach for using extrusion, Ground Engineering, 15 (1), 16-24.

  • Wroth, C.P., Wood, D.M., 1978. The Correlation of Index Properties with Some Basic Engineering Properties of Soils. Canadian Geotechnical Journal, 15 (2), 137-145.

  • Dipova, N . (2011). Zeminlerin Likit Limitinin Tek Nokta Koni Batma Yöntemiyle Belirlenmesi . Jeoloji Mühendisliği Dergisi , 35 (1) , 27-42 . Retrieved from

  • Dipova, N . Zeminlerin Likit Limitinin Tek Nokta Koni Batma Yöntemiyle Belirlenmesi. Jeoloji Mühendisliği Dergisi 35 (2011 ): 27-42

  • Organic Geochemical and Petrographic Properties of Gölbaşı Harmanlı (Adıyaman) Coals
    Orhan Kavak Selami Toprak
    View as PDF

    ABSTRACT: This study was carried out in Gölbaşı-Harmanlı (Adıyaman) region where coal basin exists. Chemical, petrographical and organic geochemical analyses of the Tertiary aged coals were taken in to consideration. Coal quality investigation along with proximate (moisture, volatile matter, fixed carbon, ash) and elemental analyses (C, H, O, S, N) were performed. The huminite reflectances of organically abundant matter and coal levels were found to be between 0.28% and 0.516% which refer to low maturity levels. This parameter is compatible with fluorescence colors, calorific value (average original 2736 - dry 3727 Kcal/kg) and average Tmax (422 oC). Organic matters of the investigated coals exhibit a low grade transformation, due to a low lithostatic pressure on them. In GC analyses, n-alkanes with low carbon numbers as n-C17, n-C27, n-C30 and n-C3 and CS2 as well as benzen were detected. Triterpanoid component was determined with GC-MS data and tends to imply high ground continental vegetation, but gammacera values to hypersaline depositional conditions. Gölbaşı coals show sub-bituminous and lignite coalification ranks. Rock Eval analysis results show TYPE II/III and III kerogen, with average Tmax value is 422 oC, and corresponding to the immature and premature rank for hydrocarbon generation. The coals are characterised with their abundance of huminite maceral group with small amount of inertinite and liptinite macerals. Mineral matters of the Gölbaşı coals are calcite, clays, and sulfur bearing minerals

  • Adıyaman Gölbaşı

  • Harmanlı

  • Organic geochemistry

  • Organic petrography

  • Tertiary aged coals

  • Altunsoy, M., Özçelik, O., 1993. Organik fasiyesler, Jeoloji Mühendisliği Dergisi, 43, 34-39.

  • Arfaouni, A., Montacer, M., Kamoun, F., Rigane, A., 2007. Comperative study between Rock-Eval pyrolysis and bio-markers parameters: a case study of Ypresian source rocks in centralnorthern Tunisia. Marine and Petroleum Geology, 24, 566-578.

  • ASTM, 1983. Annual book of ASTM standards. Gaseous Fuels; Coal and Coke (D-388-82, D- 2798-79, D-3172-73, D-2799-72, D-3174-82, D-3175-82): 1916 Race Street, Philadelphia, PA 19103, 05.05, 520p.

  • Aydoğan, M., 1985. Adıyaman-Gölbaşı-Harmanlı linyit havzası değerlendirme raporu, Ankara, MTA rapor no: 7695(yayınlanmamış), 23s.

  • Bechtel, A., Saschsenhofer, R.F., Zdravkov, A., Kostova, I., Gratzer, R., 2005. Influence of floral assemblage, facies and diagenesis on petrography and organic geochemistry of the Eocene Bourgas coal and the Miocene Maritza East lignite (Bulgaria).

  • Boggs, S. Jr., 1987. Principles of Sedimentology and Stratigraphy. Merill Publishing Company:A Bell&Howell Company, Columbus Toronto London Melbourne, 784p.

  • Bray, E. E., Evans, E. D., 1961. Distribution of nparaffins as a clue for recognition of source beds. Geochimica et Cosmochimica Acta, 22, 2- 15.

  • Connan, J., 1993. Molecular geochemistry in oil exploration (in: M. L. Bordenave, Editor). Applied Petroleum Geochemistry, Editions Technip, Paris, 175-204.

  • Diessel, K., 1986. The correlation between coal facies and depositional environments. Advances in the Study of the Sydney Basin. Proceedings of 20 th Symposium, The University of Newcastle, 19-22.

  • Durand, B., Niçaise, G., 1980. Procedures for kerogen isolation. In: Durand, B. (Ed.), Kerogen, insoluble organic matter from sedimentary rocks. Techniq, Paris, 35-53.

  • Durand, B., Paratte, M., 1983. Oil potential of coals: a geochemical approach. In: Brooks, J. (Ed.), Petroleum Geochemistry and Exploration of Europe, The Geological Society Special Publication, 12, 255-265.

  • Erik, Y.N., Sancar, S., Toprak, S., 2008. Hafik kömürlerinin (Sivas) organik jeokimyasal ve organik petrografik özellikleri. Türkiye Petrol Jeologları Bülteni, 20 (2), 9-33.

  • Espitalié, J., La Porte, J.L., Madec, M., Marquis, F., Le Plat, P., Paulet, J., Boutefeu, A., 1977. Methodé Rapide De Caractérisation Des Roches Méres De Leur Potentiel Pétrolier Et De Leur Degré D‟Évolution. Rev. L‟Inst. Francais pétrole

  • Espitalié, J., Deroo, G., Marquis, F., 1985. La pyrolyse Rock-Eval et ses applications (deuxiémepartie). Revue Institut Francais du Pétrole, 40, 755-784.

  • Flores, D., 2002. Organic facies and depositional palaeoenvironment of lignites from Rio Maior Basin (Portugal). International Journal of Coal Geology, 48, 181-195.

  • Fowler, M.G., Gentzis, T., Goodarzi, F., Foscolos, A. E., 1991. The petroleum potential of some Tertiary lignites from northern Greece as determined using pyrolysis and organic petrological techniques. Organic Geochemistry, 17, 805-826.

  • Georgakopoulos, A., Valceva, S., 2000. Petrographic characteristics of Neogene Lignites from the Ptolemais and Servia basins, Northern Greece. Energy Sources, 22, 587-602.

  • Gökmen, V., Memikoğlu, O., Dağlı, M., Öz, D., Tuncalı, E., 1993. Türkiye Linyit Envanteri. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara, 356s.

  • Hubbard, B., 1950. Coal as a possible petroleum source rock. American Association of Petroleum Geologists Bulletin, 34 (12), 2347- 2359.

  • International Committee for Coal and Organic Petrology (ICCP), 1998. The new vitrinite classification. Fuel, 77, 349-358.

  • International Committee for Coal and Organic Petrology (ICCP), 2001. The new inertinite classification. Fuel, 80, 459-471.

  • Iordanidis, A. ve Georgakopoulos, A., 2003. Pliocene lignites from Apofysis mine, Amynteo basin, Northwestern Greece: Petrographical characyteristics and depositional environment. International Journal of Coal Geology, 54, 57- 68.

  • İnan, S., 2007. Coalbed gas of biogenic origin in the miocene Soma Basin (Western Turkey). 23 rd International Meeting on Organic Geochemistry, The Riviera International Conference Centre, Turkey, 2s.

  • Jackson, K.S., Hawkins, P.J., Bennett, A.J.R., 1985. Regional facies and geochemical evolution of Southern Denison Trough. Australian Petroleum Exploration Association Journal, 20, 143-158.

  • Kalkreuth, W., Keuser, C., Fowler, M., Li, M., Mcintyre, D., Püttmann, W., Richardson, R., 1998. The petrology, organic geochemistry and palynology of Tertiary age Eureka Sound Group coals, Arctic Canada. Organic Geochemistry, 29, 799-809.

  • Kavak, O., 2010. Petroleum properties of Karaboğaz formation in Adıyaman oil field at South East Turkey through organic geochemical studies. Chemistry and Technology of Fuels and Oils, 6 (562), 30-38.

  • Kolcon, I., Sachsenhofer, R.F., 1999. Petrography, palynology and depositional environments of the early Miocene Oberdof lignite seam, (Styrian Basin, Austria). International Journal of Coal Geology, 4, 275-308.

  • Korkmaz, S., Kara Gülbay, R., 2007. Organic geochemical characteristics and depositional environments of the Jurassic coals in the Western Taurus of Southern Turkey. International Journal of Coal Geology, 70 (4), 292-304.

  • Kvenvolden, K.A., Simoneit, B. R. T., 1990. Hydrothermal derived petroleum examples from Guaymas Basin, Gulf of California, and Escabana Trough, north-east Pacific Ocean. American Association of Petroleum Geologists, 74, 223-237.

  • Langford, F.F., Blanc-Valleron, M. M., 1990. Interpreting Rock-Eval pyrolysis data using graphs of pyrolizable hydro-carbons vs. total organic carbon. American Association of Petroleum Geologists Bulletin 74, 799-804.

  • Moldowan, M., Seifert, W. K., E. J. 1985. Gallegos, Relationship between petroleum composition and depositional environment of petroleum source rocks. American Association of Petroleum Geologists Bulletin, 69, 1255-1268.

  • Mukhopadhyay, P.K., Wade, J.A., Kruge, M.A., 1995. Organic facies and maturation of Jurassic/Cretaceous rocks, and possible oilsource rock correlation based on pyrolysis of asphaltenes: Scotian Basin, Canada. Organic Geochemistry, 22 (1), 85-104.

  • Peters, K.E., 1986. Guidelines for evaluating petroleum source rock using pro-grammed pyrolysis. American Association of Petroleum Geologists Bulletin, 70, 318-329.

  • Peters K. E., Moldowan, J. M., 1993. The Biomarker Guide: Interpreting molecular fossils in petroleum and ancient sediments. Prenctice- Hall, Englewood Cliffs, New Jersey, 363p.

  • Soykan 1997. Adıyaman-Gölbaşı Soykan kömür işletmeleri tanıtımı ve gelişimi, Ankara, 135s.

  • Stach, E., Mackowsky, M.-Th., Teichmüller, M., Taylor, G. H., Chandra, D., Teichmüller, R., 1982. Stach`s Textbook of Coal Petrology. Gebrüder Borntraeger, Berlin, 535p

  • Teichmüller, M., Durand, B., 1983. Fluorescence microscopical rank studies on liptinites and vitrinites in peat and coals, and comparison with results of the Rock-Eval pyrolysis. International Journal of Coal Geology, 2, 197- 230.

  • Teichmüller, M., Littke, R., Taylor, G.H., 1998. The Origin of Organic Matter in Sedimentary Rocks (In Taylor, G.H., Teicmüller, M., Davis, A., Diessel, C.F.K., Littke, R., Robert, P., (eds). Organic petrology, Gebrüder Borntraeger, Berlin, 704p.

  • Ten Haven, H. L., De Leeuw, J. W., Rullkotter, J., Sinninghe Damste, J. S., 1987. Restricted utility of the pristane/phytane ratio as a paleoenvironmental indicator. Nature, 330, 641- 643.

  • Tissot, B.P., Welte, D.H., 1984. Petroleum Formation and Occurrence. Springer-Verlag, Berlin, 699p.

  • Toprak, S., 1996. Alpagut - Dodurga (Osmancık - Çorum) bölgesi çevresindeki kömürlerin oluşum ortamları ve özelliklerinin belirlenmesi. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Doktora tezi, 168s (yayımlanmamış).

  • Toprak, S., 2009. Petrographic properties of major coal seams in Turkey and their formation. International Journal of Coal Geology, 78, 263- 275.

  • Van Krevelen, D.W., 1961. Coal. Elsevier Publishing Company, Amsterdam, 514p.

  • Waples, D. W., Machihara, T., 1991. Biomarkers for geologists-a practical guide to the application of steranes and triterpanes in petroleum geology. American Association of Petroleum Geologists Bulletin, 9, 91p.

  • Yalçın, M.N., Schaefer, R.G., Mann, U., 2007. Methane generation from Miocene lacustrine coals and organic-rich sedimentary rocks containing different types of organic matter. Fuel, 86 (4), 504-511.

  • Kavak, O , Toprak, S . (2011). Gölbaşı Harmanlı (Adıyaman) Kömürlerinin Organik Jeokimyasal ve Petrografik Özellikleri . Jeoloji Mühendisliği Dergisi , 35 (1) , 43-78 . Retrieved from

  • Kavak, O , Toprak, S . Gölbaşı Harmanlı (Adıyaman) Kömürlerinin Organik Jeokimyasal ve Petrografik Özellikleri. Jeoloji Mühendisliği Dergisi 35 (2011 ): 43-78

  • Usability of RQD and Jv for Prediction of Block Volume in Natural Stone Quarries
    Ayberk Kaya Selçuk Alemdar Ali Osman Yilmaz Mehmet Çapik
    View as PDF

    ABSTRACT: In this study, use of Rock Quality Designation (RQD) and Volumetric Joint Count (Jv) parameters forprediction of block volume from Harşit Granitoid exposed in Dogankent (Giresun) area, was investigated.For this purpose, a quarry was chosen as the study area and properties of discontinuities were determinedby performing scan-line surveys on the pit slopes. In prediction of block volume from Harşit Granitoid, Vbwhich is an input parameter of Rock Mass Index (RMi) system, was used. Jv and RQD variables used forpredicting Vb value were defined from the discontinuity spacing measurements performed on differentslopes within the quarry. When considering the Block Shape Factor (β), the blocks can be generallyclassified as “compact, slightly long-flat” shaped. Due to some constrains of RQD, use of Jv values is more effective for predicting block volume. It was concluded that, the average producible block volumefrom Harşit Granitoid was determined to be Vb= 7.15 m3 and this value is within the range of theeconomically producable block volume.  

  • Block volume

  • Harşit Granitoid

  • Jv

  • RMi

  • RQD

  • Cai, M., Kaiser, P. K., Uno, H., Tasaka, Y. ve Minami, M., 2004. Estimation of rock mass deformation modulus and strength of jointed hard rock masses using the GSI system, International Journal of Rock Mechanics and Mining Sciences, 41(1), 3-19.

  • Deere, D. U., 1964. Technical description of rock cores for engineering purposed, Rock Mechanics and Rock Engineering, 1, 17-22p.

  • Gedikoğlu, A., 1978, Harşit Granit Karmaşığı ve çevre kayaçları, Doçentlik Tezi, K.T.Ü. Yer Bilimleri Fakültesi, Trabzon.

  • Goodman R. E. 1995. Block theory and its application, Geotechnique, 45(3), 383-423p.

  • ISRM (International Society for Rock Mechanics), 1981. Rock characterization, Testing and monitoring. International Society of Rock Mechanics Suggested Methods, Pergamon Press, Oxford, 211p.

  • Kaya, K., 2005. RMi kayaç kütle sınıflama yönteminin mermer ocaklarında blok üretim boyutlarının belirlenmesinde kullanılabilirliğinin araştırılması, Yüksek Lisans Tezi, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, İzmir.

  • Köprübaşı, N., 1992. Aşağı Harşit bölgesinin mağmatik petrojenezi ve masif sülfitlerde jeokimyasal hedef saptama uygulamaları, Doktora Tezi, K.T.Ü., Fen Bilimleri Enstitüsü, Trabzon.

  • Köprübaşı, N., 1993. Tîrebolu-Harşit (Giresun) arası Jura-Kretase yaşlı magmatik kayaçların petrolojisi ve jeokimyası, Türkiye Jeoloji Bülteni, 36, 139-150.

  • Palmstöm, A., 1982. The volumetric joint count- a useful and simple measure of the degree of jointing, 4th Int. Congress IAEG, New Delhi, 221–228.

  • Palmström, A., 1985. Application of the volumetric joint count as a measure of rock mass jointing, Proc. Int. Symp. on Fundamentals of Rock Joints, Sweden, 103-110.

  • Palmström A. 1995. RMi – A system for characterization of rock masses for rock engineering purposes, Ph.D. Thesis, Univeristy of Oslo, Norway, 408.

  • Palmström A. 1996. The weighted joint density method leads to improved characterization of jointing, Proc. Conference on Recent Advances in Tunnelling Technology, New Delhi, 6p.

  • Palmström, A., 2005. Measurements of and correlations between block size and rock quality designation (RQD), Tunnels and Underground Space Technology, 20, 362-377.

  • Priest, S.D. ve Hudson J.A., 1976. Discontinuity spacing in rock. İnternational Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 13, 135-148.

  • Rocscience, 2002. DIPS v5.1- User`s Guide. Rocscience Inc., Toronto, Ontario, Canada, 90p.

  • Schultze - Westrum, H., 1961. Giresun vilayeti Espiye sahasının jeolojisi ve yatak bilimi bakımından etüdü (G41 % ve ag), M.T.A. Rapor No: 3090 (Yayınlanmamış), Ankara.

  • Sönmez, H. ve Ulusay, R., 1999. Modifications to the Geological Strength Index (GSI) and their applicability to stability of slopes, International Journal of Rock Mechanics and Mining Science, 36(6), 743-760.

  • Wang, H., Latham, J. P. ve Poole, A. B., 1991. Predictions of block size distribution for quarrying, Quarterly Journal of Engineering Geology, 24, 91-99.

  • Kaya, A , Alemdağ, S , Yılmaz, A , Çapik, M . (2011). Doğal Taş Ocaklarında Blok Hacminin Belirlenmesi için RQD ve Jv’nin Kullanılabilirliği . Jeoloji Mühendisliği Dergisi , 35 (1) , 79-92 . Retrieved from

  • Kaya, A , Alemdağ, S , Yılmaz, A , Çapik, M . Doğal Taş Ocaklarında Blok Hacminin Belirlenmesi için RQD ve Jv’nin Kullanılabilirliği. Jeoloji Mühendisliği Dergisi 35 (2011 ): 79-92

    View as PDF