Jeoloji Münendisliği Dergisi
Jeoloji Mühendisliği Dergisi

Jeoloji Mühendisliği Dergisi

2010 ARALIK Cilt 34 Sayı 2
View as PDF
View as PDF
View as PDF
View as PDF
Engineering Geological Evaluations of Boğaçay (Antalya) Coastal Plain
Nihat Dipova
View as PDF

ABSTRACT: Effects of engineering works on the natural system during urbanization on a coastal plain, and effectsof geological processes on a city are the research areas of engineering geology discipline. Coastal plainsare under effect of natural processes such as flood, coastal erosion, earthquake, sediment accumulationand groundwater level change. In this study, engineering geological issues which should be considered fora coastal plain were examined for Boğaçay coastal plain (Antalya) case. Geology of the plain was defined,engineering properties of the geological units were explained, natural processes which may affectresidential areas were determined, residential facilities were examined in accordance with the naturalconditions, and solutions were recommended for the purpose of land-use. Boğaçay coastal plain is one ofthe most attractive region of Antalya for its touristic, natural, agricultural, and economical values. Somefoundation problems were encountered on buildings constructed on the plain. Soil profile in lagoonal deposits is complex. Allowance of high rise buildings and engineering mistakes are the other problems.The plain is located in the middle of three active fault zones. Due to the existence of very thick and soft soilnear the surface, the earthquake intensities will be greater on the soil surface as compared to rock thestrata lying at greater depths. Sand, gravel and rock quarries in the area destroyed the nature and causedsome environmental problems. Excessive quarrying has resulted in reduction of sediment supply toKonyaaltı beach and thus promoting coastal erosion. There is high flood risk on the plain due to theexistence of steep topography and high rainfall rates in the surrounding area. Based on engineeringgeological criteria, it is required to revise the current urban plans due to problems of the existingresidential plans and high risk for densely populated areas.  

  • Antalya

  • Boğaçay plain

  • Urban geolog

  • Lagoonal soils

  • Engineering geology

  • Akay, E., Uysal, Ş., Poisson, A., Cravatte, J., ve Müller, C., 1985. Antalya Neojen havzasının stratigrafisi. T.J.K. Bülteni, 28 (2), 105-121.

  • Cangir, B., 2008. Hurma ve Sarısu (Antalya) bölgelerindeki zeminlerin geoteknik özelliklerinin araştırılması. Akdeniz Üniversitesi FBE, İnşaat Müh. Ana Bl. Dalı.

  • Çevik,N., 1994. Localisation of Olbia at the north of Pamphilia, Lykia, Anadolu-Akdeniz Arkeolojisi, Akdeniz Üniversitesi Likya Araştırma Merkezi ve Arkeoloji Bölümü Süreli Yayını.

  • Dipova, N., 1997. Assessment of soil behaviour in the Konyaaltı region (Antalya), M.S.Thesis, Middle East Technical University, Ankara, Turkey.

  • Dipova, N., 2009. Preliminary assessments on the modes of instability of the Antalya (SW-Turkey) coastal cliffs. Environmental Earth Sciences, 59 (3), 547-560.

  • Dipova, N., 2010. Geotechnical characterization and facies change detection of the Bogacay coastal plain (Antalya, Turkey) soils. Environmental Earth Sciences, DOI: 10.1007/s12665-010-0575- 6

  • Dipova, N., Cangir, B., 2010. Lagün kökenli kil-silt zeminde sıkışabilirlik özelliklerinin regresyon ve yapay sinir ağları yöntemleri ile belirlenmesi. İMO Teknik Dergi, 21 (3), 5069-5086.

  • DSİ, 1997. Boğa Çayı Taşkın Raporu, DSİ 13. Antalya Bölge Müdürlüğü.

  • Glover, C.P., Robertson, A.H.F., 1998a. Role of regional extension and uplift in the Plio- Pleistocene evolution of the Aksu Basin, SW Turkey. Journal of Geological Society, London, 155, 365-387.

  • Glover, C.P., Robertson, A.H.F., 1998b. Neotectonic intersection of the Aegean and Cyprus tectonic arcs: extensional and strike-slip faulting in the Isparta Angle, SW Turkey. Tectonophysics, 298, 103–132.

  • Kılcı, R.E., 2005. Antalya Liman Mahallesi’ndeki killi zeminin geoteknik özelliklerinin belirlenmesi, Akdeniz Üniversitesi FBE, İnşaat Müh. Ana Bl. Dalı.

  • Öner, A., 1997. Teke yarımadası (Antalya) güneyinde kıyı-kenar çizgisi değişimleri, I. Türkiye’nin Kıyı ve Deniz Alanları, Ulusal Konferansı Bildiriler Kitabı, Ankara.

  • Şenel, M., 1997. 1:100.000 Türkiye Jeoloji Haritası, Antalya L11 Paftası. MTA Yayınları, Ankara.

  • Yılmaz, F.K., 2008. Antalya’nın günlük yağış özellikleri ve şiddetli yağışların doğal afetler üzerine etkisi, Sosyal Bilimler Dergisi, 10 (1), 19-65.

  • Dipova, N . (2010). Boğaçay (Antalya) Kıyı Ovası’nın Mühendislik Jeolojisi Değerlendirmeleri . Jeoloji Mühendisliği Dergisi , 34 (2) , 71-84 . Retrieved from

  • Dipova, N . Boğaçay (Antalya) Kıyı Ovası’nın Mühendislik Jeolojisi Değerlendirmeleri. Jeoloji Mühendisliği Dergisi 34 (2010 ): 71-84

  • Comparison of Bivariate and Multivariate Statistical and Heuristic-Based Landslide Susceptibility Models: an Example From Ayvalık (Balıkesir, Northwestern Turkey)
    Aykut Akgün Necdet Türk
    View as PDF

    ABSTRACT: Landslides are one of the most destructive natural hazards which frequently occur after earthquakesin our country and in the world. From engineering point of view, prediction of landsliding before itsoccurence has a great importance to mitigate the landslide related damages, and determination oflandslide prone areas by the methods, based on probability, has spread out both in our country and in theworld in the last two decades. In this study, a comparison of the most common landslide susceptibilitymapping methods, namely bivariate, multivariate statistical and heuristic methods, were carried out. Forthis purpose, Ayvalık (Balıkesir) and its near vicinity were selected as study area, and in total 45landslides were mapped. Morphologic, geologic and land-use data were produced in GeographicalInformation Systems (GIS) by using available topographical and relevant thematic maps. In the area,slope gradient and aspect, lithology, weathering conditions of the rocks, stream power index (SPI),topographical wetness index (TWI), distance from drainage, density of structural features, land-cover andvegetation cover density were considered as the parameters causing the landslides. All of the parameterswere standardized in a common scale by using fuzzy membership functions. Then, the contribution of eachof these parameters for the landslide occurrence were investigated by likelihood ratio, logistic regressionand analytical hierarchy methods, and the weight values of the parameters were calculated. Consideringthe weight values determined by each method, landslide susceptibility maps were produced, and theperformances of the produced maps were tested by comparing landslide locations using Area UnderCurvature (AUC) approach. Based on this, the AUC values were determined to be 0.76, 0.77 and 0.89 forlikelihood ratio, logistic regression and analytical hierarchy models, respectively. Accorrding to theseresults, analytical hierarcy model was considered to be the best landslide susceptibility method for thestudy area. 

  • Analytical hierarchy

  • Ayvalık

  • likelihood ratio

  • Landslide

  • Logistic regression

  • Afifi, A.A., Clark, V., 1998. Computer aided multivariate analysis. Chapman-Hall, London, 455p.

  • Akgün, A., 2006. Heyelan duyarlılık haritalarının hazırlanmasında Çok Ölçütlü Karar Analizi (ÇÖKA) yönteminin kullanımı: Ayvalık (Balıkesir) Örneği. Geosound, 48-49, 87-101.

  • Akgün, A., Bulut, F., 2007. GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environmental Geology, 51, 1377-1387.

  • Akgün, A., Türk, N., 2010. Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis. Environmental Earth Sciences, 61 (3), 595-611.

  • Akgün, A., Dağ, S., Bulut, F., 2008. Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environmental Geology, 54, 1127-1143.

  • Akyürek, B., 1989. 1:100.000 Ölçekli Açınsama Nitelikli Türkiye Jeoloji Haritaları Serisi: Ayvalık G 3 Paftası. M.T.A. Genel Müd. Yayınları.

  • Alvarez Grima, M., 2000. Neuro-fuzzy Modelling in Engineering Geology. Balkema, Rotterdam, 244 p.

  • Atkinson, P.M., Massari, R., 1998. Generalized linear modelling of susceptibility to landsliding in the central Appennines, Italy. Computers and Geoscience, 24 (4), 373-385.

  • Ayalew, L., Yamagishi, H., 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65, 15-31.

  • Ayalew, L.,Yamagishi, H., Marui, H., Kanno, T., 2005. Landslide in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparision of results from two methods and verifications. Engineering Geology, 81, 432-445.

  • Baeza, C., Corominas, J., 2001. Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surface Processes and Landforms, 26, 1251–1263.

  • Bonham-Carter, G.F., 1996. Geographic Information Systems for Geoscientists, Modelling with GIS. Pergamon Press, Canada, 398p.

  • Castellanos Abella, E.A., Van Westen, C.J., 2007. Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation. Landslides, 4, 311–325.

  • Chacon, J., Irigaray, C., Fernandez, T., El Hamdouni, R., 2006. Engineering geology maps: landslides and geographical information systems. Bulletin of Engineering Geology and Environment, 65, 341–411.

  • Chen, C.H., Ke, C.C., Wang, C.L., 2009. A backpropagation network for the assessment of susceptibility to rock slope failure in the eastern portion of the Southern Cross-Island Highway in Taiwan. Environmental Geology, 57, 723–733.

  • Chung, C.F., Fabbri, A.G., 1999. Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering and Remote Sensing, 65 (12), 1388-1399.

  • Clark, W.A.V., Hoskin, P.L., 1986. Statistical Methods for Geographers. New York: John Wiley and Sons, 528p.

  • Clerici, A., Perego, S., Tellini, C., Vescovi, P., 2006. A GIS-based automated procedure for landslide susceptibility mapping by the Conditional Analysis method: the Baganza valley case study (Italian Northern Apennines). Environmental Geology, 50, 9

  • Crozier, M.J., 1986. Landslides: Causes, Consequences and Environment. Croom Helm, London, 245p.

  • Çan, T., Nefeslioğlu, H.A., Gökçeoğlu, C., Sönmez, H., Duman, T.Y., 2005. Susceptibility assessment of shallow earthflows triggered by heavy rainfall at three subcatchments by logistic regression analyses. Geomorphology, 72, 250– 271.

  • Çevik, E., Topal, T., 2003. GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environmental Geology, 44, 949–962.

  • Dai, F.C., Lee, C.F., Xu, Z.W., 2001. Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental Geology, 40 (3), 381-391.

  • Eastman, J.R., 2004. IDRISI Kilimanjaro: Guide to GIS and Image Processing. Clark Labs, Clark University, Worcester, USA, 328p.

  • Eechaut, M.V.D., Vanwalleghem, T., Poesen, J., Govers, G., Verstraeten, G., Vandekerckhove, L., 2006. Prediction of landslide susceptibility using rare events logistic regression: A casestudy in the Flemish Ardennes (Belgium). Geomorphology, 76, 392-

  • Emerson, J.D., Hoaglin, D.C., 1983. Stem and leaf displays. In: Understanding Robust and Exploratory Data Analysis. Hoaglin, D.C., Mosstelier, F. and Tukey, J.W., Wiley and Sons, New York.

  • Ercanoğlu, M., Gökçeoğlu, C., 2002. Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environmental Geology, 41, 720–730.

  • Ermini, L., Filippo, C., Casagli, N., 2005. Artificial Neural Networks applied to landslide susceptibility assessment. Geomorphology, 66, 327-343.

  • ESRI, 2002. Getting to start ArcGIS. ESRI Books, USA, 250p.

  • Fawcett,T., 2006. An introduction to ROC analysis.Pattern Recognition Letters, 27, 861- 874.

  • Gökçeoğlu, C., Sönmez, H., Nefeslioğlu, H.A., Duman, T.Y., Çan, T., 2005. The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslidesusceptibility map of its near vicinity. Engineering Geology, 81, 65-83

  • Gupta, R.P., 2003. Remote Sensing Geology, 2nd edition. Springer, Berlin, 655p.

  • Guzetti, F., Carrarra, A., Cardinali, M., Reichenbach, P., 1999. Landslide hazard evaluation: a review of current techniques and their application in a multiscale study, Central Italy. Geomorphology, 31, 181-216.

  • Huang, X., Jensen, R., 1997. A machine-learning approach to automated knowledge-base building for remote sensing image analysis with GIS data. Photogrammetric Engineering and Remote Sensing, 63, 1185–1194.

  • ISRM, 1981. Rock characterization, testing and monitoring—ISRM suggested methods. Brown E.T. (ed.). Pergamon Press, Oxford. 211p.

  • Jensen, J.R., 2000. Indroductory Digital Image Processing: A Remote Sensing Perspective. Upper Saddle River, NJ: Prentice Hall, Inc., 319p.

  • Juang C.H., Lee, D.H., Sheu, C., 1992. Mapping slope failure potential using fuzzy sets. Journal of Geotechnical Engineering, 118, 475–494.

  • Kıncal, C., Akgün, A., Koca, M.Y., 2009. Landslide susceptibility assessment in the Izmir (West Anatolia,Turkey) city center and its near vicinity by the logistic regression method. Environmental Earth Sciences, 59, 745-756.

  • King, G., Zeng, L., 2001. Logistic regression in rare events data. Political Analysis, 9, 137-163.

  • Komac, M., 2006. A landslide susceptibility model using the Analytical Hierarchy Process method and multivariate statistics in perialpine Slovenia. Geomorphology, 74, 17-28.

  • Lamelas, M.T., Marinoni, O., Hoppe, A., Riva, J., 2008. Doline probability map using logistic regression and GIS technology in the central Ebro Basin (Spain). Environmental Geology, 54, 963–977.

  • Lee, S., 2005. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. International Journal of Remote Sensing, 26, 1477-1491.

  • Lee, S., Min, K., 2001. Statistical analysis of landslide susceptibility at Yongin, Korea. Environmental Geology, 40, 1095-1113.

  • Lee, S., Dan, N.T., 2005. Probabilistic landslide susceptibility mapping in the Lai Chau province of Vietnam: focus on the relationship between tectonic fractures and landslides. Environmental Geology, 48, 778– 787.

  • Lee S, Sambath, T., 2006. Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environmental Geology, 50, 847–855.

  • Lee, S., Pradhan, B., 2007. Landslide hazard mapping at Selangor, Malaysia, using frequency ratio and logistic regression models. Landslides, 4, 33–41.

  • Lee, S., Choi, J., Min, K., 2004. Landslide hazard mapping using GIS and remote sensing data at Boun, Korea. International Journal of Remote Sensing, 25, 2037-2052.

  • Malczewski, J., 1999. GIS and Multicriteria Decision Analysis. John Wiley &Sons, Inc. USA, 392p.

  • Menard, S., 1995. Applied Logistic Regression Analysis. Sage university paper series o quantitative applications in social sciences, vol. 106. Thousand Oaks, California, 98p.

  • Moore, I.D., Grayson, R.B., Ladson, A.R., 1991. Digital terrain modeling: a review of hydrological, geomorphological and biological applications. Hydrological Processes, 5, 3-30.

  • Nandi, A., Shakoor, A., 2009. A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses, Engineering Geology, 110, 11–20.

  • Nefeslioğlu, H.A., Duman, T.Y., Durmaz, S., 2008. Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology, 94(3–4), 401–418.

  • Nefeslioğlu, H.A., Sezer,E., Gökçeoğlu, C., Bozkır, A.S., Duman, T.Y., 2010. Assessment of Landslide Susceptibility by Decision Trees in the Metropolitan Area of İstanbul, Turkey. Mathematical Problems in engineering, doi:10.1155/2010/901095.

  • Ohlmacher, G.C., Davis, C. J., 2003. Using multiple regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Engineering Geology, 69, 331-343.

  • Pradhan, B., Lee, S., 2007. Utilization of optical remote sensing data and GIS tools for regional landslide hazard analysis by using an artificial neural network model at Selangor, Malaysia. Earth Science Frontiers, 14, 143–152.

  • Saaty, T.L., 1980. The Analytical Hierarchy Process. McGraw Hill, New York. 350p.

  • Scott, D.W., 1992. Multivariate Density Estimation. John Wiley, New York, 90p.

  • Soeters, R., van Westen, C.J., 1996. Slope instability recognition analysis and zonation. In: Turner K.T., Schuster, R.L. (eds.). Landslides: investigation and mitigation . Transportation Research Board National Reseacrh Council, Special Report No: 2

  • Sturges, H.A., 1926. The choice of a class interval. Journal of the American Statistical Association, 21, 65-66.

  • Süzen, M.L., 2002. Data Driven Landslide Hazard Assessment Using Geograpical Information Systems and Remote Sensing., Ph.D. Thesis, Middle East Technical University, The Graduate School of Natural and Applied Science, Ankara.

  • Süzen, M.L., Doyuran, V., 2004. Data driven bivariate landslide susceptibility assessme using geographical information systems: a method and application to Asarsuyu Catchment, Turkey. Engineering Geology, 71, 303-321.

  • Tunusluoğlu, M.C., Gokceoğlu, C., Nefeslioğlu, H.A., Sonmez, H., 2007. Extraction of potential debris source areas by logistic regression technique: a case study from Barla, Besparmak and Kapi mountains (NW Taurids, Turkey). Environmental Geology, 54

  • van Westen, C.J., 1993. Application of geographic information systems to landslide hazard zonation. ITC Publication no: 15. International Institute for Aerospace and Earth Resources Survey, Enschede, The Netherlands, 245p.

  • Varnes, D.J., 1978. Slope movement types and processes. In: Schuster, R.L., Krizek, R.J. (Eds.), Landslides Analysis and Control. Special Report, vol. 176. Trasportation Research Board, National Academy of Sciences, New York, 12- 33.

  • Yalçın, A., 2008. GIS-based Landslide Susceptibility Mapping Using Analytical Hierarchy Process and Bivariate Statistics in Ardesen (Turkey): Comparisons of Results and Confirmations. Catena, 72, 1-12.

  • Yeşilnacar, E., Topal, T., 2005. Landslide susceptibility mapping: A comparision of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79, 251-266.

  • Yılmaz, I., 2009. A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by Artificial Neural Networks. Bulletin of Engineering Geology and the Environment, 68 (3), 297-306.

  • Yılmaz, I., 2010. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional Probability, Logistic Regression, Artificial Neural Networks, and Support Vector Machine. Environmental Earth Sciences, 61 (4), 821-836

  • Zadeh, L.A., 1973. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems Man and Cybernetics, 3 (1), 28-46.

  • Akgün, A , Türk, N . (2010). İki ve Çok Değişkenli İstatistik ve Sezgisel Tabanlı Heyelan Duyarlılık Modellerinin Karşılaştırılması: Ayvalık (Balıkesir, Kuzeybatı Türkiye) Örneği . Jeoloji Mühendisliği Dergisi , 34 (2) , 85-112 . Retrieved from https

  • Akgün, A , Türk, N . İki ve Çok Değişkenli İstatistik ve Sezgisel Tabanlı Heyelan Duyarlılık Modellerinin Karşılaştırılması: Ayvalık (Balıkesir, Kuzeybatı Türkiye) Örneği. Jeoloji Mühendisliği Dergisi 34 (2010 ): 85-112

  • Rock Mass Weathering and Weathering Classification for Eskipazar Yellow Travertines
    Mutluhan Akin Aydin Özsan
    View as PDF

    ABSTRACT: Travertine, which is a type of chemical sedimentary rock and is composed of calcium carbonate, has arelatively recent formation age when compared to most rocks. Nevertheless, weathering in travertines maybe quite effective in short time span due to their physical structures and chemical compositions. Despitethe intensive use in building stone market, the weathering of travertine in rock mass scale has not beeninvestigated yet. In this study, the Eskipazar yellow travertine having an intensive usage in travertineindustry in Turkey as well as employed in the construction of Anıtkabir is selected as study material. Theweathering mechanism of the yellow travertines is revealed through observational studies and massmeasurements on exposures with different degrees of weathering in the field. As a consequence of thesestudies, an objective and practical weathering classification is proposed by preparing descriptive criteria.Accordingly, four different weathering classes - fresh, slightly weathered, moderately weathered andhighly weathered - are distinguished for the yellow travertines in rock mass scale. It is thought that the

  • Weathering

  • Weathering classification

  • Eskipazar

  • Travertine

  • Akın, M., 2010. A quantitative weathering classification system for yellow travertines. Environmental Earth Sciences, 61 (1), 47-61.

  • Akın, M., Özsan, A., 2010. Evaluation of the longterm durability of yellow travertine using accelerated weathering tests. Bulletin of Engineering Geology and the Environment, (article online), DOI 10.1007/s10064-010-0287- x.

  • Altunel, E., Hancock, P.L., 1993. Morphology and structural setting of Quaternary travertines at Pamukkale-Turkey. Geological Journal, 28, 335- 346.

  • Ayaz, M.E., Karacan, E., 2000. Sivas batısındaki traverten oluşumlarının yapı ve yüzey kaplama taşı olarak kullanılabilirliklerinin incelenmesi. Jeoloji Mühendisliği, 23-24 (1), 87-99.

  • Ayaz, M.E., 2002. Travertenlerin değerlendirilmesinde yapılması gerekli incelemeler ve kullanım yeri seçimi. Cumhuriyet Üni. Mühendislik Fak. Dergisi, Seri AYerbilimleri C.19 (1), 11-20.

  • Bacciarelli, R., 1993. A revised weathering classification for Mercia mudstone (Keuper Marl), The Engineering Geology of Weak Rock. Proc. of the 26th Annual Conf. of the Eng. Group of the Geo. Society, 169-174.

  • Biryol, C., 2004. Neotectonics and evolution of the Eskipazar basin, Karabük-Turkey, Middle East Technical University The Graduate School of Natural and Applied Sciences, Ankara, M.Sc. thesis, 124 p (unpublished).

  • Chandler, R.J., 1969. The effect of weathering on the shear strength properties of the Keuper Marl. Geotechnique, 19, 321-334.

  • Dehghan, S., Sattari, G., Chehreh Chelgani, S., Aliabadi, M.A., 2010. Prediction of uniaxial compressive strength and modulus of elasticity for travertine samples using regression and artificial neural networks. Mining Science and Technology (China),

  • ISRM, 1981. Rock characterization, testing and monitoring. International Society of Rock Mechanics Suggested Methods, Pergamon Press, Oxford, 211 p.

  • Kahraman, S., Günaydın, O., Fener, M., 2005. Determination of some physical properties of travertines from ultrasonic measurement. Proceedings of 1st International Symposium on Travertine, Özkul, M., Yağız, S. and Jones, B. (eds.), Denizli, 231-234.

  • Kılıç, R., Ulamış, K., Varol, B., Gökten, E., Koçbay, A., 2005. Geotechnical assessment of the travertine (Kırşehir, Turkey). Proceedings of 1st International Symposium on Travertine, Özkul, M., Yağız, S. and Jones, B. (eds.), Denizli, 256- 262.

  • Kuterdem, N.K., 2005. Eskipazar (Karabük güneyi) ve Kuzey Anadolu Fay Zonu (KAFZ) arasındaki bölgenin morfo-tektonik özelliklerinin coğrafi bilgi sistemleri ile belirlenmesi. Hacettepe Üniversitesi Fen Bilimleri Enstitüsü, Ankara, Yüksek Lisans tezi,

  • Mahmutoğlu, Y., Yüzer, E., Suner, F., Eriş, I., Eyüboğlu, R., 2003. Deterioration and conservation of the Dolmabahçe Palace (İstanbul) building stones. Proceedings of Industrial Minerals and Building Stones, IMBS 2003, 343-352.

  • Özkul, M., Varol, B., Alçiçek, M.C., 2002. Denizli travertenlerinin petrografik özellikleri ve depolanma ortamları. MTA Dergisi, 125, 13-29.

  • Pentecost, A. 2005. Travertine. Springer, 446 p., The Netherlands.

  • Schneider, C., Ziesch, J., Bauer, J., Török, A., Siegesmund, S., 2008. Bauwerkskartierung zur Analyse des Verwitterungszustands an den Außenmauern des Schlosses von Buda (Budapest, Ungarn). Schriftenreihe Dt Geol Ges (SDGG), 59, 219-235.

  • Sidraba, I., Normandin, K.C., Cultrone, G., Scheffler, M.J., 2004. Climatological and regional weathering of Roman travertine. Architectural and sculptural stone in cultural landscape. Prikryl, R., Siegel, P. (eds), Carolinum Press, Prague, 211–228.

  • Sidraba, I., 2006. Weatherability of Roman travertine. Faculty of Material Science and Applied Chemistry, Institute of Silicate Materials, Riga Technical University, Latvia, Ph.D. thesis, (unpublished).

  • Şaroğlu, F., Herece, E., Sarıaslan, M., Emre, Ö., 1995. Yeniçağa-Gerede-Eskipazar arasının jeolojisi ve Kuzey Anadolu Fayı’nın genel özellikleri. MTA Derleme No: 9873 (yayımlanmamış).

  • Török, A., 2006. Hungarian travertine: weathering forms and durability. Heritage weathering and conservation, Fort R, Alvarez de Buego M, Gomez-Heras M, azquez-Calvo C (eds), (1). Taylor & Francis, London, 199-204.

  • Török, A., 2008. Black crusts on travertine: factors controlling development and stability. Environmental Geology, 56, 583-584.

  • Tuğrul, A., Zarif, İ.H., 1999. Research on limestone decay in a polluting environment, İstanbul- Turkey. Environmental Geology, 38(2), 149- 158.

  • Uz, B., Özdamar, Ş., Ketenci, F., Yıldırım, H., 2005. Geological, petrographical, and physical characteristics of Düzköy (Ulus, Bartın) travertine occurrences and their utilization in view of marbling. Proceedings of 1st International Symposium on Tr

  • Yalçın, A., Özçelik, M., 2004. Kurna Deresi (Burdur) travertenlerinin fiziko-mekanik özellikleri ve yapı taşı olarak kullanılabilirlikleri. KAYAMEK 2004, Bölgesel Kaya Mekaniği Sempozyumu, Sivas, Türkiye.

  • Yalçınalp, B., Ersoy, H., Ersoy, A.F., Keke, C., 2008. Bahçecik (Gümüşhane) travertenlerinin jeolojik ve jeoteknik özellikleri. Jeoloji Mühendisliği Dergisi, 31 (2) - 32 (1), 25-34.

  • Geological-Geotechnical Investigation of the Kırıkkale Solid Waste Landfill Area
    Emre Savaş Mustafa Korkanç
    View as PDF

    ABSTRACT: Rapid growth of population, urbanization and industrialization are known as the most importantelements that constitute environmental problems. One of the most important environmental problems inour country is the problem originated from solid wastes, and also garbage amounts increases with theincreasing population. The need for the landfill areas is important for the environment and human healthin our country like in the developed countries. In this study, detailed geological and hydrogeologicalinvestigations were carried out to determine the solid waste landfill area in old clay mines in the city ofKırıkkale, Bedesten locality chosen from the alternative areas. The main lithology of the landfill areaconsists of CL-CH soils belonging to the İncik and Kızılırmak formations. The site is preferred because theselected landfill site is an old clay mine, practically impervious, easy to drain the leaking water andrequires no extra excavation cost. 

  • Landfill

  • Solid waste

  • Kırıkkale

  • Site selection

  • Akkurt, V.E., 2006. Alanya İlçesi (Antalya) Katı Atık Depolama Alanının Jeoteknik İncelemesi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, Yüksek Lisans Tezi (Yayınlanmamış), 49 s.

  • Amin, A.M., 2000. Designing Sustainable Landfill For Jeddah City. Bulletin of Engineering Geology and the Enviroment, 58: 265-273.

  • Bagchi, A., 1994. Design, Construction And Monitoring Of Landfills. 2nd Edition. Willey Interscience Publication, New York, 360 p.

  • Baran, S., 1995. Katı Atık (Çöp) Depo Yerlerinin Seçimi Ve İnşasındaki Bazı Ana Hususlar. Jeoloji Mühendisliği Dergisi, 46:52-54.

  • Bayındırlık ve İskan Bakanlığı, Afet İşleri Genel Müdürlüğü, Deprem Araştırma Dairesi Başkanlığı, 1996. Türkiye Deprem Bölgeleri Haritası.

  • Baykal, F., 1941. Kırıkkale-Kalecik ve Keskin-Bala Mıntıkalarındaki Jeolojik Etütler. M.T.A. Rap. no. 1448 (yayınlanmamış), Ankara.

  • Bayram, A., Nas, S.S., 2007. Doğu Karadeniz Bölgesi Katı Atık Yönetimi Üzerine Değerlendirmeler. 5. Kentsel Altyapı Ulusal Sempozyumu, 1-2 Kasım 2007 Hatay, Bildiriler Kitabı, s. 203-216.

  • Bilgin, R., Akarsu, B., Arbas, A., Elibol, E., Yaşar, T., Esentürk, K., Güner, E., Kara, H., 1986. Kırıkkale-Kesikköprü-Çiçekdağ Alanının Jeolojisi. MTA raporu, s. 73, (yayımlanmamış).

  • Birgili, Ş., Yoldaş, R., Ünalan, G., 1975. ÇankırıÇorum Havzasının Jeolojisi Ve Petrol Olanakları. MTA Rapor, Rapor no:5621, (yayımlanmamış).

  • Çevre ve Orman Bakanlığı, 1991. Katı Atık Kontrolü Yönetmeliği 14 Mart 1991 Tarih ve 20814 Sayılı Resmi Gazete

  • EPA (1998) Guidelines for Major Solid Waste Landfill Depots. 19 pp, Washington, DC, USA.

  • Gupta, R., Kewalramani, M.A. & Ralegaonkar, R.V. (2003), Environmental impact analysis using fuzzy relation for landfill siting. Journal of Urban Planning and Development, 129, 121–139.

  • Kara, H., Dönmez, M., 1990. 1/100.000 Ölçekli Türkiye Jeoloji Haritası, Kırşehir G-17 Paftası ve Açıklaması. Türkiye Jeoloji Haritaları Serisi, No. 34, Maden Tetkik ve Arama Enstitüsü Yayınları, 17 s.

  • Karaca, C., Çobanoğlu, İ., Bozdağ, Ş., 2007. Düzenli Katı Atık Depolamada Yer Seçimini Etkileyen Faktörler Ve Alternatif Alanların Değerlendirilmesi Mersin İli Örneği. Çukurova Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 22 (2):291-308.

  • Karagüzel, R., Mutlutürk, M., 2005. Katı Atık Depolamada Yer Seçimi: Isparta Örneği. Uluslararası Mühendislik Jeolojisi Türk Milli Komitesi, Mühendislik Jeolojisi Bülteni, s. 21: 19-33.

  • Kayalak, T.Ç., 2007. Kırıkkale İlinin Evsel Katı Atıklarının Bertarafının Çevresel ve Ekonomik Boyutuyla İncelenmesi. Gazi Üniversitesi Fen Bilimleri Enstitüsü Ankara,Yüksek Lisans Tezi, (yayımlanmamış), 91 s.

  • Ketin, İ., 1955. Yozgat bölgesinin jeolojisi ve Orta Anadolu masifinin tektonik durumu. T.J.K. Bült. Sayı 6, 1-28 s.

  • Langer, M., 1995. Criteria for Site Selection, Characterization, Evaluation; Principle of Safety Assessment and Special Purpose Mapping. Scientific Report and Recommendations of the IAEG Commission, No. 14, Bulletin of the International Association o

  • Leao, S., Bishop, I., Evans, D., 2004. Spatial-temporal model for demand and allocation of waste landfills in growing urban region. Journal of Computers, Environment and Urban Systems, 28, 353–385.

  • MGS, 2006. Çevre Mühendislik Müşavirlik ve Proje Hizmetleri Ltd. Şti., Kırıkkale Belediyesi, Evsel Katı Atık ve Tıbbi Atık Düzenli Depolama Tesisi Projesi. Kırıkkale İli Bahşılı İlçesi Bedesten Mevkii, Nihai ÇED Raporu, Ankara, 152 s.

  • Mutlutürk, M., Karagüzel, R., 2004. Katı Atık Düzenli Depolama Yer Seçimi İçin Yeni Bir Öneri. 57. Türkiye Jeoloji Kurultayı, Bildiri özleri Ankara s.182.

  • Nas, S.S., Bayram, A., 2006. Gümüşhane İli Evsel Katı Atık Kompozisyonunun Belirlenmesi. GAP 5. Mühendislik Kongresi Bildiriler Kitabı, Cilt 2, s. 1422-1431, Şanlıurfa.

  • Norman, T., 1972. Ankara Yahşihan Bölgesinde Üst Kretase-Alt Tersiyer İstifinin Stratigrafisi. Türkiye Jeoloji Kurumu Bülteni 15, 2, 180-277 s.

  • Schmidt, G.C., (1960): Geologie Evoluation of Licences MEM/360-363 and MES/365-367. District II. Mobil Report Petroleum Administration.

  • Şimşek, C., 2002. Torbalı Ovasının Katı Atık Depolama Tesisleri Yer Seçimine Yönelik Hidrojeoloji İncelemesi. Dokuz Eylül Üniversitesi Fen Bilimleri Enstitüsü, İzmir, Doktora tezi, yayınlanmamış), 297 s.

  • Tay, Ş., 2005. Senirkent – Uluborlu (Isparta) Havzasının Katı Atık Düzenli Depolama Yeri Seçimine Yönelik Jeolojik-Jeoteknik İncelemesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Isparta, Yüksek Lisans Tezi (Yayınlanmamış), 109 s.

  • Tchobanoglous, G., Theisen, H., Vigil, S., 1993. Integgrated Solid Waste Managment Engineering Principles Managment Issues. Mcgraw-Him, Inc, New York, 978 p.

  • Tchobanoglous, G., Kreith, F., 2002. Handbook of Solid Waste Management. 2ndedition, Mc Graw Hill Publishers, 950 p.

  • Terzaghi, K., 1943. Theoretical Soil Mechanics. John Wiley and Sons, Inc., New York, 527 p.

  • Terzaghi, K., Peck, R.B., 1967. Soil Mechanics in Engineering Practice. 2nd Ed., John Wiley & Sons, New York, 729 p.

  • Tınmaz, E., Demir, İ., 2006. Research on Solid Waste Management System: to Improve Existing Situation in Çorlu Town of Turkey. Waste Management Vol. 26: 307-314.

  • TS 1900-1, 2006. İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri-Bölüm 1: Fiziksel Özelliklerin Tayini. Türk Standartları, Bakanlıklar, Ankara.

  • TS 1900-2, 2006. İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri-Bölüm 2: Mekanik Deneyler. Türk Standartları, Bakanlıklar, Ankara.

  • Türkmen, A.M., Tağa, H., 2005. Engineering Geological Assesment of the Diyarbakır Solid Waste Landfill Site. Bulletin of Engineering Geology and the Enviroment, 64: 433-440.

  • Yeşilnacar, M.İ., 2000. GAP Bölgesinde Tehlikeli Atıklar İçin Jeolojik Yer Seçimi. Ç.Ü Fen Bilimleri Enstitüsü Adana, Doktora Tezi (yayınlanmamış), 113 s.

  • Yeşilnacar, M.İ., Pulcu, S., Selçuk, B., 2001. GAP Bölgesinde Evsel Katı Atık Sorunu ve Bazı Değerlendirmeler. Ulusal Sanayi ve Çevre Sempozyumu, 25-27 Nisan 2001, Mersin, Bildiriler Kitabı, 243-251 s.

  • Yeşilnacar, C., Çetin, H., 2005. Site Selection For Hazardous Wastes: A Case Study from the GAP Area. Turkey, Engineerin Geology, 81:371-388.

  • Yeşilnacar, M.İ., Bayındır, Y., Uyanık, S., Demir, Ö., Kırıkçı, A., 2005. GAP İlleri İçin Nüfus Tahmini ve Katı Atık Miktarının Belirlenmesi. DEÜ Çevre Mühendisliği Bölümü ve ÇEVMER III. Ulusal Katı Atık Kongresi UKAK’2005, 25-27 Mayıs 2005, İzmir, B

  • Yüksel, S., 1970. Etude Géologique de la Region d’Haymana (Turquie centrale), These. Fac. Sci. Unv. Nancy, Fransa (yayımlanmamış). 77p.

  • Savaş, E , Korkanç, M . (2010). Kırıkkale Katı Atık Deponi Alanı’nın Jeolojik-Jeoteknik İncelemesi . Jeoloji Mühendisliği Dergisi , 34 (2) , 133-154 . Retrieved from

  • Savaş, E , Korkanç, M . Kırıkkale Katı Atık Deponi Alanı’nın Jeolojik-Jeoteknik İncelemesi. Jeoloji Mühendisliği Dergisi 34 (2010 ): 133-154

  • View as PDF
    View as PDF
    View as PDF