Jeoloji Münendisliği Dergisi
Jeoloji Mühendisliği Dergisi

Jeoloji Mühendisliği Dergisi

2022 ARALIK Cilt 46 Sayı 2
KAPAK
PDF Olarak Görüntüle
KÜNYE
PDF Olarak Görüntüle
İÇİNDEKİLER
PDF Olarak Görüntüle
Orman Yangının Kumlu Zeminlerin Kıvam Limitleri Üzerindeki Etkisinin Çalışılması: Bir Vaka İncelemesi, Kozağaç, Muğla
Tümay Kadakci Koca
PDF Olarak Görüntüle

ÖZ:Orman yangınlarının ardından toprağın üst katmanında meydana gelen fiziksel, kimyasal ve mineralojik değişimler ve bunların erozyonla ilişkisi bugüne kadar farklı coğrafik bölge ve ekosistemler için çalışılmıştır. Yangın sonrası erozyon riskinin, yangın sonrasında makaslama direnci kaybı ve zeminin hidrolik özelliklerinin değişmesi nedeniyle arttığı bilinmektedir. Kıvam limiti değerleri toprağın makaslama dayanımıyla doğrudan ilişkilidir. Buna karşın, sınırlı sayıdaki çalışmada doğal yollarla yanmış toprakların kıvam limitleri irdelenmiştir. Buna ek olarak, kumlu zeminlerin kıvam limitlerinin belirlenmesi düşük plastisiteye sahip olmaları nedeniyle oldukça güçtür. Muğla’nın Kozağaç mahallesinde bulunan sulama barajının sol sahilindeki yamaçlarda meydana gelen yangında oluşan sıcaklıklar üst toprağı etkilemiştir. Bu nedenle, yanmış ve yanmamış alanlardan toplanan 24 adet örneğin tane boyu dağılımı, organik madde içeriği (SOM) ve kıvam limitleri belirlenmiştir. Yanmış toprağın tane boyu dağılımında anlamlı bir değişiklik olmadığı ancak kil içeriği ve Atterberg limitlerinin arttığı, SOM`nin ise azaldığı belirlenmiştir.Bu çalışmada kullanılan yöntemler ve sonuçlar ileride yangının kumlu topraklar üzerindeki etkisinin araştırılacağı çalışmalar için bir temel olarak kabul edilebilir.

  • Atterberg limitleri

  • Kumlu zemin

  • Orman yangını

  • Kil içeriği

  • Organik madde

  • AASHTO T89 (2022). Standard method of test for determining the liquid limit of soils method B. American Association of State Highway and Transportation Officials, US.

  • Agbeshi, A.A., Abugre, S., Atta-Darkwa, T., Awuah, R. (2022). A review of the effects of forest fire on soil properties. Journal of Forestry Research, 33, 1419-1441.

  • ASTM D2487–17e1 (2017). Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM International, West Conshohocken, PA.

  • ASTM D4318-17e1 (2018). Standard test methods for liquid limit, plastic limit and plasticity index of soils. ASTM International, West Conshohocken, PA

  • ASTM D6913/D6913M-17 (2021). Standard test methods for particle-size distribution (gradation) of soils using sieve analysis. ASTM International, West Conshohocken, PA.

  • Badía, D., Martí, C. (2008). Fire and rainfall energy effects on soil erosion and runoff generation in semi-arid forested lands. Arid Land Research and Management, 22, 93-108. https://doi. org/10.1080/15324980801957721

  • Campbell, G.S., Jungbauer, J.D., Bristow, K.L., Hungerford, R.D. (1995). Soil temperature and water content beneath a surface fire. Soil Science, 159(6), 363-374. https://doi. org/10.1097/00010694-199506000-00001

  • Cerdà, A., Doerr & S.H. (2008). The effect of ash and needle cover on surface runoff and erosion in the immediate post-fire period. Catena, 74, 256–263. https://doi.org/10.1016/j.catena.2008.03.010

  • Certini, G. (2005). Effects of fire on properties of forest soils: A review. Oecologia, 143, 1-10. https://doi.org/10.1007/s00442-004-1788-8

  • Chase, A. (2022). Using soil testing data to examine organic carbon changes during the past 27 years in Maine agricultural soils [PhD thesis]. University of Maine, USA.

  • Countryman, C. M. (1964). Mass fires and fire behavior. USDA Forest Service, Research Paper PSW-19. https://www.fs.usda.gov/psw/ publications/documents/psw_rp019/psw_rp019. pdf .

  • Das, B.M., Sobhan, K. (2017). Principles of Geotechnical Engineering. Cengage Learning, USA, 766 p.

  • DeBano, L.F., Rice, R.M., Conrad, C.E. (1979). Soil heating in chaparral fires: effects on soil properties, plant nutrients, erosion, and runoff. USDA Forest Service Research Paper PSW145. https://www.fs.usda.gov/psw/publications/ documents/psw_rp145/psw_rp145.pdf.

  • Deng, Y., Cai, C., Xia, D., Ding, S., Chen, J., Wang, T. (2017). Soil Atterberg limits of different weathering profiles of the collapsing gullies in the hilly granitic region of southern China. Solid Earth, 8(2), 499-513. https://doi.org/10.5194/se8-499-2017.

  • Dipova, N. (2011). Determination of liquid limit of soils using one point fall cone method. Journal of Geological Engineering, 35(1), 27-42.

  • Dlapa, P., Bodi, M.B., Mataix-Solera, J., Cerdà, A., Doerr, S.H. (2015). Organic matter and wettability characteristics of wildfire ash from Mediterranean conifer forests. Catena, 135, 369-376. https://doi.org/10.1016/j. catena.2014.06.018.

  • Dunn, P. H., DeBano, L.F., (1977). Fire’s effect on biological and chemical properties of chaparral soils. Proceedings of Symposium on Environmental Conservation: Fire and Fuel Management in Mediterranean Ecosystems, H.A. Mooney & C.E. Conrad (eds.), USDA Forest Service WO-3, Palo Alto, CA.Washington D.C., USA, pp. 75-84.

  • FAO (2015). World Reference Base for Soil Resources International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. http:// www.fao.org/3/a-i3794e.pdf.

  • Fernández, I., Cabaneiro, A., Carballas, T. (1997). Organic matter changes immediately after a wildfire in an Atlantic forest soil and comparison with laboratory soil heating. Soil Biology and Biochemistry, 29, 1-11. https://doi.org/10.1016/ S0038-0717(96)00289-1

  • Fox, D.M., Darboux, F., Carrega, P. (2007). Effects of fire-induced water repellency on aggregate stability, splash erosion, and saturated hydraulic conductivity for different size fractions. Hydrological Processes, 21, 2377-2384. https:// doi.org/10.1002/hyp.6758

  • General Directorate of Forestry (2022). GIS based e-map application. https://cbs.ogm.gov.tr/ vatandas/

  • Göktaş, F. (1998). Stratigraphy and sedimentology of Neogene sedimentation around Mugla (SW Anatolia). Mineral and Research Institute of Turkey Report No: 10225, Ankara, Turkey, 181 p.

  • Grim, R.E. (1968). Clay mineralogy, 2nd edition. McGraw-Hill, 596 p

  • Gül, M. (2015). Lithological properties and environmental importance of the Quaternary colluviums (Muğla, SW Turkey). Environmental Earth Sciences, 74, 4089-4108. https://doi. org/10.1007/s12665-015-4506-4

  • Gündüz, Z., Dağdeviren, U. (2009). The effects of sand particles on the determination of consistency limits. İMO Technical Journal, 4701-4715.

  • Gürer, Ö.F., Sanğu, E., Özburan, M., Gürbüz, A., Sarıca-Filoreau N. (2013). Complex basin evolution in the Gökova Gulf region: implications on the Late Cenozoic tectonics of southwest Turkey. International Journal of Earth Sciences, 102, 2199-2221. https://doi.org/10.1007/s00531- 013-0909-1

  • Haake, S. (2020). Burn severity and its impact on soil properties: a study of the 2016 Erskine fire in the southern Sierra Nevada [MSc. Thesis]. California State University, Bakersfield.

  • Haigh, S.K. (2012). Mechanics of the Casagrande liquid limit test. Canadian Geotechnical Journal, 49(9), 1015-1023. Corrigenda, 49(9), 1116 and 49(11), 1329. https://doi.org/10.1139/t2012-066

  • Hoogsteen, M.J.J., Lantinga, E.A., Bakker, E.J., Groot, C.J., Tittonell, P.A. (2015). Estimating soil organic carbon through loss on ignition: effects of ignition conditions and structural water loss. European Journal of Soil Science, 66, 320- 328. https://doi.org/10.1111/ejss.12224

  • Inbar, M., Wittenberg, L., Tamir, M. (1997). Soil erosion and forestry management after wildfire in a Mediterranean woodland, Mt. Carmel, Israel. International Journal of Wildland Fire, 7, 285-294.

  • Jordán, A., Zavala, L.M., Mataix-Solera, J., Nava, A.L., Alanís, N. (2011). Effect of fire severity on water repellency and aggregate stability on Mexican volcanic soils. Catena, 84, 721-726. https://doi.org/10.1016/j.catena.2010.10.007

  • Kavdir, Y., Ekinci, H., Yüksel, O., Mermut, A.R. (2005). Soil aggregate stability and 13C CP/ MAS-NMR assessment of organic matter in soils influenced by forest wildfires in Çanakkale, Turkey. Geoderma, 129, 219-229. https://doi. org/10.1016/j.geoderma.2005.01.013

  • Khoirullah, N., Mufti, I.J., Sophian, I., Yan, T., Iskandarsyah, W.M., Muslim, D. (2019). Erosion potential based on erodibility and plasticity index data on Cilengkrang, Bandung, west Java, Indonesia. IOP Conference Series: Earth and Environmental Science, 396, 012035. https://doi. org/10.1088/1755-1315/396/1/012035

  • Konare, H., Yost, R.S., Doumbia, M., McCarty, G.W., Jarju, A., Kablan, R. (2010). Loss on ignition: Measuring soil organic carbon in soils of the Sahel, West Africa. African Journal of Agricultural Research, 5(22), 3088-3095.

  • Lalitha, M., Anil Kumar, K.S., Nair, K.M., Dharumarajan, S., Koyal, A., Khandal, S., Kaliraj, S., Hegde, R. (2021). Evaluating pedogenesis and soil Atterberg limits for inducing landslides in the Western Ghats, Idukki District of Kerala, South India. Natural Hazards, 106, 487-507. https://doi.org/10.1007/s11069-020-04472-0

  • Mataix-Solera, J., Cerdà, A., Arcenegui, V., Jordán, A., Martínez-Zavala, L. (2011). Fire effects on soil aggregation: a review. Earth Science Reviews, 109(1–2), 44-60. https://doi.org/10.1016/j. earscirev.2011.08.002

  • Mitchell, J.K., Soga, K., (2005). Fundamentals of Soil Behavior, 3rd edition. John Wiley & Sons Inc., New York, 592 p.

  • Moreno-Maroto, J.M., Alonso-Azcàrate, J. (2018). What is clay? A new definition of “clay” based on plasticity and its impact on the most widespread soil classification systems. Applied Clay Science, 161, 57-63. https://doi.org/10.1016/j. clay.2018.04.011

  • Moreno-Maroto, J.M., Alonso-Azcàrate, J. (2022). Evaluation of the USDA soil texture triangle through Atterberg limits and an alternative classification system. Applied Clay Science, 229, 106689. https://doi.org/10.1016/j. clay.2022.106689

  • Ngezahayo, E., Burrow, M.P.N., Ghataora, G.S. (2019). The advances in understanding erodibility of soils in unpaved roads. Avestia Publishing International Journal of Civil Infrastructure, 2, 18-29. https://doi.org/10.11159/ijci.2019.002

  • Orhan, M., Özer, M., Işık, N.S. (2005). Comparison of Casagrande and cone penetration tests for the determination of the liquid limit of natural soils. Journal of the Faculty of Engineering and Architecture of Gazi University, 21(4), 711-720

  • Peltier, L.C. (1950). The geographic cycle in periglacial regions as it is related to climatic geomorphology. Annals of the Association of American Geographers, 40, 214-236. https://doi. org/10.2307/2561059

  • Robichaud, P.R., Hungerford, R.D., (2000). Water repellency by laboratory burning of four northern Rocky Mountain forest soils. Journal of Hydrology, 231-232, 207-219. https://doi. org/10.1016/S0022-1694(00)00195-5



  • Salehi, M.H., Hashemi Beni, O., Beigi Harchegani, H., Esfandiarpour Borujeni, I., Motaghian, H.R. (2011). Refining soil organic matter determination by loss-on-ignition. Pedosphere, 21(4), 473-482. https://doi.org/10.1016/S1002- 0160(11)60149-5

  • Schulte, E.E., Hopkins, B.G. (1996). Estimation of soil organic matter by weight loss-on-ignition. SSSA Special Publication; Soil Organic Matter: Analysis and Interpretation, F.R. Magdoff, M.A. Tabatabai, E.A. Hanlon (eds.) Soil Science Society of America, USA, 21-31.

  • Soto, B., Benito, E., Diaz-Fierros, F. (1991). Heatinduced degradation processes in forest soils. International Journal of Wildland Fire, 1, 147- 152. https://doi.org/10.1071/WF9910147

  • Stanchi, S., Freppaz, M., Godone, D., Zanini, E. (2013). Assessing the susceptibility of alpine soils to erosion using soil physical and site indicators. Soil Use and Management, 29, 586- 596. https://doi.org/10.1111/sum.12063

  • Terzaghi, K., Peck, R. B., Mesri, G. (1996). Soil mechanics in engineering practice, 3rd edition. Wiley, New York, NY, USA, 592 p.

  • Thomaz, E.L. (2021). Effects of fire on the aggregate stability of clayey soils: A meta-analysis. EarthScience Reviews, 221, 103802. https://doi. org/10.1016/j.earscirev.2021.103802

  • Turkish State Meteorological Service (TSMS) (2022). Statistical precipitation and temperature records. https://www.mgm.gov.tr/veridegerlendirme/ilve-ilceler-istatistik.aspx?m=MUGLA.

  • USDA (2017). Soil survey manual. Soil Survey Division Staff; Soil Conservation Service Volume Handbook 18. U.S. Department of Agriculture, 639 p.

  • Vacchiano, G., Stanchi, S., Marinari, G., Ascoli, D., Zanini, E., Motta, R. (2014). Fire severity, residuals and soil legacies affect regeneration of Scots pine in the Southern Alps. Science of the Total Environment, 472, 778-788. https://doi. org/10.1016/j.scitotenv.2013.11.101

  • Varela, M.E., Benito, E., Keizer, J.J. (2010a). Effects of wildfire and laboratory heating on soil aggregate stability of pine forest in Galicia: the role of lithology, soil organic matter content and water repellency. Catena, 83, 127-134. https:// doi.org/10.1016/j.catena.2010.08.001

  • Varela, M.E., Benito, E., Keizer, J. (2010b). Wildfire effects on soil erodibility of woodlands in NW Spain. Land Degradation & Development, 21, 75-82. https://doi.org/10.1002/ldr.896

  • Wagner, J.F. (2013). Mechanical properties of clays and clay minerals. Developments in Clay Science, 5, 347-381. https://doi.org/10.1016/ B978-0-08-098258-8.00011-0

  • Wang, Q., Zhou, P., Fan, J., Qiu, S. (2021). Study on parameters of two widely used cohesive soils erosion models. Water, 13, 3621. https://doi. org/10.3390/w13243621

  • Zavala, L.M., Granged, A.J.P., Jordan, A., BarcenasMoreno, G. (2010). Effect of burning temperature on water repellency and aggregate stability in forest soils under laboratory conditions. Geoderma, 158 (3–4), 366-374. https://doi. org/10.1016/j.geoderma.2010.06.004

  • Kadakci Koca, T. (2023). Studying The Effects of Forest Fire on Consistency Limits of Sandy Soils: A Case Study, Kozağaç, Muğla . Jeoloji Mühendisliği Dergisi , 46 (2) , 81-97 . DOI: 10.24232/jmd.1221946

  • Kadakci Koca, T. `Studying The Effects of Forest Fire on Consistency Limits of Sandy Soils: A Case Study, Kozağaç, Muğla`. Jeoloji Mühendisliği Dergisi 46 (2023 ): 81-97

  • Yangın Sonrası Soğuma Koşullarında Karbonat Yapı Taşlarındaki Mineralojik ve Mikro-Yapısal Değişimlerin Değerlendirilmesi
    Hasan Kolayli Muhammet Oğuz Sünnetci Murat Karahan Hakan Ersoy
    PDF Olarak Görüntüle

    ÖZ: Bu çalışmada yangın sonrası farklı soğutma modellerinin etkisi incelenmiştir. Isıtılan kayaçlar; (1) doğal çevre koşullarını temsil etmek için oda sıcaklığında, (2) soğuk mevsimleri temsil etmek için sıfırın altında ve (3) yangına müdahale senaryosu göz önüne alınarak suda soğumaya maruz bırakılmıştır. Çalışmada yapı taşı olarak sıklıkla kullanılan traverten, mermer ve kireçtaşı türündeki karbonat kayaçları kullanılmıştır. Kayaçların mineralojik bileşimlerini ve ısıtma-soğutma işlemlerinden sonra mineralojik değişimleri belirlemek için ince kesit incelemeleri ve XRD analizleri yapılmış, mikro-kırık gelişimini ortaya çıkarmak amacıyla SEM görüntüleri kullanılmış, fiziksel ve dayanım özelliklerindeki değişimleri belirlemek için jeomekanik deneyler uygulanmıştır. Soğuma sonrasında, yeni mikro-çatlakların oluşumundan ziyade, mevcut mikro-çatlakların büyüdüğü görülmüştür. Kayaçların dayanım özellikleri, soğuma süreçlerinden fiziksel özelliklere göre daha fazla etkilenmiş ve en düşük dayanım değerleri suda soğuma sonrası gözlenmiştir. Ani soğuma sonrası traverten ve mermerlerin çekme dayanımı %70-80 arasında azalırken, kil içeren kireçtaşlarında bu değer %30’u geçmemiştir. Sonuçlar, mevcut mikro-çatlakların büyümesi nedeniyle ani soğumanın genellikle yavaş soğumaya göre daha fazla termal hasara neden olduğunu, soğumanın kayaçların termal bozunması üzerinde ısıtmadan daha etkili olduğunu ve kil içeriğine bağlı olarak bu etkinin arttığını göstermektedir.

  • Soğuma şekli

  • Karbonat kayaçlar

  • Termal hasar

  • Yangın sonrası

  • Yapı taşı

  • Abdulagatova, Z.Z., Kallaev, S.N., Omarov, Z.M., Bakmaev, A.G., Grigor’Ev, B.A., Abdulagatov, I.M., (2020). Temperature effect on thermal- diffusivity and heat-capacity and derived values of thermal-conductivity of reservoir rock materials. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 6, 1-23. https:// doi.org/10.1007/s40948-019-00131-2

  • ASTM, (2008). D2845–08 standard test method for laboratory determination of pulse velocities and ultrasonic elastic constants of rock. West Conshohocken: ASTM International

  • Biró, A., Hlavićka, V., Lublóy, É., (2019). Effect of fire-related temperatures on natural stones. Construction and Building Materials, 212, 92-101. https://doi.org/10.1016/j. conbuildmat.2019.03.333

  • Browning, J., Meredith, P., Gudmundsson, A., (2016). Cooling-dominated cracking in thermally stressed volcanic rocks. Geophysical Research Letters, 43, 8417-8425. https://doi. org/10.1002/2016GL070532

  • Chen, Y., Zhang, C., Zhao, Z., Zhao, X., (2020). Shear behavior of artificial and natural granite fractures after heating and water-cooling treatment. Rock Mechanics and Rock Engineering, 53, 5429- 5449. https://doi.org/10.1007/s00603-020- 02221-0

  • Crosby, Z.K., Gullett, P.M., Akers, S.A., Graham, S.S., (2018). Characterization of the mechanical behavior of Salem limestone containing thermally-induced microcracks. International Journal of Rock Mechanics and Mining Sciences, 101, 54–62. https://doi.org/10.1016/j. ijrmms.2017.11.002

  • Emirov, S.N., Aliverdiev, A.A., Zarichnyak, Y.P., Emirov, R.M., (2021). Studies of the effective thermal conductivity of sandstone under high pressure and temperature. Rock Mechanics and Rock Engineering, 54, 3165-3174. https://doi. org/10.1007/s00603-020-02353-3

  • EN 1991-1-2, (2002). Eurocode 1: Actions on structures - Part 1-2: General actions - Actions on structures exposed to fire. The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC

  • Ersoy, H., Acar, S., (2016). Influences of petrographic and textural properties on the strength of very strong granitic rocks. Environmental Earth Sciences, 75, 1461. https://doi.org/10.1007/ s1266 5-016-6277-y

  • Ersoy, H., Atalar, C., Sünnetci, M.O., Kolaylı, H., Karahan, M., Ersoy, A.F., (2021). Assessment of damage on geo-mechanical and micro-structural properties of weak calcareous rocks exposed to fires using thermal treatment coefficient. Engineering Geology, 284, 106046. https://doi. org/10.1016/j.enggeo.2021.106046

  • Ersoy, H., Karahan, M., Kolaylı, H., Sünnetci, M.O., (2021). Influence of mineralogical and micro- structural changes on the physical and strength properties of post-thermal-treatment clayey rocks. Rock Mechanics and Rock Engineering, 54, 679-694. https://doi.org/10.1007/s00603- 020-02282-1

  • Ersoy, H., Kolaylı, H., Karahan, M., Harputlu Karahan, H., Sünnetci, M.O., (2019). Effect of thermal damage on mineralogical and strength properties of basic volcanic rocks exposed to high temperatures. Bulletin of Engineering Geology and the Environment, 78, 1515–1525. https://doi.org/10.1007/s10064-017-1208-z

  • Feng, G., Wang, X., Kang, Y., Zhang, Z., (2020). Effect of thermal cycling-dependent cracks on physical and mechanical properties of granite for enhanced geothermal system. International Journal of Rock Mechanics and Mining Sciences, 134, 104476. https://doi.org/10.1016/j. ijrmms.2020.104476

  • Han, G., Jing, H., Su, H., Liu, R., Yin, Q., Wu, J., (2019). Effects of thermal shock due to rapid cooling on the mechanical properties of sandstone. Environmental Earth Sciences, 78, 146. https://doi.org/10.1007/s12665-019-8151-1

  • ISO, (1999). ISO 834: Fire resistance tests-elements of building construction. International Organization for Standardization, Geneva, Switzerland

  • ISRM, (1978). Suggested methods for determining tensile strength of rock materials. Suggested method for determining indirect tensile strength by Brazilian test. Commission on Standardization of Laboratory and Field Tests. Z.T. Bieniawski and I. Haweks. International Journal of Rock Mechanics and Mining Sciences, 15, 102–103

  • ISRM, (2007). The complete ISRM suggested methods for rock characterization, testing and monitoring: 1974–2006. Suggested methods prepared by the commission on testing methods. In: Ulusay R, Hudson JA, eds. Compilation arranged by the ISRM Turkish National Group. Ankara, Turkey

  • Johnston, J., (1910). The Thermal Dissociation of Calcium Carbonate. Journal of the American Chemical Society, 32, 938-946

  • Kara, I.B., (2021). Effects of cooling regimes on limestone rock and concrete with limestone aggregates at elevated temperatures. International Journal of Rock Mechanics and Mining Sciences, 138, 104618. https://doi.org/10.1016/j. ijrmms.2021.104618

  • Kim, K., Kemeny, J., Nickerson, M., (2019). Effect of rapid thermal cooling on mechanical rock properties. Rock Mechanics and Rock Engineering, 47, 2005-2019. https://doi. org/10.1007/s00603-013-0523-3

  • Kumari, W.G.P., Ranjith, P.G., Perera, M.S.A., Chen, B.K., Abdulagatov, I.M., (2017). Temperature- dependent mechanical behaviour of Australian Strathbogie granite with different cooling treatments. Engineering Geology, 229, 31-44. https://doi.org/10.1016/j.enggeo.2017.09.012

  • Kunze, G.W., (1965). Pretreatment for mineralogical analysis. In: Black CA, ed. Methods of Soil Analysis, Part I. Physical and Mineralogical Properties Including Statistics of Measurement and Sampling. American Society of Agronomy, Madison WI; 568–577

  • Li, Q., Yin, T., Li, X., Zhang, S., (2020). Effects of rapid cooling treatment on heated sandstone: a comparison between water and liquid nitrogen cooling. Bulletin of Engineering Geology and the Environment, 79, 313–327. https://doi. org/10.1007/s10064-019-01571-6

  • Li, Z., Fortin, J., Nicolas, A., Deldicque, D., Gueguen, Y., (2019). Physical and mechanical properties of thermally cracked andesite under pressure. Rock Mechanics and Rock Engineering, 52, 3509–3529. https://doi.org/10.1007/s0060 3-019-01785-w

  • Li, Z.W., Long, M.C., Feng, X.T., Zhang, Y.J., (2021). Thermal damage effect on the thermal conductivity inhomogeneity of granite. International Journal of Rock Mechanics and Mining Sciences, 138, 104583. https://doi. org/10.1016/j.ijrmms.2020.104583

  • Liu, S., Xu, J., (2015). An experimental study on the physico-mechanical properties of two post-high-temperature rocks. Engineering Geology, 185, 63-70. https://doi.org/10.1016/j. enggeo.2014.11.013

  • Meng, Q.B., Zhang, M.W., Han, L.J., Pu, H., Chen, Y.L., (2019). Experimental research on influence of loading rate on mechanical properties of limestone in high temperature state. Bulletin of Engineering Geology and the Environment, 78, 3479–3492. https://doi.org/10.1007/s10064- 018-1332-4

  • Meng, T., Yongbing, X., Ma, J., Yue, Y., Liu, W., Zhang, J., Erbing, L., (2021). Evolution of permeability and microscopic pore structure of sandstone and its weakening mechanism under coupled thermo- hydro-mechanical environment subjected to real-time high temperature. Engineering Geology, 280, 105955. https://doi.org/10.1016/j. enggeo.2020.105955

  • Nasseri, M.H.B., Goodfellow, S.D., Wanne, T., Young, R.P., (2013). Thermo-hydro-mechanical properties of Cobourg limestone. International Journal of Rock Mechanics and Mining Sciences, 61, 212-222. https://doi.org/10.1016/j. ijrmms.2013.03.004

  • Pei, L., Blöcher, G., Milsch, H., Zimmermann, G., Sass, I., Huenges, E., (2018). Thermo- mechanical Properties of Upper Jurassic (Malm) Carbonate Rock Under Drained Conditions. Rock Mechanics and Rock Engineering, 51, 23– 45. https://doi.org/10.1007/s00603-017- 1313-0

  • Popov, Y., Beardsmore, G., Clauser, C., Roy, S., (2016). ISRM suggested methods for determining thermal properties of rocks from laboratory tests at atmospheric pressure. Rock Mechanics and Rock Engineering, 49, 4179-4207. https://doi. org/10.1007/s00603-016-1070-5

  • Rong, G., Sha, S., Li, B., Chen, Z., Zhang, Z., (2021). Experimental investigation on physical and mechanical properties of granite subjected to cyclic heating and liquid nitrogen cooling. Rock Mechanics and Rock Engineering, 54, 2383- 2403. https://doi.org/10.1007/s00603-021- 02390-6

  • Rosenholtz, J.L., Smith, D.T., (1949). Linear thermal expansion of calcite, var. Iceland spar, and Yule Marble. American Mineralogist, 34, 846-854

  • Sha, S., Rong, G., Chen, Z., Li, B., Zhang, Z., (2020). Experimental evaluation of physical and mechanical properties of geothermal reservoir rock after different cooling treatments Rock Mechanics and Rock Engineering, 53, 4967- 4991. https://doi.org/10.1007/s00603-020- 02200-5

  • Sha, S., Rong, G., Peng, J., Li, B., Wu, Z., (2019). Effect of open-fire-induced damage on Brazilian tensile strength and microstructure of granite. Rock Mechanics and Rock Engineering, 52, 4189-4202. https://doi.org/10.1007/s00603- 019-01871-z

  • Shao, Z., Wang, Y., Tang, X., (2020. The influences of heating and uniaxial loading on granite subjected to liquid nitrogen cooling. Engineering Geology, 271, 105614. https://doi.org/10.1016/j. enggeo.2020.105614

  • Shen, Y., Hou, X., Yuan, J., Xu, Z., Hao, J., Gu, L., Liu, Z., (2020). Thermal deterioration of high- temperature granite after cooling shock: multiple- identification and damage mechanism. Bulletin of Engineering Geology and the Environment, 79, 5385-5398. https://doi.org/10.1007/s10064- 020-01888-7

  • Villarraga, C.J., Gasc-Barbier, M., Vaunat, J., Darrozes, J., (2018). The effect of thermal cycles on limestone mechanical degradation. International Journal of Rock Mechanics and Mining Sciences, 109, 115-123. https://doi. org/10.1016/j.ijrmms.2018.06.017.

  • Wang, F., Konietzky, H., Frühwirt, T., Li, Y., Dai, Y., (2019). Impact of cooling on fracturing process of granite after high-speed heating. International Journal of Rock Mechanics and Mining Sciences, 125, 104155. https://doi.org/10.1016/j. ijrmms.2019.104155

  • Wang, P., Xu, J., Liu, S., (2015). Staged moduli: a quantitative method to analyze the complete compressive stress–strain response for thermally damaged rock. Rock Mechanics and Rock Engineering, 48, 1505–1514. https://doi. org/10.1007/s00603-014-0648-z

  • Wang, Z., Zhang, W., Shi, Z., Zhang, S., (2022). Changes of physical properties of thermal damaged sandstone with time lapse. Acta Geophysica, 2022, 1-10. https://doi.org/10.1007/ s11600-022-00782-y

  • Whitney, D., Evans, B., (2010). Abbreviations for Names of Rock-Forming Minerals. American Mineralogist, 95, 185-187. https://doi. org/10.2138/am.2010.3371

  • Wu, X., Huang, Z., Song, H., Zhang, S., Cheng, Z., Li, R., Wen, H.T., Huang, P.P., Dai, X.W., (2019). Variations of physical and mechanical properties of heated granite after rapid cooling with liquid nitrogen. Rock Mechanics and Rock Engineering, 52, 2123-2139. https://doi. org/10.1007/s00603-018-1727-3

  • Wu, X., Huang, Z., Zhang, S., Cheng, Z., Li, R., Song, H., Wen, H.T., Huang, P., (2019). Damage analysis of high-temperature rocks subjected to LN2 thermal shock. Rock Mechanics and Rock Engineering, 52, 2585-2603. https://doi. org/10.1007/s00603-018-1711-y

  • Zhang, F., Zhang, Y., Yu, Y., Hu, D., Shao, J., (2020). Influence of cooling rate on thermal degradation of physical and mechanical properties of granite. International Journal of Rock Mechanics and Mining Sciences, 129, 104285. https://doi. org/10.1016/j.ijrmms.2020.104285

  • Zhang, F., Zhao, J., Hu, D., Skoczylas, F., Shao, J., (2018). Laboratory investigation on physical and mechanical properties of granite after heating and water-cooling treatment. Rock Mechanics and Rock Engineering, 51, 677-694. https://doi. org/10.1007/s00603-017-1350-8

  • Zhang, W., Qian, H., Sun, Q., Chen, Y., (2015). Experimental study of the effect of high temperature on primary wave velocity and microstructure of limestone. Environmental Earth Sciences, 74, 5739–5748. https://doi. org/10.1007/s12665-015-4591-4

  • Zhu, D., Jing, H., Yin, Q., Ding, S., Zhang, J., (2020). Mechanical characteristics of granite after heating and water-cooling cycles. Rock Mechanics and Rock Engineering, 53, 2015-2025. https://doi. org/10.1007/s00603-019-01991-6



  • Kolaylı, H. , Sünnetci, M. O. , Ersoy, H. & Karahan, M. (2023). Yangın Sonrası Soğuma Koşullarında Karbonat Yapı Taşlarındaki Mineralojik ve Mikro-Yapısal Değişimlerin Değerlendirilmesi . Jeoloji Mühendisliği Dergisi , 46 (2) , 99-119 . DOI: 10.24232/jmd.1226600

  • Kolaylı, H. , Sünnetci, M. O. , Ersoy, H. , Karahan, M. `Yangın Sonrası Soğuma Koşullarında Karbonat Yapı Taşlarındaki Mineralojik ve Mikro-Yapısal Değişimlerin Değerlendirilmesi`. Jeoloji Mühendisliği Dergisi 46 (2023 ): 99-119

  • Tarsus Kıyı Akiferi`nde (Mersin) Meydana Gelen Tuzlanmanın Nedenlerinin Araştırılması
    Onur Güven Cüneyt Güler Mehmet Ali Kurt Ümit Yildirim
    PDF Olarak Görüntüle

    ÖZ: Bu çalışmada, Türkiye’nin Doğu Akdeniz bölgesinde yer alan Tarsus Kıyı Akiferi’nde (Mersin) görülen tuzlanma olayının nedenleri araştırılmıştır. Özellikle Akdeniz havzası genelinde kritik bir problem olan yeraltı sularının tuzlanması olayı, deniz suyu girişimi, iklim değişikliği, jeojenik etkiler ve antropojenik faaliyetler (kirlilik ve hidrolojik müdahaleler) gibi süreçlerin ve mekanizmaların bir sonucu olarak karşımıza çıkmaktadır. Bu kapsamda, Eylül 2020’de yapılan saha çalışmasında 87 yeraltı suyu kuyusundan ve deniz suyundan (Akdeniz) örnekler alınmıştır. Alınan su örneklerinin sıcaklık, elektriksel iletkenlik, pH, tuzluluk, indirgenme-yükseltgenme (redoks) potansiyeli, çözünmüş oksijen ve toplam çözünmüş madde değerleri arazide ölçülmüştür. Su örneklerinin majör iyon ve iz element içerikleri (Ca+2, Mg+2, Na+, K+, HCO3-, CO3-2, Cl-, SO4-2, NO3-, NO2-, B, Br, Sr ve Li) laboratuvarda spektrometrik (ICP-MS), spektrofotometrik ve volumetrik (titrasyon) yöntemlerle analiz edilmiştir. Analiz edilen bu parametrelere ait tematik dağılım haritaları bir Coğrafi Bilgi Sistemi (CBS) yazılımı kullanılarak oluşturulmuştur. Alınan su örneklerinin hidrokimyasal fasiyesleri, Piper ve HFE diyagramları kullanılarak belirlenmiştir. Ayrıca, bölgede görülen tuzlanma mekanizmalarını açıklamak amacıyla, çeşitli majör iyonlara ve/veya iz elementlere ait oranların kullanıldığı ikili (x-y) grafikler oluşturulmuştur. Elde edilen sonuçlara göre; Tarsus Kıyı Akiferi’ni etkileyen tuzlanma olayının; deniz suyu girişimi, Messiniyen evaporitlerinin (anhidrit, jips ve halit) çözünmesi ve antropojenik (tarımsal ve endüstriyel) faaliyetler sonucunda meydana geldiği ortaya konulmuştur.

  • Tuzlanma

  • İyon Oranları

  • HFE-Diyagramı

  • Hidrojeokimya

  • Tarsus Kıyı Akiferi

  • Abu-alnaeem, M. F., Yusoff, I., Fatt Ng, T., Alias, Y., Raksmey, M., (2018). Assessment of groundwater salinity and quality in Gaza coastal aquifer, Gaza Strip, Palestine: An integrated statistical,geostatistical and hydrogeochemical approaches study. Science of the Total Environment, 615, 972-989.

  • Alcala, F. J., Custodio E., (2008). Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. Journal of Hydrology, 359 (1-2), 189-207.

  • Antonioli, F., De Falco, G., Lo Presti, V., Moretti, L., Scardino, G., Anzidei, M. ve diğerleri. (2020). Relative sea-level rise and potential submersion risk for 2100 on 16 Coastal Plains of the Mediterranean Sea. Water, 12 (8), 2173-2198.

  • Appelo, C. A. J., Postma, D., (2005). Geochemistry, Groundwater and Pollution (2nd edition). A. A. Balkema Publishers, Amsterdam, 634 s.

  • Davis, S. N., Whittemore, D. O., Fabryka-Martin, J., (1998). Use of chloride/bromide ratios in studies of potable water. Ground Water, 36 (2), 338-350.

  • Demirel, Z., (2004). The history and evaluation of saltwater intrusion into a coastal aquifer in Mersin, Turkey. Journal of Environmental Management, 70, 275-282.

  • DSİ, (1978). Mersin, Berdan ve Efrenk Ovaları hidrojeolojik etüd raporu. DSİ, 60 s.

  • Freeze, R. A., Cherry, J. A., (1979. Groundwater. Prentice-Hall, New Jersey, 604 s.

  • Fidelibus, M. D., Pulido-Bosch, A., (2018). Groundwater temperature as an indicator of the vulnerability of karst coastal aquifers. Geosciences, 9 (1), 2-22.

  • Giménez, E., Morell, I., (1997). Hydrogeochemical analysis of salinization processes in the coastal aquifer of Oropesa (Castellón, Spain). Environmental Geology, 29 (1), 118-131.

  • Giménez-Forcada, E., (2010). Dynamic of seawater interface using Hydrochemical Facies Evolution Diagram. Ground Water, 48 (2), 212-216.

  • Göney, S. (1976). Adana Ovaları. İstanbul Üniversitesi yayınları, İstanbul, 179 s.

  • Güler, C., (2009). Site characterization and monitoring of natural attenuation indicator parameters in a fuel contaminated coastal aquifer: Karaduvar (Mersin, SE Turkey). Environmental Earth Sciences, 59 (3), 631-643.

  • Güler, C., Kurt, M. A., Alpaslan, M., Akbulut, C., (2012). Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus Coastal Plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques. Journal of Hydrology, 414-415, 435-451.

  • Güler, C., Kurt, M. A., Korkut, R. N., (2013). Assessment of groundwater vulnerability to nonpoint source pollution in a Mediterranean Coastal Zone (Mersin, Turkey) under conflicting land use practices. Ocean&Coastal Management, 71, 141-152.

  • Hatipoğlu, Z., Bayarı S., (2005). Mersin-Tarsus kıyı ve yamaç akiferlerinin hidrojeokimyası. Türkiye Jeoloji Bülteni, 48 (2), 59-72.

  • Hem, J. D., (1985). Study and Interpretation of the Chemical Characteristics of Natural Water. U. S. Geological Survey Water Supply Paper 2254, Virginia, 264 s.

  • Ilgar, A., (2015. Messiniyen Tuzluluk Krizi Akdeniz’in kurumasına ilişkin bir derleme. Doğal Kaynaklar ve Ekonomi Bülteni, 20, 73-80.

  • Jones, B. F., Vengosh, A., Rosenthal, E., Yechieli, Y., (1999). Geochemical investigations. Bear (Ed.), Seawater Intrusion in Coastal Aquifers- Concepts, Methods and Practices. Springer Science+Business Media, Israel, 51-69 ss.

  • Khadra, W. M., Stuyfzand, P. J., Breukelen van, B. M., (2017). Hydrochemical effects of saltwater intrusion in a limestone and dolomitic limestone aquifer in Lebanon. Applied Geochemistry, 79, 36-51.

  • Korkut, R. N., (2009). Deliçay-Tarsus Çayı (Mersin) arasındaki bölgedeki yeraltı sularında nitrat ve nitrit kirliliğinin araştırılması. Mersin Üniversitesi Fen Bilimleri Enstitüsü, Mersin, Yüksek Lisans Tezi, 67 s (yayımlanmamış).

  • Kurt, M. A., (2010). Deliçay ve Tarsus Çayı (Mersin) arasında kalan alandaki toprak profillerinin mineralojisi, toprak ve su kirliliğinin araştırılması. Mersin Üniversitesi Fen Bilimleri Enstitüsü, Mersin, Doktora Tezi, 424 s (yayımlanmamış).

  • Lebid, H., Errih, M., Boudjemline, D., (2016). Contribution of strontium to the study of groundwater salinity. Case of the alluvial plain of Sidi Bel Abbes (Northwestern Algeria). Environmental Earth Sciences, 75:947.

  • Menz, C. (2016). Oxygen delivering processes in groundwater and their relevance for iron- related well clogging processes–a case study on the Quaternary aquifers of Berlin. Freien Üniversitesi, Berlin, Doktora tezi, 185 s (yayımlanmamış).

  • National Aeronautics and Space Administration (NASA) (2022). Sea Level. 27 Kasım 2022 tarihinde https://climate.nasa.gov/vital-signs/ sea-level/ adresinden erişildi.

  • Park, S. C., Yun, S. T., Chaea, G. T., Yoo, I. S., Shin, K. S., Heoa, C. H. ve diğerleri, (2005). Regional hydrochemical study on salinization of coastal aquifers, western coastal area of South Korea. Journal of Hydrology. 313 (3-4), 182-194.

  • Piper, A. M., (1944). A Graphic Procedure in the Geochemical Interpretation of Water Analyses. Transactions, American Geophysical Union, 25 (6), 914-928.

  • Pulido-Leboeuf, P., Pulido-Bosch, A., Calvache, M. L., Vallejos, A., Andreu, J. M., (2003). Strontium, SO4-2/Cl- and Mg+2/Ca+2 ratios as tracers for the evolution of seawater into coastal aquifers: the example of Castell de Ferro aquifer (SE Spain). Comptes Rendus Geoscience, 335 (14), 1039- 1048.

  • Ranjan, P., Kazama, S., Sawamoto, M., (2006). Effects of climate change on coastal fresh groundwater resources. Global Environmental Change, 16, 388-399.

  • Sanchez-Martos, F., Pulido-Bosch, A., Molina- Sanchez, L., Vallejos-Izquierdo, A., (2002). Identification of the origin of salinization in groundwater using minor ions (Lower Andarax, Southeast Spain). The Science of the Total Environment, 297 (1-3), 43-58.

  • Sandal, E. K., Gürbüz, M., (2003). Mersin şehrinin mekansal gelişimi ve çevresindeki tarım alanlarının amaç dışı kullanımı. Coğrafi Bilimler Dergisi, 1, 117-130.

  • Schmidt, G., (1961). VII. Adana Petrol Bölgesinin Stratigrafik Nomenklatürü. Petrol Dergisi, 6, 47- 63.

  • Somay, M. A., Gemici, Ü., (2009). Assessment of the salinization process at the coastal area with hydrogeochemical tools and Geographical Information Systems (GIS): Selçuk Plain, Izmir, Turkey. Water, Air, & Soil Pollution, 201 (1), 55- 74.

  • Şenol, M., Şahin Ş., Duman, T. Y., (1998). Adana- Mersin dolayının jeoloji etüd raporu. MTA, Ankara, 46 s.

  • Telahigue, F., Agoubi, B., Souid, F., Kharroubi, A., (2018). Assessment of seawater intrusion in an arid coastal aquifer, south-eastern Tunisia, using multivariate statistical analysis and chloride mass balance. Physics and Chemistry of the Earth, 106, 37-46.

  • United Nations Water, (2022). Groundwater making the invisible visible. UNESCO, Paris, 225 s.

  • Ünlügenç, U. C. (1986). Kızıldağ Yayla (Adana) dolayının jeoloji incelemesi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Adana, Yüksek Lisans Tezi, 76 s (yayımlanmamış).

  • Vengosh, A., Rosenthal E., (1994). Saline groundwater in Israel: its bearing on the water crisis in the country. Journal of Hydrology, 156 (1-4), 389- 430.

  • Vengosh, A., (2014). Salinization and Saline Environments. Holland ve Turekian (Ed.) Treatise on Geochemistry Second Edition. Elsevier, USA, ss. 325-378.

  • Wetzelhuetter, C., (2015). Groundwater in the Coastal Zones of Asia-Pacific. Springer, Netherlands, 110 s.

  • Zghibi, A., Tarhouni J., Zouhri, L., (2013). Assessment of seawater intrusion and nitrate contamination on the groundwater quality in the Korba coastal plain of Cap-Bon (North-east of Tunisia). Journal of African Earth Sciences, 87, 1-12.



  • Güven, O. , Güler, C. , Kurt, M. A. & Yıldırım, Ü. (2023). Tarsus Kıyı Akiferi’nde (Mersin) Meydana Gelen Tuzlanmanın Nedenlerinin Araştırılması . Jeoloji Mühendisliği Dergisi , 46 (2) , 121-138 . DOI: 10.24232/jmd.1232826

  • Güven, O. , Güler, C. , Kurt, M. A. , Yıldırım, Ü. `Tarsus Kıyı Akiferi’nde (Mersin) Meydana Gelen Tuzlanmanın Nedenlerinin Araştırılması`. Jeoloji Mühendisliği Dergisi 46 (2023 ): 121-138

  • Silifke-Mut (Mersin) Karayolunda Meydana Gelen Kargıcak Heyelanının Değerlendirilmesi
    Muhammet Nurduhan Hidayet Tağa
    PDF Olarak Görüntüle

    ÖZBu çalışmada, Silifke-Mut ilçelerini birbirine bağlayan D-715 Karayolu`nun Km 31+300-31+500 arasında Kargıcak mahallesinde aşırı yağışların arkasından 8 Ocak 2020 tarihinde oluşan kütle hareketinin mekanizması, kayma derinliği ve bölgede yüzeyleyen litostratigrafi birimleri ile olan ilişkisi ortaya konulması amaçlanmıştır. Bu amaç doğrultusunda, öncelikle inceleme alanın insansız hava aracı (İHA) ile çekilen fotoğraflardan, fotogrametrik yöntemle 2 cm çözünürlüklü sayısal yüzey modeli ve mühendislik jeolojisi haritası yapılmıştır. Heyelan alanında açılmış olan 9 adet karotlu sondajdan elden edilen örselenmiş ve örselenmemiş örnekler üzerinde, indeks ve jeomekanik parametreleri belirlemeye yönelik laboratuvar testleri gerçekleştirilmiştir. Sondaj kuyularına yerleştirilen inklinometre düzeneklerinden elde edilen veriler kullanılarak kayma derinliği ve hızı belirlenmiştir. Bölgede 8 Ocak 2020 öncesi oluşan sağanak yağışlar heyelan alanında yüzeyleyen ayrışmış kiltaşı-kil biriminde boşluk suyu basıncını artırarak birimin kayma dayanımının azalmasına neden olmuştur. Elde edilen verilere göre Kargıcak heyelanı, dairesel başlayıp, ayrışmış kiltaşı-kil birimi ile kiltaşı-marn yüzeyinde düzlemsel olarak gelişmiştir.

  • Silifke-Mut Karayolu

  • Kargıcak Heyelanı

  • İHA

  • inklinometre

  • Aşırı Yağış

  • Anonim, 2020. 1968 yılı yağışları sonrasında Kargıcak ve civarında oluşan kütle hareketi konulu görüşme, Silifke Kargıcak Mahallesi.

  • ASTM D-2487, (2020). Classification of soils for engineering purposes unified soil classification system. 22 Aralık 2022 tarihinde https://www. studocu.com/row/document/ege-universitesi/ electronics-ii/astm-d-2487-classification-of- soils-for-engineering-purposes-unified-soil- classification-system/8266235.

  • ASTM D-7012, (2017). Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures Atabey, E., Atabey, N., Hakyemez, A., İslamoğlu, Y., Sözeri, Ş., Özçelik, N.N. ve diğerleri. (2000). Mut-Karaman arası Miyosen Havzasının Litostratigrafisi ve Sedimantolojisi (Orta Toroslar). Maden Tetkik ve Arama Dergisi. 122, 53-72.

  • Atabey, E., Atabey, N., Hakyemez, A., İslamoğlu, Y., Sözeri, Ş., Özçelik, N.N., Saraç, G., Ünay, E., Babayiğit, S., (2000). Mut-Karaman arası Miyosen Havzasının Litostratigrafisi ve Sedimantolojisi (Orta Toroslar). Maden Tetkik ve Arama Dergisi. 122, 53-72.

  • Bishop, A.W., (1955). The use of the slip circle in the stability analysis of slopes. Geotechnique 5:7–7.

  • Chen, W.F, Mizuno, E., 1990. Nonlinear Analysis in Soil Mechanics: Theory and Implementation. Elsevier, Amsterdam.

  • Cheng, Y.M., Lansivaara, T., Wei, W.B., (2007). Two- dimensional slope stability analysis by limit equilibrium and strength reduction methods. Comput Geotechnics, 34(3), 137–150. https:// doi.org/10.1016/j.compgeo.2006.10.011.

  • Chowdhury, R., (2010). Geotechnical slope analysis. Taylor & Francis Group, London

  • Clough, R.W., WoodwardIII, R.J., (1967). Analysis of Embankment Stresses and Deformations. Journal of the Soil Mechanics and Foundations Division, 93(4), 529–549. https://doi.org/10.1061/ JSFEAQ.0001005

  • Dounias, G. T, Potts, D. M., Vaughan, P. R., (1988). Finite element analysis of progressive failure: two case studies. Comput Geotech, 6(2), 155–175. https://doi.org/10.1016/0266-352x(88)90078-x.

  • Duman, T.Y., Çan, T., Emre, Ö., (2011). 1/1.500.000 ölçekli Türkiye Heyelan Envanteri Haritası. Maden Tetkik ve Arama Genel Müdürlüğü, Özel Yayınlar Serisi-27, Ankara, Türkiye. ISBN: 978- 605-4075-84-3.

  • Finlay, P.J., Fell. R, Maguire, P.K., (1997). The relationship between the probability of landslide occurrence and rainfall. Can Geotech J, 34:811– 824.

  • Fernández-Merodo, J.A., García-Davalillo, J.C., Herrera, G., Mira, P., Pastor, M., (2014). 2D viscoplastic finite element modelling of slow landslides: The Portalet case study (Spain). Landslides, 11(1), 29–42.

  • Gedik, A., Birgili, Ş., Yılmaz, H., Yoldaş, R., (1979). Mut-Ermenek-Silifke Yöresinin Jeolojisi ve Petrol Olanakları. Türkiye Jeoloji Kurumu Bülteni. 22, 7–26.

  • Griffiths, D.V., Lane, P.A., (1999). Slope stability analysis by finite elements. Geotechnique, 49(3), 387–403. https://doi.org/10.1680/ geot.1999.49.3.387.

  • Haberler.com, (2020). Mersin’de çökme meydana gelen yol ulaşıma kapatıldı. 03 Ocak 2023 tarihinde https://www.haberler.com/mersin-de- cokme-meydana-gelen-yol-ulasima-12797878- haberi.

  • EMAS Mühendislik, (2020). Silifke-Mut 3. Bölge Hudut 2. Kısım Yolu Km:31+100-31+650 Arası Heyelan Önleme Projesi.

  • ISRM, (1981). Rock Characterization, Testing and Monitoring: ISRM Suggested Methods. E.T.Brown (ed.), Pergamon Press, 211 p.

  • Lee, M.L., Gofar, N., Rahardjo, H., (2009). A simple model for preliminary evaluation of rainfall- induced slope instability. Eng Geol, 108: 272– 285.

  • Meteoblue, (2021). Kargıcak Hava Durumu. 22 Kasım 2021 tarihinde https://www.meteoblue. com/tr/hava/hafta/kargıcak_türkiye_309126

  • MGM, (2021). Meteoroloji Genel Müdürlüğü, Meteorolojik Hadiselerin Şiddetlerine ait Sınıflandırma. 22 Kasım 2021 tarihinde https://www.mgm.gov. tr/site/yardim1.aspx?=HadSid adresinden erişildi.

  • MGM, (2022). Meteoroloji Genel Müdürlüğü, İllere ait mevsim normalleri. 30 Kasım 2022 tarihinde https://www.mgm.gov.tr/veridegerlendirme/il- ve-ilceler-istatistik.aspx?m=MERSIN.

  • Nurduhan, M., (2022). Silifke-Mut (Mersin) Karayolu Kargıcak Civarındaki Kütle Hareketinin Değerlendirilmesi., Mersin Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 101 s, Mersin.

  • Ocakoğlu, F., Gökçeoğlu, C., Ercanoglu, M., (2002). Dynamics of a complex mass movement triggered by heavy rainfall: a case study from NW Turkey. Geomorphology, 42(329–341):330.

  • Pain, A, Kanungo, D.P., Sarkar, S., (2014). Rock slope stability assessment using finite element based modelling - examples from the Indian Himalayas. Geomechanics and Geoengineering, 9(3), 215–230. https://doi.org/10.1080/1748602 5.2014.883465.

  • Reis, S., Bayrak, T., Yalçın, A., Atasoy, M., Nişancı, R., Ekercin, S., (2008). Rize Bölgesinde Yağış Heyelan İlişkisi. Jeodezi, Jeoinformasyon ve Arazi Yönetimi Dergisi. 2008/2 99.

  • Rocscience, (2011). Phase 2-2D Finite element program for calculating stresses and estimating support around underground excavation. (v8.14). Rocscience. https://www.rocscience.com/ documents/pdfs/ rocnews/spring2011/Phase2-8. pdf.

  • Tekin, S., (2019). Göksu nehri havzasının coğrafi bilgi sistemleri tabanlı jeomorfometrik analizi ve niceliksel heyelan olası tehlike değerlendirmesi. Çukurova Üniversitesi Fen Bilimleri Enstitüsü, Doktora Tezi, 244 s, Adana.

  • Tağa, H., Turkmen, S., Kacka, N., (2015). Assessment of stability problems at southern engineered slopes along Mersin-Tarsus Motorway in Turkey. Bulletin of Engineering Geology and the Environment, 74 (2), 379-391.

  • Tağa, H., (2017). Mersin-Tarsus Otoyolunun Kuzey Şevlerindeki Duraysızlıkların Değerlendirilmesi. MühJeo2017: Ulusal Mühendislik Jeolojisi ve Jeoteknik Sempozyumu, Adana, Türkiye.

  • Tağa, H., Yalçın, E., (2019). Tarsus Çamlıyayla Yolu Kütle Hareketinin Değerlendirilmesi. Mühjeo’ 2019 Mühendislik Jeolojisi ve Jeoteknik Sempozyumu bildiriler kitabı (ss. 309-316). Denizli, Türkiye.

  • TS EN 1926, (2022). Doğal taşlar- Deney metotları- Basınç dayanımı tayini. Ankara.

  • TS EN ISO 17892-1, (2014). Geoteknik etüt ve deneyler - Zemin laboratuvar deneyleri - Bölüm 1: Su içeriğinin belirlenmesi. Türk Standardları Enstitüsü, Ankara.

  • TS EN ISO 17892-2, (2014). Geoteknik etüt ve deneyler - Zemin laboratuvar deneyleri - Bölüm 2: Birim hacim kütlenin belirlenmesi. Türk Standardları Enstitüsü, Ankara.

  • TS EN ISO 17892-3, (2016). Geoteknik etüt ve deneyler - Zemin laboratuvar deneyleri - Bölüm 3: Tane yoğunluğunun belirlenmesi. Türk Standardları Enstitüsü, Ankara.

  • TS EN ISO 17892-4, (2016). Geoteknik Etüt ve Deneyler - Zemin Laboratuvar Deneyleri - Bölüm 4: Tane Büyüklüğü Dağılımının Belirlenmesi. Türk Standardları Enstitüsü, Ankara.

  • TS 1900-1, (2006). İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri - Bölüm 1: Fiziksel Özelliklerin Tayini. Türk Standardları Enstitüsü, Ankara.

  • TS 1900-2, (2006). İnşaat Mühendisliğinde Zemin Laboratuvar Deneyleri - Bölüm 2: Mekanik Özelliklerin Tayini. Türk Standardları Enstitüsü, Ankara.

  • Ugai, K., Leshchinsky, D., (1995). Three-dimensional limit equilibrium and finite element analysis: a comparison of results. Soils Foundations, 35(4), 1–7. https://doi.org/10.3208/sandf.35.4_1.

  • Von Mises, R., (1913). Mechanik der festen Körper im plastisch-deformablen Zustand. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Mathematisch-Physikalische Klasse. (1): 582–592.

  • Zezere, J.L., Ferreira, A.B., Rodrigues, M.L., (1999). Landslides in the North of Lisbon Region (Portugal): conditioning and triggering factors. Phys Chem Earth A 24(10),925–934.

  • Zienkiewicz, O.C., Taylor, R.L., (1989). The Finite Element Method. Vol.1, 4th Edition, McGraw- Hill, New York.

  • Zhu, H., Randolph, M.F., (2009). Large Deformation Finite-Element Analysis of Submarine Landslide Interaction with Embedded Pipelines. International Journal of Geomechanics, 10(4), 145–152. https://doi.org/10.1061/(ASCE) GM.1943-5622.0000054.



  • Nurduhan, M. & Taga, H. (2023). Silifke‐Mut (Mersin) Karayolunda Meydana Gelen Kargıcak Heyelanının Değerlendirilmesi . Jeoloji Mühendisliği Dergisi , 46 (2) , 139-156 . DOI: 10.24232/jmd.1230612

  • Nurduhan, M. , Taga, H. `Silifke‐Mut (Mersin) Karayolunda Meydana Gelen Kargıcak Heyelanının Değerlendirilmesi`. Jeoloji Mühendisliği Dergisi 46 (2023 ): 139-156

  • SAYI TAM DOSYASI
    PDF Olarak Görüntüle