ÖZ: Akiferlerden yoğun su çekimi sonucu oluşan yüzey çökmesi konusundaki bilimsel araştırmalar 1890lı yıllarakadar uzanmaktadır. Zamanla teknolojik ve endüstriyel gelişmeler su ihtiyacını çok artırmış ve yeraltısuyu havzalarıvazgeçilemez kaynak olarak kullanılmıştır. Sanayileşmenin yaygın olduğu bölgelerde gözlenen ve altyapıyı olumsuzolarak etkileyen bu gelişmenin yoğun su-petrol-gaz üretimi ile bağlantılı olduğu anlaşılmıştır. Daha sonraki yıllardakonunun bilimsel olarak araştırıldığı ve su/akışkan çekimi ile yüzeydeki deformasyonun ilişkilerinin matematikselolarak ifade edildiği izlenmektedir. Yapılan araştırmalarda yeraltısuyu akımı ve deformasyon ilişkisi birlikte elealınmış ve mekanizmaların fiziksel ve mekanik yanları incelenmiştir. Terzaghinin konsolidasyon modeli ve Biotnunyeraltısuyu akımı ve yüzey deformasyonunu matematiksel olarak formüle etmesi araştırmalara çok önemli katkılarsağlamıştır. Bu gelişmeleri takip eden yıllarda ilgili mekanizmaları açıklayan matematiksel denklemlerin analitikyöntemlerle çözülmeleri önemli bir aşama olarak değerlendirilmiş, ancak karmaşık ve çok boyutlu ortamlardaanalitik yöntemler yetersiz kalmıştır. Sonlu Farklar ve Sonlu Elemanlar sayısal yöntemlerinin kullanılması vebilgisayar teknolojisindeki gelişmeler karmaşık problemlerin çözümünü sağlamış ve yapılan bilimsel araştırmalaraivme kazandırmıştır.Bu makalede yüzey çökmesi konusundaki araştırmalar tarihsel boyutta özetlenerek konunun bilimsel gelişimiaktarılmaktadır. Temel denklemler yardımı ile su hareketi ve yüzey çökmesi mekanizması anlatılmakta ve dünyagenelinde yüzey çökmesi yaşanan bölgeler tanıtılarak konu ile ilgili güncel araştırmalar irdelenmektedir.
Yüzey çökmesi
yeraltısuyu akımı-deformasyon ilişkisi
poroelastisite
Aboustit, B. L., Advani, S.H., Lee, J.K., 1985. Variational principles and finite element simulations for thermo-elastic consolidation. International Journal for Numerical and Analytical Methods in Geomechanics, 9, 45-69.
Bear, J., Çorapçıoğlu, M.Y., 1981a. Mathematicalmodel for regional land subsidence due to pumping. 1. Integrated aquifer subsidence equations based on vertical displacement only. Water Resources Research, 17(4), 937-946.
Bear, J., Çorapçıoğlu, M.Y., 1981b. Mathematicalmodel for regional land subsidence due to pumping. 2. Integrated aquifer subsidence equations for vertical and horizontal displacements. Water Resources Research, 17, 4, 947-958.
Bear, J., Çorapçıoğlu, M.Y., 1981c. A mathematicalmodel for consolidation in a thermoelastic aquifer due to hot water injection or pumping. Water Resources Research, 17, 3, 723-736.
Biot, M.A., 1941. General theory of 3 D consolidation. Journal of Applied Physics, 12, 155-164.
Biot, M.A., 1955. Theory of elasticity and consolidation for a porous anisotropic solid. Journal of Applied Physics, 26, 2, 182-185.
Burbey, T.J., Helm, D.C., 1999. Modeling threedimensional deformation in response to pumping of unconsolidated aquifers. Environmental & Engineering Geoscience, 5, 2, 199-212.
Calderhead, AI., Martel, R., Garfias, J., Rivera, A., Therrien, R., 2012. Sustainable management for minimizing land subsidence of an over-pumped volcanic aquifer system: tools for policy design. Water Resources Management, 26, 7, 1847- 1864.
Castelletto, N., Ferronato, M., Gambolati, G., Putti, M., Teatini, P., 2008. Can Venice be raised by pumping water underground? A pilot project to help decide. Water Resources Research, 44 (1), WO 1408.
Chang, C.D., Mallman, E., Zoback, M. 2014. Timedependent subsidence associated with drainageinduced compaction in Gulf of Mexico shales bounding a severely depleted gas reservoir. AAPG Bulletin, 98, 6, 1145-1159.
Cheo, K. Lee, Sophie N. Fallou, Chiang C. Mei, 1992. Subsidence due to pumping from a soil stratum with a soft aquitard. Philosophical Transactions of The Royal Society of London Series A-Mathematical Physical and Engineering Sciences, 339, 1653, 193
Çelik, M., Afşin, M., 1998. The role of hydrogeology in solution-subsidence development and its environmental impacts; a case-study for Sazlıca (Niğde, Turkey). Environmental Geology, 36 (34), 335-342.
Çorapçıoğlu, M. Y., 1984. Land subsidence-a stateof- the-art review. In: Bear J., Corapcioglu M.Y. (eds.) Fundamentals of Transport Phenomena in Porous Media. NATO ASI Series (Series E: Applied Sciences), Vol 82. Springer, Dordrecht
Çorapcioglu, M.Y., Brutsaert, W., 1977. Viscoelastic aquifer model applied to subsidence due to pumping. Water Resources Research, 13(3), 597-604.
Domenico, P.A., Mifflin, M.D., 1965. Water from low permeability sediments and land subsidence. Water Resources Research, 1(4), 563-576.
Ezquerro, P., Herrera, G.,Marchamalo, M., Tomas, R., Bejar-Pizarro, M., Martinez, R., 2014. A quasielastic aquifer deformational behavior: Madrid aquifer case study. Journal of Hydrology, 519, 1192-1204.
Faunt, C.C., Sneed, M., Traum, J., Brandt, J.T., 2016. Water availability and land subsidence in the Central Valley, California, USA. Hydrogeology Journal, 24(3), 675-684.
Fuller, M.L., 1908. Summary of the controlling factors of artesian flows. U.S. Geol. Surv. Bull., 319, 44 pp.
Galloway, D.L., Burbey, T.J., 2011. Review: regional land subsidence accompanying groundwater extraction. Hydrogeology Journal, 19(8), 1459- 1486.
Galloway, D.L, Sneed, M., 2013. Analysis and simulation of subsidence accompanying groundwater abstraction and compaction of susceptible aquifer systems in the USA. Boletin De La Sociedad Geologica Mexicana, 65, 123- 136.
Gambolati, G., Ferronato, M., Teatini, P., Deidda, R., Lecca, G., 2001. Finite element analysis of land subsidence above depleted reservoirs with pore pressure gradient and total stress formulations. International Journal for Numerical and Analytical
Gambolati, G., Freeze, R.A., 1973. Mathematical simulation of the subsidence of Venice-1, Theory. Water Resources Research, 9(3), 721- 733.
Gambolati, G., Gatto, P., Freeze, R.A., 1974. Mathematical simulation of the subsidence of Venice-2, Water Resources Research, 10(3), 563-577.
Gambolati, G., Ricceri, G., Bertoni, W., Brighenti, G., Vuillermin, E., 1991. Mathematical simulation of the subsidence of Ravenna. Water Resources Research, 27(11), 2899-2918.
Gambolati, G., Teatini, P., 2015. Geomechanics of subsurface water withdrawal and injection. Water Resources Research, 51(6), 3922-3955.
Gambolati, G.,Teatini, P., Bau, D., Ferronato, M., 2000. Importance of poroelastic coupling in dynamically active aquifers of the Po river basin, Italy. Water Resources Research, 36(9), 2443- 2459., G.,Teatini, P., Bau, D., Ferronato, M., 2000. Impor
Hu, R.L., Yueb, Z.Q., Wang, L.C., Wang, S.J., 2004. Review on current status and challenging issues of land subsidence in China. Engineering Geology, 76, 65-77.
Ingerson, I. M.,1941. The hydrology of the of the Southern San Joaquin Valley, California, and its relation to important water supplies. Eos, Transactions, American Geophysical Union, 22 (1), 20-45.
Jacob, C.E., 1940. The flow of water in an elastic artesian aquifer. Eos, Transactions, American Geophysical Union, 21, 574-586.
Jafari, F., Javadi, S., Golmohammadi, G., Karimi, N., Mohammadi, K., 2016. Numerical simulation of groundwaterflow and aquifer-system compaction using simulation and InSAR technique: Saveh basin, Iran. Environmental Earth Sciences, 75(9), Article Num
Kang, D.H., Li, J., 2015. 3-D land subsidence simulation using the NDIS package for MODFLOW. Proc. IAHS, 372, 437442.
Karahanoğlu, N., Doyuran, V., Akkaş, N., 1984. Finite element simulation of hot-water type geothermal reservoirs. Journal of Volcanology and Geothermal Research, 23, 357-382.
Kihm, J. H., Kim, J. M., Song, S.H., Lee, G. S., 2007. Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation due to groundwater pumping in an unsaturated fluvial aquifer system. Journal of Hydrology, 335(1-2),
Kim, J.M., 2004. Fully coupled poroelastic governing equations for groundwater flow and solid skeleton deformation in variably saturated true anisotropic porous geologic media. Geosciences Journal, 8(3), 291-300
Kim, J.M., 2005. Three-dimensional numerical simulation of fully coupled groundwater flow and land deformation in unsaturated true anisotropic aquifers due to groundwater pumping. Water Resources Research, 141, 1, Article Number: W01003.
Kim, J.M., Parizek, R.R., 1999. Three-dimensional finite element modelling for consolidation due to groundwater withdrawal in a desaturating anisotropic aquifer system. International Journal for Numerical and Analytical Methods in Geomechanics, 23, 6
Kontogianni, V., Pytharouli, S., Stiros, S., 2007. Ground subsidence, Quaternary faults and vulnerability of utilities and transportation networks in Thessaly, Greece. Environmental Geology, 52(6), 1085-1095.
Kumarcı K., Ziaie, A., Kyioumarsi, A., 2008. Land subsidence modeling due to ground water drainage using WTAQ software. Proceedings of 10th WSEAS International Conference on Automatic Control, Modelling and Simulation, Istanbul, Turkey, May 27-30,
Lei, H., Xu, T., Jin, G., 2015. TOUGH2 Biot-A simulator for coupled thermal-hydrodynamicmechanical processes in subsurface flow systems: Application to CO2 geological storage and geothermal development. Computers & Geosciences, 77, 8-19.
Lewis, R.W., Roberts, P.J., Schrefler, B.A., 1989. Finite element modelling of two phase heat and fluid flow through deforming porous media. Transport in Porous Media, 4, 319-334.
Lewis, R.W., Karahanoğlu, N.,1981. Simulation of subsidence in geothermal reservoirs. Numerical Methods in Thermal Problems, 2, 326-335.
Lewis, R.W., Schreffler, B.A., 1978. A fully coupled consolidation model of the city of Venice. Water Resources Research, 14(2), 223-230.
Li, J., 2002. Modeling and sensitivity analysis of aquifer parameters for subsidence due to pumping-injecting water. Proc 9th International Conference on Hydraulic Information Management MONTREAL, CANADA Hydraulic Information Management, Edited By Bl
Li, J., 2003. A nonlinear elastic solution for 1-D subsidence due to aquifer storage and recovery applications. Hydrogeology Journal, 11(6), 646- 658
Li, J., Helm, D.C., 1997. Numerical formulation of dynamic behavior within saturated soil characterized by elasto-viscous behavior with an application to Las Vegas Valley. Computer Methods And Advances in Geomechanics, 2, 911-916.
Li, P., Wang, K., Li, X.G., Lu, D.T., 2014. Analytical solutions of a finite two-dimensional fluidsaturated poroelastic medium with compressible constituents. International Journal for Numerical and Analytical Methods in Geomechanics, 38(11), 1183-11
Lin, PL., Hsu, KC., Lin, CW., Hwung, HH., 2015. Modeling compaction of multi-layer-aquifer system due to groundwater withdrawal. Engineering Geology, 187, 143-155.
Lin Z. , Huili G. , Xiaojuan L., Rong W., Beibei C., Zhenxue D., Teatini, P.,2015. Land subsidence due to groundwater withdrawal in the northern Beijing plain, China. Engineering Geology, 193, 243-255.
Liu, C.H., Pan, Y.W., Liao, J.J., Huang, C.T., Ouyang, S., 2004. Characterization of land subsidence in the Choshui River alluvial fan, Taiwan. Environmental Geology, 45(8), 1154-1166.
Loupasakis, C., Rozos, D., 2009. Finite-element simulation of land subsidence induced by water pumping in Kalochori village, Greece. Quarterly Journal of Engineering Geology and Hydrogeology, 42, 369-382
Meinzer, O.E., 1928. Compresibility and elasticity of artesian aquifers. Economic Geology, 23, 263- 291.
Mitchell, J.K., 1962. Components of pore water pressure and their engineering significance. Clays and Minerals, Pergamon, N.Y., 162-184.
Nguyen, T.Q., Helm, D.C., 1998. Land subsidence due to ground-water withdrawal in Hanoi, Vietnam. Land Subsidence Case Studies and Current Research: Proceedings of the Dr. Joseph F. Poland Symposium on Land Subsidence, Association of Engineering Geol
Ortega-Guerrero, A., Cherry, J.A., Rudolph, D.L.,1993. Large-scale aquitard consolidation near Mexico-City, Ground Water, 31(5), 708- 718.
Ortega-Guerrero, A, Rudolph, D.L., Cherry, J.A., 1999. Analysis of long-term land subsidence near Mexico City: Field investigations and predictive modeling. Water Resources Research, 35(11), 3327-3341.
Ortiz-Zamora, D., Ortega-Guerrero, A., 2010. Evolution of long-term land subsidence near Mexico City: Review, field investigations, and predictive simulations. Water Resources Research, 46, Article Number: W01513.
Pacheco-Martinez, J., Hernandez-Marin, M., Burbey, TJ., Gonzalez-Cervantes, N., Ortiz-Lozano, JA., Zermeno-De-Leon, M.E., Solis-Pinto, A., 2013. Land subsidence and ground failure associated to groundwater exploitation in the Aguascalientes Valley, M
Paleologos, E.K., Mertikas, S.P., 2013. Evidence and implications of extensive groundwater overdraftinduced land subsidence in Greece. European Water, 43, 3-11.
Pei, S.P., Chen, C.G.,Jiao, J.J., 2000. Geological hazards related to groundwater exploitation - Land subsidence in Suzhou City, China. Proceedings of the International Symposium on Hydrogeology and the Environment, 546-552.
Poland, J.F., 1958. Land subsidence due to groundwater development. Journal of Irrigation and Drainage Division, American Society of Civil Engineering. 84(IR3), 11pp.
Poland J.F., 1960. Land subsidence in the San Joaquin Valley, California, and its effect on estimates of ground water resources. Comm. Sub Terranean Waters Publ. 52, 324-335.
Poland J.F., 1961. The coefficient of storage in a region of major subsidence caused by compaction of an aquifer system. US Geological Survey Professional paper 424-B, B52-B54.
Poland, J.F., 1984. Guidebook to studies of land subsidence due to groundwater withdrawal. USGS Report, Studies and Reports in hydrology 40, UNESCO, Paris, 305 p.
Poland J.F., Davis, G.H., 1956. Subsidence of the land surface in Tulare-Wasco (Delano) and Los Banos-Kenttleman City areas, San Joaquin Valley, California. Eos, Transactions, American Geophysical Union, 37(3), 287-296.
Poland, J.F., Garret, A.A., Sinnott, A., 1959. Geology, hydrology and chemical character of ground waters in the Torrance-Santa Monica area, California. US Geological Survey, Water Supply Paper, 1461, 142-146.
Poland J.F., Davis G.H., 1969. Land subsidence due to withdrawal of fluids, Reviews in Engineering Geology, Vol 2, edited by D.J. Varnes ve G. Kirsch, Geological Society America, Boulder Col. 187-269.
Pratt, W. E., 1927. Some questions on the cause of the subsidence of the surface in the Goose Creek field, Texas. American Association of Petroleum Geologists Bulletin, 11(8), 887889.
Psimoulis, P., Ghilardi, M., Fouache, S., Stiros, S., 2007. Subsidence and evolution of the Thessaloniki plain, Greece, based on historical leveling and GPS data. Engineering Geology, 90, 1-2, 55-70.
Riley, F.S., 1998. Mechanics of aquifer systems - The scientific legacy of Joseph F. Poland, Land Subsidence Case Studies and Current Research: Proceedings of the Dr. Joseph F. Poland Symposium On Land Subsidence. Edited by Borchers, J.W., Associatio
Schmid, W., Hanson, R.T., Leake, S.A., Hughes, J.D., Niswonger, RG., 2014. Feedback of land subsidence on the movement and conjunctive use of water resources. Environmental Modelling & Software, 62, 253-270.
Settari, A., Walters, D.A., Stright, D.H. Jr., Aziz, K., 2008. Numerical techniques used for predicting subsidence due to gas extraction in the North Adriatic Sea. Petroleum Science and Technology, 26, 10-11, 1205-1223.
Shearer, T.R., 1998. A numerical model to calculate land subsidence, applied at Hangu in China. Engineering Geology, 49(2), 85-93.
Shen, S.L., Xu, Y.S., 2011. Numerical evaluation of land subsidence induced by groundwater pumping in Shanghai. Canadian Geotechnical Journal, 48(9), 1378-1392.
Shen, S.L., Xu, Y.S., Hong, Z.S., 2006. Estimation of land subsidence based on groundwater flow model. Marine Georesources & Geotechnology, 24(2), 149-167.
Shi, X.Q., Xue, Y.Q., Ye, S.J., Wu, J.C., Zhang, Y., Yu, J., 2007. Characterization of land subsidence induced by groundwater withdrawals in Su-Xi- Chang area, China. Environmental Geology, 52(1), 27-40.
Sideri, D., Modis, K., 2014. Spatiotemporal estimation of land subsidence and ground water level decline in West Thessaly basin, Greece. Natural Hazards, Natural Hazards, 76(2), 939-954.
Stiros, S.C., 2001. Subsidence of the Thessaloniki (northern Greece) coastal plain, 19601999. Engineering Geology, 61(4), 243-256.
Taylor, D.W., 1948. Fundamentals of soil mechanics. John Wiley NY, 700 p.
Teatini, P., Ferronato, M., Gambolati, G., Bertoni, W., Gonella, M., 2005. A century of land subsidence in Ravenna, Italy, Environmental Geology. 47(6), 831-846.
Teatini, P., Ferronato, M., Gambolati, G.,Gonella, M., 2006. Groundwater pumping and land subsidence in the Emilia-Romagna coastland, Italy: Modeling the past occurrence and the future trend. Water Resources Research, 42(1), Article Number: W01406.
Terzaghi, K., Peck, R.B., 1948. Soil mechanics in Engineering Practice. John Wiley NY, 566 p.
Tsai, T.L., 2015. A coupled one-dimensional viscoelastic-plastic model for aquitard consolidation caused by hydraulic head variationsin aquifers. Hyrological Processes, 29, 4779-4793.
Üstün, A., Tuşat, E., Yalvaç, S., Özkan, I., Eren, Y., Özdemir, A., Bildirici, I.O., Üstüntaş, T., Kırtıloğlu, O.S., Mesutoğlu, M., Doğanalp, S., Canaslan, F., Abbak, R.A., Avşar, N.B., Şimşek, F.F., 2015. Land subsidence in Konya Closed Basin and it
Wang, J., Wu, Y., Liu, X., Yang, T., Wang, H., Zhu, Y., 2016. Areal subsidence under pumping wellcurtain interaction in subway foundation pit dewatering: conceptual model and numerical simulations. Environmental Earth Sciences, 75, 198.
Wang, S.J., Lee, C.H., Hsu, K.C., 2015. A technique for quantifying groundwater pumping and land subsidence using a nonlinear stochastic poroelastic model. Environmental Earth Sciences, 73(12), 8111-8124.
Wu, J.C., Shi, X.Q., Ye, S.J., Xue, Y.Q., Zhang, Y., Yu, J., 2009. Numerical simulation of land subsidence induced by groundwater overexploitation in Su- Xi-Chang area, China. Environmental Geology, 57, 1409-1421.
Xu, Y.S., Shen, S.L., Cai, Z.Y., Zhou, G.Y., 2008. The state of land subsidence and prediction approaches due to groundwater withdrawal in China. Natural Hazards, 45,123-135
Xu, Y.S., Ma, L., Shen, S. L., Sun, W.J., 2012. Evaluation of land subsidence by considering underground structures that penetrate the aquifers of Shanghai, China. Hydrogeology Journal, 20(8), 1623-1634.
Yang, Y., Song, X.F., Zheng, F.D., Liu, L.C., Qiao, X.J., 2015. Simulation of fully coupled finite element analysis of nonlinear hydraulic properties in land subsidence due to groundwater pumping. Environmental Earth Sciences, 73, 4191-4199.
Ye, S.L., Luo, Y.,Wu, J.C., Yan, X.X., Wang, H.M., Jiao, X., Teatini, P., 2016a. Three dimensional numerical modeling of land subsidence in Shanghai China. Hydrogeology Journal, 24(3), 695-709.
Ye, S., Xue, Y., Wu, J., Yan, X., Yu, J., 2016b. Progression and mitigation of land subsidence in China. Hydrogeology Journal, 24(3), 685-693.
Ye, S., Xue, Y., Wu, J., Zhang, Y., Wei, Z., Li, Q., 2011. Regional land subsidence model embodying complex deformation. Proceedings of the Institution of Civil Engineers-Water Management, 164(10), 519-531.
Yeh, H.D., Lu, R.H., G.T. Yeh, 1996. Finite Element modeling for land displacement due to pumping. International Journal for Numerical and Analytial Methods in Geomechanics, 20, 79-99.
Yokoo, Y., Yamagata, K., Nagaoka, H., 1971a. Finite element method applied to Biots consolidation theory. Soils and Foundations, 11(1), 29-46.
Yokoo, Y., Yamagata, K., Nagaoka, H., 1971b. Finite element analysis of consolidation following undrained deformation. Soils and Foundations, 11(4), 37-58.
Zang, Y., Wu, J.C., Xue,Y.Q., Wang, Z.C., 2017. Fully coupled three-dimensional nonlinear numerical simulation of pumping-induced land movement. Environmental Earth Sciences,76(16), 552.
Zhang, Y., Wu, J.,Xue, Y.Q., Wang, Z.C., Yao, Y.G.,Yan, X.X., Wang, H.M., 2015. Land subsidence and uplift due to long-term groundwater extraction and artificial recharge in Shanghai, China. Hydrogeology Journal, 23(8), 1851-1866.
Zienkiewicz, O.C., 1977. The finite element method. McGraw Hill, Berkshire, 787.
Karahanoğlu, N . (2018). Yeraltısuyu Çekimi Sonucu Oluşan Yüzey Çökmesi Problemi; Bilimsel Araştırmaların Tarihsel Gelişimi . Jeoloji Mühendisliği Dergisi , 42 (1) , 77-106 . DOI: 10.24232/jmd.434142
Karahanoğlu, N . Yeraltısuyu Çekimi Sonucu Oluşan Yüzey Çökmesi Problemi; Bilimsel Araştırmaların Tarihsel Gelişimi. Jeoloji Mühendisliği Dergisi 42 (2018 ): 77-106