ÖZ: Jeotermal rezervuarlar içerdikleri yüksek basınç ve yüksek entalpi nedeniyle çok kıymetli yenilenebilir enerjikaynağı olarak değerlendirilmektedir. Doğal süreçler sonucu rezervuar kayaçta depolanan jeotermal akışkan elektrikenerjisi üretiminde, konut ısıtmacılığında, seracılıkta ve balneolojik amaçlı olarak kullanılmaktadır. Jeotermalrezervuarların üretimi doğal dengede bulunan hidrodinamik ve hidrotermal mekanizmaları harekete geçirmekte vebunun sonucu olarak rezervuar içinde akışkan hareketi ve ısı yayılımı/taşınımı oluşmaktadır. Bu mekanizmalarınmatematiksel olarak tanımlanması ile başlayan sayısal modelleme çalışmaları değişik işletim koşullarının rezervuaraetkisini araştırabilmekte ve dolayısı ile jeotermal sistemlerin sürdürülebilir düzeyde üretilmelerine olanaksağlamaktadır. Söz konusu mekanizmaların diferansiyel denklemlerle ifade edilmesi ve jeotermal rezervuarınkavramsal modeline dayalı olarak belirlenen fiziksel parametreler ve uygun sınır koşullarının uygulanması sayısalmodelleme çalışmalarının temelini oluşturmaktadır. 1970 li yıllardan beri sürdürülen modelleme çalışmaları iledünya genelinde birçok jeotermal sistemde sayısal modelleme çalışması yapılmış ve bu rezervuarların en uygunve sürdürülebilir üretim ve işletim politikalarının geliştirilmesi sağlanmıştır. Bu makalede jeotermal rezervuarlarınsayısal modellenmesinin temel prensipleri anlatılmakta, ilgili denklemler tanıtılmakta ve tarihsel gelişim aktarılmaktave hazır paket programlar olarak sunulan simulatörlerin/modellerin gizemleri açıklanmaktadır. Ayrıca sayısal modelçalışması yapılan sahalar ve ilgili ülkeler tanıtılarak bu çalışmaların kaynakları verilmektedir.
Jeotermal rezervuarlar
Sayısal modelleme/Benzeşim
Simülatörler
Abdelaziz, R., Komori, F.S., Carreno, M.N.P., 2016. Multiphase thermal-fluid flow through geothermal , International Scientific Conference - Environmental and Climate Technologies, Conect 2015, Riga, Latvia, Oct 14-15, 2015, Energy Procedia, 95, 22-2
Aboustit, B. L., Advani, S.H., Lee, J.K., 1985. Variational principles and finite element simulations for thermo-elastic consolidation. International Journal for Numerical and Analytical Methods in Geomechanics, 9, 45-69.
Absar, K.V., Bajpai,, I.P., Sinha, A.K., Ashwini, K., 1996. Reservuar modeling of Puga geothermal system, Iadakh, Jammua and Kashmir. Geological Survey, India, 69-74.
Amistoso, E.A., Aquino, B.G., Aunzo, Z.P., Jordan, O.T., Sta. Ana, F.X.M., Bovardsson. G.S., Daughty, C., 1993. Reservoir analysis of the Palinpinon geothermal field, Negros Oriental, Philippines, Geothermics, 22 (5/6), 555-574.
Ansari, E., Hughes, R., White, C.D., 2017. Statistical modeling of geopressured geothermal reservoirs. Computers and Geosciences, 103, 36-50.
Antics, M., 2000. Computer simulation of geothermal reservoirs in the Pannonian Basin, Eastern Europe. Proceedings World Geothermal Congress, Kyushu-Tohuku, Japan, May 28-June 10 2000, 2497-2502.
Antics, M.A., 1998. Computer modeling of an over pressured medium enthalpy geothermal reservoir located in deep sedimentary basin. Proceedings of the 23 rd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 26-28
Antics, M.A., 1997. Computer simulation of Oradea geothermal reservoir Proceedings of the 22nd Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 27-29 January 1997, 491-495.
Antunez, E.U., Menzies, A.J., Sanyal, S.K., 1991. Simulating a challenging water dominated geothermal system: the Cerro Prieto field, Baja, California, Mexico. Proceedings of 16th Workshop on Geothermal Reservoir Engineering, Stanford University, Sta
Antunez, E.U., Sanyal, S.K., Carella, R., Guidi, A., 1990. Quantitative verification of the hydrogeological model of the Mufete geothermal field, Campania, Italy. Transactions geothermal Resources Council 14, 1263-1270.
Antunez, E.U., Bodvarsson, G.S., Walters, M.A.,1994. Numerical-Simulation Study of the Northwest Geysers Geothermal-Field, a Case-Study of the Coldwater Creek Steamfield. Geothermics, 23, 2, 127-141.
Arellano, V., Garcia, A., Barragan, R., Izquierdo, G., Aragon, A., Nieva, D., 2003. An updated conceptual model of the Los Humeros geothermal reservoir (Mexico). Journal of Volcanology and Geothermal Research, 127, 67-88.
Arias, A., Dini, I., Cassini, M., Fiordelisi, A., Perticone, I., DellAiuto, P., 2010. Geoscientific feature update of the Larderello-Travale geothermal system (Italy) for a regional numerical modeling. In: Proc World geothermal congress 2010, Bali,
Arihara, N., Yoshida, H., Hanano, M., Ikeuchi, K., 1995. A simulation study on hydrothermal system of the Kakkonda geothermal field. Proceedings World Geothermal Congress95, Florence, 18-31 May 1995, 1715-1720.
Arnorsson, S., 1995. Geothermal systems in Iceland: structure and conceptual models-I. High temperature areas. Geothermics, 24, 561-602
Atmojo, J.P., Itoi, R., Tanaka, T., Fukuda, M., Sudarman, S., Widiyarso, A., 2000. Modeling studies of Sudayak geothermal reservoir Northern Sumatra, Indonesia. Proceedings of World Geothermal Congress, Kyushu-Tohuku, Japan, May 28-June 10 2000 2037-
Aunzo, Z., Steingrimsson, B., Bodvarsson, G.S., Escobar, C., Quintanilla, A., 1989. Modeling studies of the Ahuachapan geothermal field, El Salvador. Proceedings of the 14 th workshop on geothermal reservoir engineering report, Stanford University, S
Axelsson, G., Bjornsson, G., 1993. Detailed three dimensional modeling of the Btn hydrothermal system in N-Iceland. Proceedings of the 18 th workshop on geothermal reservoir engineering, Stanford, California (USA), 26-28 January 1993, 159-166.
Barelli, A., Ceccarelli, A., Dini, I., Fiordelisi, A., Giorgi, N., Lovari, F., 2010a. A review of the Mt. Amiata geothermal system, Italy. In: Proc World geothermal congress 2010, Bali, Indonesia.
Barelli, A., Cei, M., Lovari, F., Romagnoli, P., 2010b. Numerical modeling for the Larderello- Travale geothermal system, Italy. In: Proc World geothermal congress 2010, Bali, Indonesia.
Barmin, A.A., Kondrashov, A.V., 2000. Two-front mathematical model of water injection into a steam-saturated geothermal reservoir, Fluid Dynamics, 35, 3, 399.
Bataille, A., Genthon, P., Rabinowicz, M., Fritz, B., 2006. Modeling the coupling between free and forced convection in a vertical permeable slot: Implications for the heat production of an Enhanced Geothermal System. Geothermics, 35, 5-6, 654-683.
Battistelli, A., Calore, C., Pruess, K., 1997. The simulator TOUGH2/EWASG for modelling geothermal reservoirs with brines and noncondensible gas, Geothermics, 26, 4, 437-464.
Battistelli, A., Swenson, D., Alcott, A., 2017. Improved PetraSim-TOUGH2 capabilities for the simulation of Geothermal reservoirs, In: Proc of 42nd workshop on geothermal reservoir engineering, Stanford, California (USA)
Battistelli, A., Yiheyis, A., Calore, C., Ferragina, C., Abatneh, W., 2002. Reservoir engineering assessment of Dubti geothermal field, Northern Tendaho Rift, Ethiopia, Geothermics, 31, 381- 406.
Battistelli, A., Yiheyis, A., Calore, C., Ferragina, C., Abathneh, W., 1998. Tendaho geothermal project (Ethiopia): Reservoir engineering studies in the Dubti area. Proceedings of the World Renewabla Energy Congress V, Florence 1998, 2741-2745.
Battistelli, A., Calore, C., Rossi, R., Wu, F., 1992. Reservoir engineering study of Nagqu geothermal field (Tibet autonomous region, PRC). Presented at the High Temperature Geothermal Resources Workshop, Lhasa, 9-16 August 1992.
Bear, J., Çorapçıoğlu, M.Y., 1981. A mathematicalmodel for consolidation in a thermoelastic aquifer due to hot water ınjection or pumping, water resources research, 17, 3, 723-736.
Bertani, R., Capetti, G., 1995. Numerical simulation of the Monteverdi zone (western border of the Larderello geothermal field). Proceedings World Geothermal Congress95, Florence, 18-31 May 1995, 1735-1740.
Biagi, J., Agarwal, R., Zhang, Z.M., 2015. Simulation and optimization of enhanced geothermal systems using CO2 as a working fluid, Energy, 86, 627-637.
Bjornsson, G., 1999. Predicting future performance of a shallow steam zone in the Svartsengi geothermal field, Iceland. Proceedings of the 24th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 25-27 January 199
Blocher, M.G., Zimmermann, G., Moeck, I., Brandt, W., Hasanzadegan, A., Magri, F., 2010. 3D numerical modeling of hydrothermal processes during the lifetime of a deep geothermal reservoir, Geofluids, 10, 406-421.
Blocher, G., Cacace, M., Reinsch, T., Watanabe, N., 2015. Evaluation of three exploitation concepts for a deep geothermal system in the North Germain Basin, Computers and Geosciences, 82, 120-129.
Bloomfield, K.K., Moore, J.N., Sperry, T.L., 1998. Cove-Fort Sulphurdale reservoir numerical simulation. Transactions Geothermal Resources Council, 22, 149-152.
Boardman, S., Ali Khan, M., Artunez, E., 1996. TOUGH/PC Application simulation project for Heber geothermal field, California, a progress report. Proceedings of the 21st workshop on geothermal reservoir engineering, Stanford, California (USA).
Bodvarsson, G.S., 1988. Model predictions of the Svartgensi reservoir, Iceland, water Resources Research, 24 (10), 1740-1746
Bodvarsson, G.S., Bjornsson, J., Gunnarsson, A., Gunnlaugsson, E., Sigurdsson, O., Stefansson, V., Steingrimsson, B., 1990a. The Nesjavellir geothermal field, Iceland: 1. Field characteristics and development of a three-dimensional numerical model. J
Bodvarsson, G.S., Pruess, K., Haukwa, C., Ojiambo, S.B., 1990b. Evaluation of model predictions for the Olkaria East Geothermal Field, Kenya, Geothermics, 19, (5), 399-414.
Bodvarsson, G.S., Pruess, K., Lippmann, M., Bjornsson, S., 1981. Improved Energy Recovery From Geothermal Reservoirs, 56th Annual Technical Conference and Exhibition of the Society of Petroleum Engineers of AIME, San Antonio, Texas, USA.
Bodvarsson, G.S., Pruess, K., Lippmann, M., Bjornsson, S., 1982. Improved energy recovery from geothermal reservoirs. Journal of Petroleum Engineers Journal, 1920-1928.
Bodvarsson, G.S., Pruess, K., Stefansson, V., Bjornsson, S., Ojiambo, S.B., 1987a. East Olkaria Geothermal Field, Kenya: 1. History match with production and pressure decline data, Journal of Geophysical Research: Solid Earth,vol 92, issue B1, 521-53
Bodvarsson, G.S., Pruess, K., Stefansson, V., Bjornsson, S., Ojiambo, S.B., 1987b. East Olkaria Geothermal Field, Kenya: 2. Predictions of well performance and reservoir depletion Journal of Geophysical Research, 92 (B1), 541- 554.
Bodvarsson, G.S., Pruess, K., Lippmann, M.J., 1986, Modeling of geothermal systems, Journal of Petroleum Technology, 1007-1021.
Bromley, C., Brockbank, K., Glynn-Morris, T., Rosenberg, M., Pender, M., OSullivan, M., Currie, S., 2013. Geothermal subsidence study at Wairakei-Tauhara, New Zealand Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 166, 2
Brown, D., 2000. A hot dry rock geothermal energy concept utilizing CO2 instead of water. In: Proceedings of 25th workshop on geothermal reservoir engineering, Stanford CA, USA: Jan 2000. P. 233-8.
Brownell, D.H., Garg, S.K., Pritchett, J.W., 1977. Governing equations for geothermal reservoirs, Water Resources Research, 13, 929-934.
Bujakowski, W., Tomaszewska, B., Miecznik, M., 2016. The Podhale geothermal reservoir simulation for long-term sustainable production, Renewable Energy, 99, 420-430.
Burnell, J.G., 1992. Modeling mass, energy and chloride flows in the Rotorua geothermal system. Geothermics, 21(1/2), 261-280.
Butler, S.J., Sanyal, S.K., Henneberger, R.C., Klein, C.W., Gutierrez, H., de Leon, J.S., 2000. Numerical modeling of the Cerro Prieto geothermal field, Mexico. In: Proc of world geothermal congress, Kyushu, Japan.
Canet, C., Trillaud, F., Prol-Ledesma, R.M., Gonzalez- Hernandez, G., Pelaez, B., Hernandez-Cruz, B., Sanchez-Cordova, M.M., 2015. Thermal history of the Acoculco geothermal system, eastern Mexico: Insights from numerical modeling and radiocarbon dat
Can, I., Budak, A., 2008. Finite element modeling of the Kızıldere geothermal system, Turkey, Energy Sources Part A-Recovery Utilization and Environmental Effects, 30, 12, 1098-1107.
Cao, W.J., Huang, W.B., Jiang, F.M., 2016. Numerical study on variable thermophysical properties of heat transfer fluid affecting EGS heat extraction. International Journal of Heat and Mass Transfer, 92, 1205-1217.
Carlino, S., Toriano, A., Di Guiseppe, M.G., Tramelli, A., Troise, C., Somma, R., De Natale, G. 2016. Exploitation of geothermal energy in active volcanic areas: A numerical modeling applied to high temperature Mofete Geothermal field, at Campi Flegr
Carotenuto, A., Massarotti, N., Mauro, A., 2013. A new methodology for numerical simulation of geothermal down-hole heat exchangers. Applied Thermal Engineering, 48, 225-236.
Carradori, G., Peano, A., Voss, C.I., 1981. The geophase model for finite element simulation of multiphase geothermal reservoirs, in R.W. Lewis and Schrefler (Ed.) Numerical Methods in Thermal Problems, Proc. 2nd Int Conference in Venice, Pineridge P
Cerminara, M., Fasano, A., 2012. Modeling the dynamics of a geothermal reservoir fed by gravity driven flow through overstanding saturated rocks. Journal of Volcanology and Geothermal Research, 233-234, 37.
Chen, F., Falta, R.W., Murdoch, L.C., 2015. Numerical Analysis of Thermal Remediation in 3D Field- Scale Fractured Geologic Media, Groundwater, 4, 572-587.
Chen, J.L., Jiang, F.M., 2016. A numerical study of EGS heat extraction process based on a thermal non-equilibrium model for heat transfer in subsurface porous heat reservoir, Heat and Mass Transfer, 52, 2, 255-267.
Cherubini, Y., Cacace, M., Scheck-Wenderoth, M., Moeck, I., Lewerenz, B., 2013. Controls on the deep thermal field: implications from 3-D numerical simulations for the geothermal research site Gro Schonebeck, Environmental Earth Sciences, 70, 8, 3610
Croucher, A.E., OSullivan, M.J., 2008. Application of the computer code TOUGH2 to the simulation of supercritical conditions in geothermal systems. Geothermics, 37, 622-634.
Driesner, T., Geiger, S., 2007. Numerical simulation of multiphase fluid flow in hydrothermal systems, Fluid-Fluid Interactions, Reviews in Mineralogy & Geochemistry, Ed:Liebscher, A., Heinrich, C.A., 65, 187-212., A.E., OSullivan, M.J., 2008. Appli
Dou, B., Gao, H., Zhou, G., Ren, L., 2014. Numerical simulation of heat transfer from hot dry rock to water flowing through a circulation fracture, 3rd International Conference on Materials Science and Engineering (ICMSE 2014), Jiujiang, Peoples R Ch
Eckart, M., Kories, H., Ruterkamp, P., Kaul, V., Bems, C., 2011. Flow-and Heat-Transport- simulation with an optimized discretization of the geological structure model, International-Mine-Water- Association Congress on Mine Water - Managing the Chall
Emoricha, E.B., Omagbon, J.B., Malate, R.C.M., 2010. Three dimensional numerical modeling of Mindanao geothermal production field, Phillipines.In: Proc of the 35th Workshop on Geothermal reservoir engineering, Stanford, California (USA).
Ertekin T., 1978. Numerical simulation of the compaction-subsidence phenomena in a reservoir for two phase non-isothermal flow. PhD Thesis, The Pennsylvania State University, 227p.
Esberto, M.B., Sarmiento, Z.F., 1999. Numerical modeling of the Mt. Apo geothermal reservoir. In. Proc. of the 24th workshop on reservoir engineering, Stanford, California (USA).
Fabbri, P., Trevisani, S., 2005. Spatial distribution of temperature in the low-temperature geothermal Euganean field (NE Italy): a simulated annealing approach, Geothermics, 34, 5, 617-631.
Fairs, T.H., Younger, P.L., Parkin, G., 2015. Parsimonious numerical modelling of deep geothermal reservoirs, Proceedings of The Institution of Civil Engineers-Energy, 168, 4, 218-228.
Falta, R.W., Pruess, K., Finsterle, S., 1995. T2VOC Users Guide. Report LBLN-36400, Lawrence Berkeley Laboratory, Berkeley CA, 165 pp.
Farkhutdinov, A., Goblet, P., de Fouquet, C., Cherkasov, S., 2016. A case study of the modeling of a hydrothermal reservoir: Khankala deposit of geothermal waters. Geothermics, 59, 56-66, Part: A.
Farkhutdinov, A., Goblet, P., De Fouquet, C., Ismagilov, R., Farkhutdinov, I., Cherkasov, S., 2015. The Use of Computer Modelling to Forecast the Sustainability in the Development of Geothermal waters Resource: Khankala Deposit Example. International
Faust, C.R., Mercer, J.W., 1975. Mathematical modeling of geothermal systems. Proc 2nd UN Symposium on the Development and Use of Geothermal Resources, San Francisco, 3, 1633- 1642.
Faust, C.R., Mercer, J.W., 1979a. Geothermal Reservoir Simulation.1. Mathematical-Models For Liquid-Dominated and Vapor-Dominated Hydrothermal Systems, Water Resources Research, 15, 1, 23-30
Faust, C.R., Mercer, J.W., 1979b. Geothermal Reservoir Simulation. 2. Numerical Solution Techniques For Liquid-Dominated and Vapor- Dominated Hydrothermal Systems, Water Resources Research, 15, 1, 31-46.
Fendek, M., 2000. Reservoir modeling study of Galanta area. Proceedings World Geothermal Congress Kyushu-Tohuku, Japan, , May 28- June 10 2000, 2555-2560.
Fendekova, M., Fendek, M., 2000. Evaluation of Horna-Nitra geothermal reservoir (central part of Slovak Republic). Proceedings World Geothermal Congress Kyushu-Tohuku, Japan, , May 28- June 10 2000, 2561-2565.
Feng, G., Tianfu.G., Jiang, Z.J., Bellani, S., 2017. Geothermal assessment of the Pisa plain, Italy: Coupled thermal and hydraulic modeling, Renewable Energy, 111, 416-427
Finsterle, S., Kowalsky, MB., Pruess, K., 2012. TOUGH model use, calibration and validation, Transactions of the ASABE 55 (4), 1275-1290.
Finsterle, S., Sonnenthal, E.L., Spycher, N., 2014. Advances in subsurface modeling using the TOUGH suite of simulators, Computers & Geosciences, 65, 2-12, SI.
Finsterle, S., 1993. iTOUGH2 users guide version 2.2, Lawrence Berkeley Laboratory, University of California.
Franco, A., Vaccaro, M., 2014. Numerical simulation of geothermal reservoirs for the sustainable design of energy plants: A review, Renewable & Sustainable Energy Reviews, 30, 987- 1002.
Fusi, L., Rosso, F., Ceseri, M., Borsi, I., Speranza, A., 2013. Weak formulation for a two-phase nonlinear flow in an undeformable porous medium, Meccanica, 48, 1, 57-70.
Ganguly, S., Kumar, M.S.M., 2012. Geothermal reservoirs - A brief review, Journal of the Geological Society of India, 79, 6, 589-602.
Garg, S.K., Pritchett, J.W., Brownell Jr., D.H., 1975. Transport of mass and energy in porous media, Proc 2nd UN Symposium on the Development and Use of Geothermal Resources, San Francisco, 3, 1651-1656.
Geiger, S., Schmid, K.S., Zaretskiy, Y., 2012. Mathematical analysis and numerical simulation of multi-phase multi-component flow in heterogeneous porous media, Current Opinion in Colloid & Interface Science, 17, 3, 147-155.
Gelet, R.M., Loret, B., Khalili, N., 2015. The significance of local thermal non-equilibrium in simulations of enhanced geothermal recovery, Conference: Computer Methods and Recent Advances in Geomechanics, Kyoto, Japan, Sep 22-25, 2014, Ed:Oka, F.,
Gök, I.M., Sarak, H., Onur, M., Serpen, U., Satman, A., 2005. Numerical modeling of the Balçova Narlıdere geothermal field, Turkey, Proceedings World Geothermal Congress 2005, Antalya, Turkey.
Guerrero-Martinez, F.J., Verma, S.P., 2013. Three dimensional temperature simulation from cooling of two magma chambers in the Las Tres Virgenes geothermal field, Baja, California Sur, Mexico, Energy, 52, 110-118.
Gunnarsson, G., Arnaldsson, A., Oddsdottir, A.L., 2012. Model Simulations of the Hengill Area, Southwestern Iceland, Transport of Unsaturated Groundwater and Heat (TOUGH) Symposium, Berkeley, CA, Sep 14-16, 2009, Transport in Porous Media, 90, 1, 3-2
Gupta, M., Rao, G., Narain, H., 1974. Geothermal investigations in the Puga Valley hot spring region Ladakh, India, Geophysical Research Bulletin, 12, 119-136.
Gupta, M.L., Sharma, S., Singh, S., Drolia, R., 1979, Geophysical exploration and assessment of power potential of Puga Geothermal field. Geoviews, 6, 1-4.
Günay, E., Karahanoğlu, N., 2015. Finite element simulation of the Edremit geothermal field, Proc of 40th workshop on geothermal reservoir engineering, Stanford University, p:1-10
Hadgu, T., Zimmerman, R.W., Bovardson, G.S., 1995. Coupled Reservoir-Wellbore Simulation of Geothermal Reservoir Behavior, Geothermics, 24, 2, 145-166.
Hanano, M., 1998. A simple model of a two-layered high-temperature liquid-dominated geothermal as a part of a large-scale hydrothermal convection system, Transport in Porous Media, 33, 1-2, 3-27.
Hanano, M., 1992. Simulation Study of the Matsukawa Geothermal Reservoir - Natural State and its Response to Exploitation, Journal of Energy Resources Technology-Transactions of the ASME, 114, 4, 309-314.
Hathorn, D., Wu, Y.S., Chen, Z.Z., 2014. TOUGH2- PETSc: A Parallel Solver for TOUGH2, 2014. 15th International Conference on Parallel And Distributed Computing, Applications and Technologies (PDCAT 2014), Hong Kong, PEOPLES R CHINA, Dec 09-11, 2014,
Hayashi, K., Willis-Richards, J., Hopkirk, R.J., Niibori, Y., 1999. Numerical models of HDR geothermal reservoirs - a review of current thinking and progress, Geothermics, 28, 4-5, 507-518
Hu, B., 1995. Reservoir simulation of the Yangbajian geothermal field in Tibet, China. Proceedings World Geothermal Congress95, 18-31 May 1995 Florence, 1691-1695.
Hu, L.T., Winterfeld, P.H., Fakcharoenphol, P., Wu, Y.S., 2013. A novel fully-coupled flow and geomechanics model in enhanced geothermal reservoirs, Journal of Petroleum Science and Engineering, 107, 1-11.
Ingebritsen, S.E., Sorey, M.L., 1985. Quantitative analysis of the Lassen hydrothermal system, north-central California. Water Resourses research, 21 (6), 853-868
Ingebritsen, S.E., Geiger, S., Hurwitz, S., Driesner, T., 2010. Numerical Simulation of Magmatic Hydrothermal Systems, Reviews of Geophysics, 48.
Ishido, T., Tosha, T., 1998. Feasibility study of reservoir monitoring using repeat self potential measurements Transactions Geothermal Resources Council 22, 171-177
Itoi, R., Kumamoto, Y., Tanaka, T., Takayama, J., 2010. History matching simulation of the Ogiri geothermal field, Japan. In: Proc World geothermal congress 2010, Bali, Indonesia
Jha, S.K., Puppala, H., 2018. Conceptual modeling and characterization of Puga geothermal reservoir, Ladakh, India, Geothermics, 72, 326-33
Jiang, F.M., Luo, L., Chen, J.L., 2013. A novel threedimensional transient model for subsurface heat exchange in enhanced geothermal systems, International Communications in Heat and Mass Transfer, 41, 57-62.
Jiang, F.M., Chen, J.L., Huang, W.B., Luo, L., 2014. A three-dimensional transient model for EGS subsurface thermo-hydraulic process, Energy, 72, 300-310
Jing, Y.N., Jing, Z.Z., Willis-Richards, J., Hashida, T., 2014. A simple 3-D thermoplastic model for assessment of the long-term performance of the Hijiori deep geothermal reservoir, Journal of Volcanology and Geothermal Research, 269, 14- 22.
Karahanoğlu, N., Doyuran, V., Akkaş, N., 1984. Finite Element Simulation of Hot-Water type Geothermal Reservoirs, Journal of Volcanology and Geothermal Research, 23, 3-4, 357-382.
Karahanoğlu, N., 1983. Finite Element Simulation of Hot-Water type Geothermal Reservoirs, PhD Thesis, Middle East Technical University, Ankara Turkey
Karrech, A., Beltaief, O., Vincec, R., Poulet, T., Regenauer-Lieb, K., 2015. Coupling of thermalhydraulic-mechanical processes for geothermal reservoir modelling, Journal of Earth Science, 26, 1, 47-52.
Kiryukhin, A.V., 1996. Modeling studies: The Dachny geothermal reservoir, Kamchatka, Russia, Geothermics, 25, 1, 63-90.
Kiryukhin, A.V., Asaulova, N.P., Finsterle, S., 2008. Inverse modeling and forecasting for the exploitation of the Pauzhetsky geothermal field, Kamchatka, Russia. Geothermics, 37, 540-562.
Kiryukhin, A.V., Asaulova, N.P., Finsterle, S., Rychkova, T.V., Obora, N.V., 2006. Modeling the Pauzhetsky geothermal field, Kamchatka, Russia, using iTOUGH2. In: Proc TOUGH Symposium, Lawrence Berkeley National Laboratory, California (USA).
Kiryukhin, A.V., Asaulova, N.P., Manukhin, Y.F., Rychkova, T.V., Sugrobov, V.M., 2010. Using numerical modeling for assessing the recoverable reserves of a geothermal steam field: The Pauzhetka geothermal field, Journal of Volcanology and Seismology,
Kissling, W.M., Brown, K.L., OSullivan, M.J., White, S.P., Bullivant, D.P., 1996. Modeling chloride and CO2 chemistry in the Wairakei geothermal reservoir. Geothermics, 25, 285-305.
Kolditz, O., Clauser, C., 1998. Numerical simulation of flow and heat transfer in fractured crystalline rocks: Application to the hot dry rock site in Rosemanowes (UK). Geothermics, 27, 1-23.
Kolditz, O., Blöcher, M. G., Clauser, C., Diersch, H.-J. G., Kohl, T., Kühn, M., McDermott, C. I., Wang, W., Watanabe, N., Zimmermann, G. and Bruel, D., 2010. Geothermal Reservoir Simulation, in Geothermal Energy Systems: Exploration, Development, an
Köhn, M., Stöfen, H., 2005. A reactive flow model of the geothermal reservoir Waiwera, New Zealand, Hydrogeology Journal, 13, 4, 606-626
Kumamoto, Y., Itoi, R., Tanak, T., Hazama, Y., 2009. Modeling and numerical analysis of the two-phase geothermal reservoir at Ogiri, Kyushi, Japan. In: Proc of the 34th Workshop on Geothermal reservoir engineering, Stanford, California (USA).
Kuzevic, S., Kuzevicova, Z., Hojdova, M., Pusztai, A., 2011. A Computer-Based Simulation of Geothermal Energy Utilization in Conditions of Slovak Republic, 11th International Multidisciplinary Scientific Geoconference (SGEM 2011), VOL III, Albena, Bu
Lasseter, T.J., 1976. Numerical-Simulation of Heat and Mass-Transfer in Multi-dimensional 2-Phase Geothermal Reservoirs, Mechanical Engineering, 98, 5, 104-104
Lei, H.Y., Zhu, J.L., 2013. Numerical modeling of exploitation and reinjection of the Guantao geothermal reservoir in Tanggu District, Tianjin, China, Geothermics, 48, 60-68.
Lewis, R.W., Karahanoğlu, N., 1981. Simulation of Subsidence in Geothermal Reservoirs, Numerical Methods in Thermal Problems, 2, 326-335.
Lewis, R.W., Roberts, P.J., Schrefler, B.A., 1989. Finite element modeling of two phase heat and fluid flow through deforming porous media, Transport in Porous Media, 4, 319-334.
Lipmann, M.J., Narasimhan, T.N., Witherspoon, P.A., 1976. Numerical simulation of reservoir compaction in liquid dominated geothermal systems. Proc. 2nd Int Symposium on Land Subsidence, Anaheim, Ca.,157-166.
Llanos, E.M., Zarrouk, S.J., Hogarth, R.A., 2015. Numerical model of the Habanero geothermal reservoir, Australia, Geothermics, 53, 308-319
Magliocco, M.J., Glaser, S.D., Kneafsey, T.J., 2015. Laboratory and Numerical Studies of Heat Extraction from Hot Porous Media by Means of Supercritical CO2, TOUGH Symposium, Berkeley, CA,Sep 17-19, 2012, Transport in Porous Media, 108, 1, 85-104
Magnusdottir, L., Finsterle, S., 2015. An iTOUGH2 equation-of-state module for modeling supercritical conditions in geothermal reservoirs, Geothermics, 57, 8-17.
Magri, F., Akar, T., Gemici, U., Pekdeger, A., 2010. Deep geothermal groundwater flow in the Seferihisar-Balcova area, Turkey: results from transient numerical simulations of coupled fluid flow and heat transport processes, Geofluids, 10, 3, 388-405
Mannington, W., OSullivan, M., Bullivant, D., 2000. An air/water model of the Wairakei-Tauhara geothermal system. In: Proc of world geothermal congress, Kyushu, Japan.
Mannington, W., OSullivan, M., Bullivant, D., 2004. Computer modeling of the Wairakei-Tauhara geothermal system, New Zealand. Geothermics, 33, 4, 401-419.
Mc.Guinnes, M.J., White, S.P., Young, R.M., Izhisaki, H., Ikeuchi, K., Yoshida, Y., 1995. A model of the Kakkonda geothermal reservoir. Geothermics, 24, 1-48
Menzies, A.J., Granados, E.E., Sanyal, S.K., Merida-I, L., Caicedo-A., A., 1991.Numerical modeling of the initial state and matching well test data from the Zunil geothermal field Guatemala. Proceedings of the 16 th Workshop on Geothermal Reservoir E
Menzies, A.J., Pham, M., 1995. A field-wide numerical simulation model of The Geysers geothermal field, California, Proceedings World Geothermal Congress95, Florence, 18-31 May 1995, 1697-1702.
Mercer, J.W., Faust, C.R., 1979. Geothermal Reservoir Simulation.3. Application of Liquid-Dominated and Vapor-Dominated Hydrothermal Modeling Techniques to Wairakei, New-Zealand, Water Resources Research, 15, 3, 653-671.
Mercer, J.W., Faust, C.R., and Pinder, G.F.,1974. Geothermal reservoir simulation. Conference on research for the Development of Geothermal Energy Resources, Pasadena, California, 256- 267.
Morgan, K., Lewis, R.W., White, I.R., 1980. The mechanisms of ground surface subsidence above compacting multi phase reservoirs and their analysis by the finite element method, Applied Mathematical Modelling, 4, 217-234.
Moridis, G.J., 2003. Numerical studies of gas production from methane hydrates. Society of Petroleum Engineers Journal 32(8), 359-370.
Moridis, G.J., Freeman, C.M., 2015. The RealGas and RealGasH2O options of the TOUGH plus code for the simulation of coupled fluid and heat flow in tight/shale gas systems. Computers & Geosciences, 65, 56-71, SI.
Moridis, G.J., Kowalsky, M.B., Pruess, K., 2008. TOUGH+HYDRATE v1.0 Users Manuel: A code for the Simulation of System Behaviour in Hydrate-Bearing Geologic Media. Report LBNL-149E, Lawrence Berkeley national Laboratory, CA, 279 pp
Morris, C.W., Campbell, D.A., 1981. Geothermal Reservoir Energy recovery A 3-Dimensional Simulation Study of the East Mesa Field. Journal of Petroleum Technology, 33, 4, 735-742.
Mottaghy, D., Pechnig, R., Vogt, C., 2011.The geothermal project Den Haag: 3D numerical models for temperature prediction and reservoir simulation. Geothermics, 40, 3, 199-210
Mroczec, E.K., Milicich, S.D., Bixley, P.F., Supelveda, F., Bertrand, E.A., Soengkono, S., Rae, A.J., 2016. Ohaaki geothermal system: Refinement of a conceptual reservoir model. Geothermics, 59, 311-324.
Nakanishi, S., Abe, M., Todaka, N., Yamada, M., Sierra, J.L., Gingins, M.O., Mass, L.C., Pedro, G.E., 1995. Copahue geothermal system, Argentina- study of a vapor dominated reservoir. Proceedings World Geothermal Congress 95, Florence, 18-31 May 199
Nakanishi S., Iwai, N., 2000. Reservoir simulation study of the Onikobe geothermal field, Japan. Proceedings World Geothermal Congress, Kyushu-Tohuku Japan, May 28June 10, 2000, 2159-2164.
Nguyen, V.V., Pinder, G.F., 1983. Geothermal Reservoir Simulation using, Non-Equilibrium Thermodynamics. Society of Petroleum Engineers Journal, 23, 4, 613-622.
Noorollahi, Y., Itoi, R., 2011. Production capacity estimation by reservoir numerical simulation of northwest (NW) Sabalan geothermal field, Iran, Energy, 36, 7, 4552-4569.
Ostermeyer, G.P., Srisupattarawanit, T., 2013. MultiScale Simulation of Heat and Flow in Geothermal Reservoirs, Oil Gas-European Magazine, 39, 1, 40-42.
OSullivan, M.J., 1985. Geothermal Reservoir Simulation. International Journal of Energy Research, 9, 3, 319-332.
OSullivan, M., Barnett, B., Razali, M., 1990. Numerical simulation of the Kamojang geothermal field, Indonesia, Trans Geotherm Resources Counc 1317-1324
OSullivan, M.J., Bullivant, D.P., Follows, S.E., Mannington, W.I., 1998. Modeling of the Wairakei-Tauhara geothermal system. Proceedings of the TOUGH Workshop98, Berkeley, California, 4-6 May 1998, 1-6.
OSullivan, M.J., Pruess, K., Lippmann, M.J., 2001. State of the art of geothermal reservoir simulation. Geothermics, 30, 4, 395-429.
OSullivan, M.J., Yeh, A., Mannington, W.I., 2009. A history of numerical modeling of the Wairakei geothermal field. Geothermics, 38, 1, 155-168.
Özkaya M., 2007. Numerical modeling of the Kızıldere Geothermal field. MSc Thesis, Middle East Technical University, Ankara, Turkey
Pan, L.H., Freifeld, B., Doughty, C., Zakem, S., Sheu, M., Cutright, B., Terrall, T., 2015. Fully coupled wellbore-reservoir modeling of geothermal heat extraction using CO2 as the working fluid, Geothermics, 53, 100-113.
Parini, M., Cappetti, G., Laudiano, M., Bertani, R., Monterrossa, M., 1995. Reservoir modeling study of the Ahuachapan geothermal field (El Salvador) in the frame of a generation stabilization project. Proceedings World Geothermal Congress 95, Flore
Parini, M., Acuna, J.A., Laudiano, M., 1996. Reinjected water return at Miravalles geothermal reservoir, Costa Rica: numerical modeling and observations. Proceedings of the 21st Workshop on Geothermal Reservoir Engineering, Stanford University, Stanf
Pearson, S.C.P., Alcaraz, S.A., Barber, J., 2014. Numerical simulations to assess thermal potential at Tauranga low-temperature geothermal system, New Zealand. Hydrogeology Journal, 22, 1, 163- 174
Pham, M., Sanyal, S.K., Menzies, A.J., Naka, T., Takeuchi, R., Iata, S., 1995. Numerical modeling of the high temperature two-phase reservoir at Uenotai geothermal field, Akita prefecture, Japan. Proceedings World Geothermal Congress95, Florence, 18
Pham, M., Menzies, A.j., Sanyal, S.K., Lima, E., Shimada, K., Juarez, J., Cuevas, A., 1996. Numerical modeling of the high temperature geothermal system of Amatitlan, Guatemala. Transactions Geothermal Resources Council 20, 833-838.
Pogacnik, J., Dempsey, D., Kelkar, S., Podgorney, R., OSullivan, M., OSullivan, J., 2014. The Effect of Sequential Solution Procedures in the Numerical Modeling of Stimulation in Engineered Geothermal Systems, 11th World Congress on Computational M
Porras, E.A., Tanaka, T., Fujii, H., Itoi, R., 2007. Numerical modeling of the Momotombo geothermal system, Nicaragua. Geothermics, 36, 4, 304-329
Porras, E.A., Tanaka, T., Fujii, H., Itoi, R., 2005. Numerical modeling of the Momotombo geothermal system, Proceedings World Geothermal Congress 2005, Antalya, Turkey
Portugal, E., Birkle, P., Tello, E., Tello, M., 2000. Hydrochemical-isotopic and hydrogeological conceptual model of the Las Tres Virgenes geothermal field, Baja, California Sur, Mexico. Journal of Volcanology and Geothermal Research, 101, 223-244
Pratama, H.B, Saptadji, N.M.,2016. Numerical Simulation for Natural State of Two-Phase Liquid Dominated Geothermal Reservoir with Steam Cap Underlying Brine Reservoir, 5th ITB International Geothermal Workshop (IIGW2016), Bandung, Indonesia, Mar 27-A
Pritchett, J.W., Garg, S.K., 1995. A modelling study of the Oguni geothermal field, Kyushu, Japan, Proceedings World Geothermal Congress95, Florence, 18-31 May 1995, pp 1703-1707
Pritchett, J.W., Garg, S.K., Ariki, K., Kawano, Y., 1991. Numerical simulation of the Sumikawa geothermal field in the natural state. In: Proc of the 16 th workshop on geothermal reservoir engineering, Stanford, California (USA).
Pruess, K., Batistelli, A., 2002. TMVOC A numerical simulator for Three-Phase Non-Isothermal flows of Multicomponent Hydrocarbon mixtures in saturated, unsaturated heterogeneous media. Report LBLN-49375E, Lawrence Berkeley National Laboratory, Berkel
Pruess, K., 2006. Enhanced geothermal systems (EGS) using CO2 as working fluid- a novel approach for generating renewable energy with simultaneous sequestration of carbon. Geothermics, 35(4), 351-367
Pruess, K., 1983. Development of the general purpose simulator MULKOM, Annual Report 1982, Earth Sciences Division Report LBL-15500, Lawrence Berkeley Laboratory, Berkeley, CA, 103 pp.
Pruess, K., 1991. TOUGH2 A General Purpose Numerical Simulator for Multiphase Fluid and Heat Flow. Report LBL-29400. Lawrence Berkeley Laboratory, Berkeley, CA, 103 pp.
Pruess, K., Oldenburg, C., Moridis, G., 1999. TOUGH2 users guide version 2.1. Report LBLN-43134, Lawrence Berkeley National Laboratory, Berkeley CA, 204 pp.
Pruess, K., Zerzan, J.M., Schroeder, R.C., Witherspoon, P.A., 1979. Description of the three dimensional two phase simulator SHAFT78 for use in geothermal reservoir studies, paper SPE7699 presented at the SPE Fifth symposium on reservoir simulation,
Pruess, K., Bodvarsson, G.S., Schroeder, R.C., Witherspoon, P.A., 1982. Model Studies of the Depletion of Two-Phase Geothermal Reservoirs. Society of Petroleum Engineers Journal, 280- 290
Pruess, K., 1990. Modeling of geothermal reservoirs: Fundamental processes, computer simulation and field applications. Geothermics, 19, 1, 3.
Pruess, K., 1987. TOUGH Users Guide. Report LBL-20700. Lawrence Berkeley Laboratory, Berkeley, CA, 78 pp.
Pruess, K., 2011. ECO2M: A TOUGH2 fluid property module for Mixtures of Water, NaCl, and CO2 . Including Super- and Sub critical Conditions, and Phase change between liquid and gaseous CO2 . Report LBLN-4590E, Lawrence Berkeley National Laboratory, B
Pruess, K., 2003. The TOUGH codes - A family of simulation tools for multiphase flow and transport processes in permeable media, TOUGH Symposium 2003, La wrence Berkeley National Lab, Berkeley, Ca, May, 2003, Vadose Zone Journal, 3, 3, 738-746
Quiano, J.J.D., Zarrouk, S.J., 2018. Geothermal resource assessment using experimental design and response surface methods: The Ngatamariki geothermal field, New Zealand, Renewable Energy, 116, 325-334
Randi, A., Sterpenich, J., Thiery, D., Kervevan, C., Pironon, J., Morlot, C., 2017. Experimental And Numerical Simulation of the Injection of A CO2 Saturated Solution in a Carbonate Reservoir: Application to the CO2 -Dissolved Concept Combining CO2
Ratouis, T.M.P., OSullivan, M.J., OSullivan, J.P., 2016. A Numerical model of Rotorua Geothermal Field. Geothermics, 60, 105-125.
Ripperda, N., Bodvarsson, G.S., Lipmann, M.J., Cuellar, G., Escobar, C., 1991. An exploitation model and performance predictions of the Ahuachapan geothermal field, El Salvador. Geothermics, 20, 4, 181-196.
Romagnoli, P., Arias, A., Barelli, A., Cei, M., Casini, M., 2010. An updated numerical mıodeling of the Larderello-Travale geothermal system, Italy. Geothermics, 39, 292-313.
Rutqvist, J.,Wu, Y.-S., Tsang, J-F., Bodvarsson,G., 2002. A modeling approach for analsis of coupled multiphase flow, heat transfer and deformation in fractured porous rock. International Journal of Rock Mechanics and Mining Sciences 39, 429- 442.
Sakagawa, Y., Aoyama, K., Ikuechi, K., Takahashi, M., Kato, O., Doi, N., Tosha, T., Ominato, T., Koide, K., 2000. Natural state simulation of the Kakkonda geothermal field, Japan., Proceedings of World Geothermal Congress, Kyushu-Tohuku, Japan, May 2
Sakagawa, Y., Takahashi, M., Hanano, M., Ishido, T., Demboya, N., 1994. Numerical simulation of the Mori geothermal field, Japan. Proceedings of the 19th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 18-20 J
Sanchez, U.P., 1997. Los Humeros geothermal field, Mexico, Trans geothermal Resources Counc. 21, 435-439
Sanyal, S.K., Antunez, E.U., Abe, M., Nakanishi, S., 1990. Numerical modeling of a mature high temperature geothermal reservoir; a case history from the Onikobe field, Miyagi prefecture, Japan. Transactions Geothermal Resources Council 14, 1339-1345
Sanyal, S.K., Pham, M., Iwata, S., Suzuki, M., Inoue, T., Yamada, K., Futagoishi, M., 2000. Numerical simulation of the Wasabizawa geothermal field, Akita Prefecture, Japan, Proceedings of World Geothermal Congress, Kyushu-Tohuku, Japan, May 28-June
Seol, Y., Lee, K.K., 2007. Application of TOUGHREACT to performance evaluations of geothermal heat pump systems. Geosciences Journal, 11, 1, 83-91.
Sippel, J., Fuchs, S., Cacace, M., Braatz, A., Kastner, O., Huenges, E., Scheck-Wenderoth, M., 2013. Deep 3D thermal modelling for the city of Berlin (Germany). Environmental Earth Sciences, 70, 8, 3545-3566.
Soboleva, E., 2017. Numerical Simulation of Haline Convection in Geothermal Reservoirs, International Conference Problems of Thermal Physics and Power Engineering (Ptppe-2017), Journal of Physics Conference Series, 891, Natl Res Univ, Moscow Power En
Sonney, R., Vuataz, F.D., 2009. Numerical modelling of Alpine deep flow systems: a management and prediction tool for an exploited geothermal reservoir (Lavey-les-Bains, Switzerland). Hydrogeology Journal, 17, 3, 601-616.
Sta. Ana, F.X.M., Saw, V.S., Molina, P.O., Aleman, E.T., Canete, G.F., Hingoyon, C.S., Sarmiento, Z.F., 1999. Increased production load aTngonan geothermal field, Philippines: Reservoi response and field management strategies. Proc of the 24 th works
Strobel, C.J., 1993. Buffalo field, Philippines: Reservoir modeling for prediction of limits to sustainable generation. Proc of the 18 th workshop on geothermal reservoir engineering, Stanford, California (USA), 26-28 January 1993, 5-10.
Suarez, Arriaga, M.C., Samaniego, V. F., Rodrigez, F., 1996. Some mismathces occurred when simulating fractured reservoir as homogeneous porous media. Proceedings of the 21st Workshop on Geothermal Reservoir Engineering, Satnford University, Stanford
Suryadarma, D., T., Zuhro, A.A., Yani, A., 2010. Sustainable development of the Kamojang geothermal field. Geothermics, 39, 391-409.
Swenson, D., Schroeder, R., Shinohara, N., Okabe, T., 1999. Analyses of the Hijiori long term circulation test. Proceedings of the 24th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 25-27 January 1999, 344-3
Todesco, M., 1995. Modeling of the geothermal acticity at Vulcano (Aeolian Islands, Italy). Proceedings World Geothermal Congress95, Florence, 18-31 May 1995, 1309-1315.
Tokita, H., Yahara, T., Kitakoga, I., 1995. Cooling effect and fluid behavior due to reinjected hot water in the Hatchobaru geothermal field, Japan. Proceedings World Geothermal Congress 95, Florence, 18-31 May 1995, 1869-1874.
Thomas, L.K., Pierson, R.G., 1978. 3-Dimensional Geothermal Reservoir Simulation. Society of Petroleum Engineers Journal, 18, 2, 151-161.
Toronyi, R.M., Farouq Ali, S.M., 1977. Two-phase, two-dimensional simulation of a geothermal reservoir. Soc. Pet. Eng. J., 17, 171-183.
Turali, E.Y., Simsek, S., 2017. Conceptual and 3D simulation modeling of the Sorgun hydrothermal reservoir (Yozgat,Turkey). Geothermics, 66, 85- 100.
Vedova, D.B., Vecellio, C., Bellani, S., Tinivella, U, 2008. Thermal modeling of the Larderello geothermal field (Tuscany Italy). International Journal Earth Science (Geol Rundsch); 97, 317- 332.
Weijermars, R., Zuo, L., Warren, I., 2017. Modeling reservoir circulation and economic performance of the Neal Hot Springs geothermal power plant (Oregon, USA): An integrated case study, Geothermics, 70, 155-172
White, S.P., Kissling, W.M., McGuinnes, M.J., 1997. Models of the Kawerau geothermal reservoir. Transactions Geothermal Resources Council, 21, 33-40
Wijaya, I, Purqon, A., 2017. Simulation of Fluid Flow and Heat Transfer in Porous Medium Using Lattice Boltzmann Method, International Conference on Energy Sciences (Ices 2016), Bandung, Indonesia, Jul 25-27, 2016, Book Series: Journal of Physics Con
Williamson, K. H., 1990. Reservoir simulation of The Geysers geothermal field. Proceedings of the 15 th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, 23-25 January 1990, 113-123
Xing, H.L., Liu, Y., Gao, J.F., Chen, S.J., 2015. Recent development in numerical simulation of enhanced geothermal reservoirs. Journal of Earth Science, 26, 1, 28-36
Xu, T.F., Feng, G.H., Hou, Z.Y., Tian, H.L., Shi, Y., Lei, H.W., 2015. Wellbore-reservoir coupled simulation to study thermal and fluid processes in a CO2 -based geothermal system: identifying favorable and unfavorable conditions in comparison with w
Xu; T., Pruess, K., 2001. Modeling multiphase nonisothermal fluid flow and reactive geochemical transport in variably saturate fractured rocks: 1. Methodology. American J. Sci. 301(1), 16-33.
Yahara, T., Tokita, H., 2010. Sustainability of the Hatchobaru geothermal field, Japan. Geothermics, 39, 382-390
Yano, Y., Ishido, T., 1995. Numerical modeling of the evolution of two phase zones under a fractured cap rock. Geothermics, 24, 4, 507-521
Yasukawa, K., Ishido, T., 1990. Numerical modeling of the Onikobe caldera hydrothermal system, northeastern Honshu, Japan. Transactions Geothermal Resources Council 14, 1347-1355.
Yeh, H.D., Yang, S.Y., Li, K.Y., 2012. Heat extraction from aquifer geothermal systems, International Journal for Numerical and Analytical Methods in Geomechanics, 36, 1, 85-99.
Yoğurtcuoğlu, A., 2016. Integrated 3-D finite element simulation of the Edremit Geothermal Field. Yüksek Lisans tezi Orta Doğu Teknik Üniversitesi, Ankara.
Zaher, M.A., Saibi, H., El Noubi, M., Ghamry, E., Ehara, S., 2011. A preliminary regional assessment of the Gulf of Suez, Egypt. Journal of African Earth Sciences, 60, 117-132.
Zaher, M.A., Saibi, H., Nishijima, J., Fujimitsu, Y., Mesbah, H., Ehara, S., 2012. Exploration and assessment of the geothermal resources in the Hammam Faraun hot spring, Sinai Peninsula, Egypt. Journal of Asian Earth Sciences, 45, 256- 267.
Zang, Y.J., Li, Z.W., Yu, Z.W., Guo, L.L., Lin, X.P., Xu, T.F., 2015. Evaluation of developing an enhanced geothermal heating system in northeast China: Field hydraulic stimulation and heat production forecast. Energy and Buildings, 88, 1-14.
Zang, Y.J., Li, Z.W., Yu, Z.W., Guo, L.L., Lin, X.P., Xu, T.F., 2015. Evaluation of developing an enhanced geothermal heating system in northeast China: Field hydraulic stimulation and heat production forecast. Energy and Buildings, 88, 1-14.
Zeng, Y., Tang, L., Wu, N.Y., Cao, Y.F., 2017. Analysis of influencing factors of production performance of enhanced geothermal system: A case study of Yangbajing geothermal field. Energy, 127, 218- 235
Zeng, Y.C., Su, Z., Wu, N.Y., 2013. Numerical simulation of heat production potential from hot dry rock by water circulating through two horizontal wells at Desert Peak geothermal field. Energy, 56, 92-107
Zhang, K., Wu, Y-S., Pruess, K., 2008. Users Guide for TOUGH2-MP- A massively parallel version of the TOUGH2 code. Report LBNL-315E, Lawrence Berkeley Laboratory, Berkeley CA, 108 pp.
Zhang, K., Lee, B.H., Ling, L.L., Guo, T.R., Liu, C.H., Ouyang, S., 2016. Modeling studies for production potential of Chingshui geothermal reservoir. Renewable Energy, 94, 568-578.
Zhao, Y.S., Feng, Z.J., Feng, Z.C., Yang, D., Liang, W.G., 2015. THM (Thermo-hydro-mechanical) coupled mathematical model of fractured media and numerical simulation of a 3D enhanced geothermal system at 573 K and buried depth 6000-7000 M. Energy, 82
Zyvoloski, G. 1983. Finite element methods for geothermal reservoir simulation. International Journal for Numerical and Analytical Methods in Geomechanics, 7: 7586.
Karahanoğlu, N . (2019). Jeotermal Rezervuarlarla İlgili Sayısal Modelleme/Benzeşim Çalışmaları . Jeoloji Mühendisliği Dergisi , 43 (1) , 99-130 . DOI: 10.24232/jmd.572481
Karahanoğlu, N . Jeotermal Rezervuarlarla İlgili Sayısal Modelleme/Benzeşim Çalışmaları. Jeoloji Mühendisliği Dergisi 43 (2019 ): 99-130