ÖZ: Heyelanlar, ülkemizde ve dünyada depremlerden sonra en fazla sıklıkla meydana gelen ve en çokzarar verici potansiyele sahip doğal afetlerden birisidir. Mühendislik açısından, heyelan zararlarının en azaindirilmesi amacıyla, heyelan olayının önceden tahmin edilmesi büyük önem taşımakta olup, olasılığadayalı yöntemlerle heyelana duyarlı alanların belirlenmesi, özellikle son yirmi yılda, gerek dünyadagerekse ülkemizde oldukça yaygınlaşmıştır. Bu çalışma kapsamında, heyelan duyarlılık haritalarınınhazırlanmasında en fazla kullanılan yöntemlerden iki ve çok değişkenli istatistik yöntemler ile sezgiselyöntemin karşılaştırması yapılmıştır. Amaca yönelik olarak, Ayvalık ilçesi (Balıkesir) ve yakın çevresiinceleme alanı olarak seçilmiş ve toplam 45 heyelan haritalanmıştır. Morfolojik, jeolojik ve arazi kullanımıverileri, Coğrafi Bilgi Sistemleri (CBS) kapsamında mevcut topoğrafik ve ilgili tematik haritalarkullanılarak üretilmiştir. Çalışma alanında, heyelana neden olan parametreler olarak; yamaç eğimi veyönelimi, litoloji, kayaların ayrışma durumu, akarsu gücü indeksi (AGİ), topoğrafik nemlilik indeksi(TNİ), drenaj ağından uzaklık, yapısal unsurların yoğunluğu, arazi ve bitki örtüsü yoğunluğu dikkatealınmıştır. Bu heyelan parametreleri, bulanık üyelik fonksiyonları yardımıyla ortak bir ölçektestandartlaştırılmıştır. Daha sonra, her bir parametrenin heyelan oluşumuna katkısı; benzerlik oranı,mantıksal regresyon ve analitik hiyerarşi yöntemleri kullanılarak incelenmiş ve bu parametrelerin ağırlıkdeğerleri hesaplanmıştır. Her bir yöntemle belirlenen ağırlık değerleri dikkate alınarak heyelan duyarlılıkharitaları üretilmiş, üretilen haritaların performansları, mevcut heyelan lokasyonları ile karşılaştırılarakEğri Altındaki Alan (EAA) yaklaşımıyla sınanmıştır. Buna göre, EAA değerleri sırasıyla benzerlik oranıyöntemi için 0.76, mantıksal regresyon için 0.77 ve analitik hiyerarşi yöntemi için 0.89 olarakbelirlenmiştir. Bu sonuçlara göre inceleme alanı için en başarılı heyelan duyarlılık değerlendirmesinin,analitik hiyerarşi yöntemi ile olduğu görülmüştür.
Analitik hiyerarşi
Ayvalık
Benzerlik oranı
Heyelan
Mantıksal regresyon
Afifi, A.A., Clark, V., 1998. Computer aided multivariate analysis. Chapman-Hall, London, 455p.
Akgün, A., 2006. Heyelan duyarlılık haritalarının hazırlanmasında Çok Ölçütlü Karar Analizi (ÇÖKA) yönteminin kullanımı: Ayvalık (Balıkesir) Örneği. Geosound, 48-49, 87-101.
Akgün, A., Bulut, F., 2007. GIS-based landslide susceptibility for Arsin-Yomra (Trabzon, North Turkey) region. Environmental Geology, 51, 1377-1387.
Akgün, A., Türk, N., 2010. Landslide susceptibility mapping for Ayvalik (Western Turkey) and its vicinity by multicriteria decision analysis. Environmental Earth Sciences, 61 (3), 595-611.
Akgün, A., Dağ, S., Bulut, F., 2008. Landslide susceptibility mapping for a landslide-prone area (Findikli, NE of Turkey) by likelihood-frequency ratio and weighted linear combination models. Environmental Geology, 54, 1127-1143.
Akyürek, B., 1989. 1:100.000 Ölçekli Açınsama Nitelikli Türkiye Jeoloji Haritaları Serisi: Ayvalık G 3 Paftası. M.T.A. Genel Müd. Yayınları.
Alvarez Grima, M., 2000. Neuro-fuzzy Modelling in Engineering Geology. Balkema, Rotterdam, 244 p.
Atkinson, P.M., Massari, R., 1998. Generalized linear modelling of susceptibility to landsliding in the central Appennines, Italy. Computers and Geoscience, 24 (4), 373-385.
Ayalew, L., Yamagishi, H., 2005. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65, 15-31.
Ayalew, L.,Yamagishi, H., Marui, H., Kanno, T., 2005. Landslide in Sado Island of Japan: Part II. GIS-based susceptibility mapping with comparision of results from two methods and verifications. Engineering Geology, 81, 432-445.
Baeza, C., Corominas, J., 2001. Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surface Processes and Landforms, 26, 12511263.
Bonham-Carter, G.F., 1996. Geographic Information Systems for Geoscientists, Modelling with GIS. Pergamon Press, Canada, 398p.
Castellanos Abella, E.A., Van Westen, C.J., 2007. Generation of a landslide risk index map for Cuba using spatial multi-criteria evaluation. Landslides, 4, 311325.
Chacon, J., Irigaray, C., Fernandez, T., El Hamdouni, R., 2006. Engineering geology maps: landslides and geographical information systems. Bulletin of Engineering Geology and Environment, 65, 341411.
Chen, C.H., Ke, C.C., Wang, C.L., 2009. A backpropagation network for the assessment of susceptibility to rock slope failure in the eastern portion of the Southern Cross-Island Highway in Taiwan. Environmental Geology, 57, 723733.
Chung, C.F., Fabbri, A.G., 1999. Probabilistic prediction models for landslide hazard mapping. Photogrammetric Engineering and Remote Sensing, 65 (12), 1388-1399.
Clark, W.A.V., Hoskin, P.L., 1986. Statistical Methods for Geographers. New York: John Wiley and Sons, 528p.
Clerici, A., Perego, S., Tellini, C., Vescovi, P., 2006. A GIS-based automated procedure for landslide susceptibility mapping by the Conditional Analysis method: the Baganza valley case study (Italian Northern Apennines). Environmental Geology, 50, 9
Crozier, M.J., 1986. Landslides: Causes, Consequences and Environment. Croom Helm, London, 245p.
Çan, T., Nefeslioğlu, H.A., Gökçeoğlu, C., Sönmez, H., Duman, T.Y., 2005. Susceptibility assessment of shallow earthflows triggered by heavy rainfall at three subcatchments by logistic regression analyses. Geomorphology, 72, 250 271.
Çevik, E., Topal, T., 2003. GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environmental Geology, 44, 949962.
Dai, F.C., Lee, C.F., Xu, Z.W., 2001. Assessment of landslide susceptibility on the natural terrain of Lantau Island, Hong Kong. Environmental Geology, 40 (3), 381-391.
Eastman, J.R., 2004. IDRISI Kilimanjaro: Guide to GIS and Image Processing. Clark Labs, Clark University, Worcester, USA, 328p.
Eechaut, M.V.D., Vanwalleghem, T., Poesen, J., Govers, G., Verstraeten, G., Vandekerckhove, L., 2006. Prediction of landslide susceptibility using rare events logistic regression: A casestudy in the Flemish Ardennes (Belgium). Geomorphology, 76, 392-
Emerson, J.D., Hoaglin, D.C., 1983. Stem and leaf displays. In: Understanding Robust and Exploratory Data Analysis. Hoaglin, D.C., Mosstelier, F. and Tukey, J.W., Wiley and Sons, New York.
Ercanoğlu, M., Gökçeoğlu, C., 2002. Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach. Environmental Geology, 41, 720730.
Ermini, L., Filippo, C., Casagli, N., 2005. Artificial Neural Networks applied to landslide susceptibility assessment. Geomorphology, 66, 327-343.
ESRI, 2002. Getting to start ArcGIS. ESRI Books, USA, 250p.
Fawcett,T., 2006. An introduction to ROC analysis.Pattern Recognition Letters, 27, 861- 874.
Gökçeoğlu, C., Sönmez, H., Nefeslioğlu, H.A., Duman, T.Y., Çan, T., 2005. The 17 March 2005 Kuzulu landslide (Sivas, Turkey) and landslidesusceptibility map of its near vicinity. Engineering Geology, 81, 65-83
Gupta, R.P., 2003. Remote Sensing Geology, 2nd edition. Springer, Berlin, 655p.
Guzetti, F., Carrarra, A., Cardinali, M., Reichenbach, P., 1999. Landslide hazard evaluation: a review of current techniques and their application in a multiscale study, Central Italy. Geomorphology, 31, 181-216.
Huang, X., Jensen, R., 1997. A machine-learning approach to automated knowledge-base building for remote sensing image analysis with GIS data. Photogrammetric Engineering and Remote Sensing, 63, 11851194.
ISRM, 1981. Rock characterization, testing and monitoringISRM suggested methods. Brown E.T. (ed.). Pergamon Press, Oxford. 211p.
Jensen, J.R., 2000. Indroductory Digital Image Processing: A Remote Sensing Perspective. Upper Saddle River, NJ: Prentice Hall, Inc., 319p.
Juang C.H., Lee, D.H., Sheu, C., 1992. Mapping slope failure potential using fuzzy sets. Journal of Geotechnical Engineering, 118, 475494.
Kıncal, C., Akgün, A., Koca, M.Y., 2009. Landslide susceptibility assessment in the Izmir (West Anatolia,Turkey) city center and its near vicinity by the logistic regression method. Environmental Earth Sciences, 59, 745-756.
King, G., Zeng, L., 2001. Logistic regression in rare events data. Political Analysis, 9, 137-163.
Komac, M., 2006. A landslide susceptibility model using the Analytical Hierarchy Process method and multivariate statistics in perialpine Slovenia. Geomorphology, 74, 17-28.
Lamelas, M.T., Marinoni, O., Hoppe, A., Riva, J., 2008. Doline probability map using logistic regression and GIS technology in the central Ebro Basin (Spain). Environmental Geology, 54, 963977.
Lee, S., 2005. Application of logistic regression model and its validation for landslide susceptibility mapping using GIS and remote sensing data. International Journal of Remote Sensing, 26, 1477-1491.
Lee, S., Min, K., 2001. Statistical analysis of landslide susceptibility at Yongin, Korea. Environmental Geology, 40, 1095-1113.
Lee, S., Dan, N.T., 2005. Probabilistic landslide susceptibility mapping in the Lai Chau province of Vietnam: focus on the relationship between tectonic fractures and landslides. Environmental Geology, 48, 778 787.
Lee S, Sambath, T., 2006. Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environmental Geology, 50, 847855.
Lee, S., Pradhan, B., 2007. Landslide hazard mapping at Selangor, Malaysia, using frequency ratio and logistic regression models. Landslides, 4, 3341.
Lee, S., Choi, J., Min, K., 2004. Landslide hazard mapping using GIS and remote sensing data at Boun, Korea. International Journal of Remote Sensing, 25, 2037-2052.
Malczewski, J., 1999. GIS and Multicriteria Decision Analysis. John Wiley &Sons, Inc. USA, 392p.
Menard, S., 1995. Applied Logistic Regression Analysis. Sage university paper series o quantitative applications in social sciences, vol. 106. Thousand Oaks, California, 98p.
Moore, I.D., Grayson, R.B., Ladson, A.R., 1991. Digital terrain modeling: a review of hydrological, geomorphological and biological applications. Hydrological Processes, 5, 3-30.
Nandi, A., Shakoor, A., 2009. A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses, Engineering Geology, 110, 1120.
Nefeslioğlu, H.A., Duman, T.Y., Durmaz, S., 2008. Landslide susceptibility mapping for a part of tectonic Kelkit Valley (Eastern Black Sea region of Turkey). Geomorphology, 94(34), 401418.
Nefeslioğlu, H.A., Sezer,E., Gökçeoğlu, C., Bozkır, A.S., Duman, T.Y., 2010. Assessment of Landslide Susceptibility by Decision Trees in the Metropolitan Area of İstanbul, Turkey. Mathematical Problems in engineering, doi:10.1155/2010/901095.
Ohlmacher, G.C., Davis, C. J., 2003. Using multiple regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Engineering Geology, 69, 331-343.
Pradhan, B., Lee, S., 2007. Utilization of optical remote sensing data and GIS tools for regional landslide hazard analysis by using an artificial neural network model at Selangor, Malaysia. Earth Science Frontiers, 14, 143152.
Saaty, T.L., 1980. The Analytical Hierarchy Process. McGraw Hill, New York. 350p.
Scott, D.W., 1992. Multivariate Density Estimation. John Wiley, New York, 90p.
Soeters, R., van Westen, C.J., 1996. Slope instability recognition analysis and zonation. In: Turner K.T., Schuster, R.L. (eds.). Landslides: investigation and mitigation . Transportation Research Board National Reseacrh Council, Special Report No: 2
Sturges, H.A., 1926. The choice of a class interval. Journal of the American Statistical Association, 21, 65-66.
Süzen, M.L., 2002. Data Driven Landslide Hazard Assessment Using Geograpical Information Systems and Remote Sensing., Ph.D. Thesis, Middle East Technical University, The Graduate School of Natural and Applied Science, Ankara.
Süzen, M.L., Doyuran, V., 2004. Data driven bivariate landslide susceptibility assessme using geographical information systems: a method and application to Asarsuyu Catchment, Turkey. Engineering Geology, 71, 303-321.
Tunusluoğlu, M.C., Gokceoğlu, C., Nefeslioğlu, H.A., Sonmez, H., 2007. Extraction of potential debris source areas by logistic regression technique: a case study from Barla, Besparmak and Kapi mountains (NW Taurids, Turkey). Environmental Geology, 54
van Westen, C.J., 1993. Application of geographic information systems to landslide hazard zonation. ITC Publication no: 15. International Institute for Aerospace and Earth Resources Survey, Enschede, The Netherlands, 245p.
Varnes, D.J., 1978. Slope movement types and processes. In: Schuster, R.L., Krizek, R.J. (Eds.), Landslides Analysis and Control. Special Report, vol. 176. Trasportation Research Board, National Academy of Sciences, New York, 12- 33.
Yalçın, A., 2008. GIS-based Landslide Susceptibility Mapping Using Analytical Hierarchy Process and Bivariate Statistics in Ardesen (Turkey): Comparisons of Results and Confirmations. Catena, 72, 1-12.
Yeşilnacar, E., Topal, T., 2005. Landslide susceptibility mapping: A comparision of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey). Engineering Geology, 79, 251-266.
Yılmaz, I., 2009. A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by Artificial Neural Networks. Bulletin of Engineering Geology and the Environment, 68 (3), 297-306.
Yılmaz, I., 2010. Comparison of landslide susceptibility mapping methodologies for Koyulhisar, Turkey: Conditional Probability, Logistic Regression, Artificial Neural Networks, and Support Vector Machine. Environmental Earth Sciences, 61 (4), 821-836
Zadeh, L.A., 1973. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Transactions on Systems Man and Cybernetics, 3 (1), 28-46.
Akgün, A , Türk, N . (2010). İki ve Çok Değişkenli İstatistik ve Sezgisel Tabanlı Heyelan Duyarlılık Modellerinin Karşılaştırılması: Ayvalık (Balıkesir, Kuzeybatı Türkiye) Örneği . Jeoloji Mühendisliği Dergisi , 34 (2) , 85-112 . Retrieved from https
Akgün, A , Türk, N . İki ve Çok Değişkenli İstatistik ve Sezgisel Tabanlı Heyelan Duyarlılık Modellerinin Karşılaştırılması: Ayvalık (Balıkesir, Kuzeybatı Türkiye) Örneği. Jeoloji Mühendisliği Dergisi 34 (2010 ): 85-112